Problems on convergence and uniform convergence of series of functions
by Ng Tze Beng

In this note I describe a method of summing a series by grouping terms of the same sign. If
the series formed by this grouping is convergent, then the original series is convergent and
converges to the same value. The estimation of the sum of the terms of the same sign is
crucial to this method. In a method, the sum of each grouping is estimated by the integral of a
non-negative or non-positive differentiable function with precisely one local stationary point
in a closed and bounded interval. The argument of convergence is then given by observing
that each term of the series formed by grouping the terms of the same sign is equal to the
terms of a convergent series up too( n”), > 1. In another method, the sum of the integral
forms an improper integral up to o( n”) , > 1. Thus, the knowledge of the convergence of
the improper integral is crucial in this method.

® sm(f XTr)

Problem 1 The series S(x) = Z converges pointwise on R. S(x) converges
uniformly on [k, K] for any k > O and any K > k. It does not converge uniformly on [0, K],
any K > 0.

The technique to solve this problem is to group all the terms with the same sign and show that
the series formed by the grouping of terms of the same sign is convergent.

Firstly, we note that S(0) is obviously convergent and S(0) = 0. Now fix any x > 0.

2
For each integer m > 0, let N,, = {n : n is an integer and (m)z <n< (_m +1 ) ).
Then N,, may be empty. IfN,, = O, then (mTH) (m ) = _2m + 1

If N, #J, then foreachn € N,,, m< /nx<m+1 and so m7z< J_xns(m+1)n. This
means that sin(/n xx) is of the same sign or 0 for all #n in N,, . More precisely, for m even,
sin(/n xm) > 0 for all 7 in N, and for m odd, sin(,/n x7) <0 forall nin N, . We partition

2
[0, o0 ) into non-overlapping intervals m 2, m+l ,m=0,1,2, - t, where for # in each
X X

2
interval [(%)2, n ; L ) ] , h(f) = sin(/7 x) is of the same sign in the interior and 0 at the

2 2
end points. Note that the maximum of | 4 (¢) | on [(%)2, 1 ; 1) ] occurs at (%1/2)
and is equal to 1. For integer m > 0, define

sin(/n xm)
2 —

Su(0)=1 &, if N, + O,

0if N, =O.
Thus, all terms in S,.(x) are of the same sign or 0. If we can show that the alternating series

Y. Swm(x) is convergent for x > 0, then S(x) is convergent for x > 0.
m=0

2 2
Suppose now N,, # . ForeachneNm,<m> <n< m;l) so that for m > 0,

(A7) = <G (1)

Now N, =@, ifand only if, 0<x? <1. Thus,n € N, implies that x> < % <l1.
Hence, for N,, # & and m > 0, it follows from (1) that




2 . 2 .
(mﬁ 1) Z]:v sin( /7 xm)| <18S,,(x)] S(%) Z;,v sin( /7 xm)| . -—--m--- (2)
If No# @,
x? Y sin(/nxm)<So(x)< X sin(/n xm). (3)
ne Ny n &€ No
Now we are going to estimate the sum Y, sin(/z x7) when N,, # &.
neNpy
Y. sin(/nxn)if N, + @,
Let Dp(x) =4 7N
0if N, =3.
Then we can write (2) as
x ) X2
(25) 1Du @) <152 < G 1Du@]m > 0 oo (4)
and (3) as
x2Do(x) < So(x) < Do(x) . 5).
Now, if N, #O, write N,={ai,a>, ...,a.}, where a; areintegersanda ;.1 —a;=1,i=
1,...,L—1. If|[Nm| = L> 1, then, in general, we have the following three cases.

2 2

(A) There exists k£ such that a; < (%1/2) and apy > (%1/2) or

2
B) a>(E2) o
2

(© av<(MHH2)

If|Nm | = L> 2, then we can have only cases (A) and (B). This is because if
2 2 2 2
ap < (%1/2) and L > 2, then (%1/2) - (%)2 > 1 and so (m; 1) - (m+xl/2) >1
2 2
and it follows that a; + 1 < (mTH) contradicting thata; +1 > (mTH) .
2
The function A(f) = sin( /¢ x7) for ¢ in [(%)2, (mT-i-l) ] is increasing on
2 2 2
[(%)2, (%1/2) ] and decreasing on [(m ;1/2 ) ’(m ; L ) ] for m even and is decreasing
2 2 2
on [(%)2, (%1/2) ] and increasing on [(m chl/z) ,(m;- 1) ] for m odd. Hence |A(7)|
2 2
for ¢ in [(%)2, (m ;‘ 1 ) ] is increasing on [(%)2, (%1/2) ] and decreasing on
2 2
[(m chl/z) ,(m;- 1) ] Then we have
if L >2, by 1Llsing the monotonicity of |A(f)| described above, for case (A),
;Ih(ai)l < [ h(@ldt +max(Ih(aw)l, Ih(aw)) < § Th(p)lde+ 1

and for case (B)

L
Dlnanl < |, 1h@lde+1

L )2/
and so Y@l <[ Iholde+1.
i=1
. m+1)2/x2
IfL =1, then plainly |h(an)l <1< {" " |h(@)ldt+1.
L m 2X2
Thus, we have if N, =@, Yl < [0 " 1h(o)ldt+1.
i=1 mex

Consequently, form > 0,



(m+1)%/x?

|D,(x) < 22 lh(0)ldt + 1, (6)
since D,(x) =0 when N,, = &.

Now if L > 2, then we have for case (A),

L m 2X2
Slh(a)l +1> [0
i=1

m2/x2 | h(t) | dt
L

and for case (B), Sliganl+ [, Ih@)lde> |
i=1

m+1)2/x?
o ol
and since for this case a; — (%)2 <1, jfnlz/leh(t)ld < 1, we have again,
L 2,2
(m+1)“/x
Y@l + 12 [, Il

2
IfL =1, then a; —(%)2 <l and(m; 1) —a; <1 and so we have,

m+1)2/x2
@)l + 12" 7 1h@)ar.
Thus, for any m > 0 and, N,, # &,
(m+1)2/x?
Dl = [ Ih(p)lde 1. 7)

U 2 xz
Note that N,, = & implies that (mTH) - (%)2 = % <landso [ lh()lde < 1. Tt

m2/x?
xZ
follows that [ " |(¢)ldi— 1< 0= 1D,(x).
Hence, (7) holds for any m > 0 without any condition. Therefore, combining (6) and (7) we
have,

m+1)?

(m+1)2/x2 (m+1)2/x?

h@Oldt=1< D) <, h@)ldi+ 1. —meeemees (8)

m2/x2

(m+1)2/x2

m2/x2

Next, we shall evaluate the integral f |h(f)\dt .

Now, [ h()de={ sin(JZxn)de= |2 sin(um) < du, by change of variable u = J7x,
=—5-U cos(um) + @ j cos(um)du , by integration by parts,
=—au cos(um) + gy sin(un) + C.

Therefore,
(m+1)2/x2

m2/x2

m+1
x22712 sin(un)]m
= =+ D)™+ m(-1)"}

= @m+ 11" )

ho)dt = |~ cos(um) +

Thus, (8) and (9) give us
2 2
S @m+ 1) = 1<IDu()l < - @m+ D+ 1, m20. - (10)
Thus, it follows from (4) and (10) that for m > 0,
2 2
Sl < () 1Dw(0)] < 5
And for m > 0,
2 2
X 2 X
500912 (5,57 ) 10w 2 m+ D22t D= Gy
2

S 4 _ 2 X
“(m+Dr (m+1)2n (m+1)2°

2 2
x _ 4 2  x£
(2m+1)+m2 =t mam Tt

Hence, for m > 0,



4 2 X2 4 2 x2 4 2 x2
m+Or  men m2 = (m+Drn _ (m+ 1)2n  (m+1)? < IS (x)|< % men T m?
(11)
and from (5) and (10),
2 -2 <Sol) < 5=+ 1. (12)
Thus, for m even and m > 0,
4 2 4 2 x?
(m+ ) m’n W SSn(W) S g+ o T gz 0 T (13)
and for m odd > 0,
4 2 x2 4 2 x2
i g~ w2 <S5 S GE D  ag Fe  (19)
Combining (13) and (14) we get form >0,
2 x2 15
Cm = m2m m2 27 m2 "’ ( )
4
———_,meven -, m even
where ¢, =4 " +i)” and d,, = mﬁ R
mn’amOdd _(m+1)71"m0

Observe that both the series 2 cm and 2, d,, are convergent series and Y, ¢, = —% while

m=1 m=1 m=1

2 dn = 0. Therefore, it follows from (15) and (12) that the series 2 Sn(x) is a convergent

m=1

2 2 2 2 x?
series since 77 —x +mz::1{cm i p— m2 }and ——+1+ Z {d m2 }are

convergent series for eachx > 0. We can now conclude that S(x) converges forx > 0. This is
a consequence of the general result: if the series formed by regrouping a given series into
terms of the same sign is convergent, then the given series is convergent. We shall prove this
special case as the general case can be proven in the same manner.

For a fixed x >0, ), S,(x) is convergent implies that given any € > 0, there exists an integer
m=0

N >0 such that forallm>n >N,

k=m

> Sk(x)‘ <é/3.
k=n
2 2
The number of positive integers in (O, (%) ] is bounded above by [(%) ] +1. if

2
a>[(¥) ]+1,thena e N, forsomen>N. Thusifb>a,thenb € N, for some m such

that m > n. Note that for fixed x > 0, each N,, depends on this fixed x. We shall now denote
N,, by N,(x) to emphasize its dependence on x. Then

J=b sin( Jj xm) sin( [ XTr) sin(/j x7)
>——= + S+ A+ S - Y, ———
J=a J JENW(X) , j>a ] JENm(x) , j>b J
sin( ﬁ XT) sin( ﬁ XT)
< ——— |+ )+ S+ Y ————
JENm(x) , j>a JENm(x) , j>b J

< IS (x)l + |S,,+1 (x)+ “+ S0+ 185 0)]

<3+3+3

Hence S(x) is convergent.

Observe that the number of terms in each S,,(x) depends on x. Indeed the number of terms
tends to infinity as x tends to 0 on the right. For this reason it is reasonable to suggest that the

4



original series S(x) cannot converge uniformly on the interval [0, K] for any K > 0. To prove
this we shall need a better estimate of S,,(x). We shall do this later. For now we shall show
that S(x) converges uniformly on the interval [k, K] for any £ > 0 and any K > k.

Note that x € [k, K] implies that % < % So from (12) we have for all x in [k, K],
2-K2 <SS s o+ L, *)
and for all m > 0, for all x € [k, K],
2 K? 2 K?
cm_mzn_WSSni(x)Sdn1+m2n+W- """"""" (16)

Since the two series defined by the terms on the left and right of (16) and (*) are uniformly
convergent, the series

20 S(x)
is uniformly convergent on [k, K]. It remains to show that the original series S(x) is uniformly

convergent on [k, K]. The proof is similar to the proof for convergence. Since D, S,(x) is

m=0
uniformly convergent, given any € > 0, there exists an integer N > 0 such that for allm > n >
N and for all x in [k, K],

k=m
Y Silx)| < e/3.
k=n
.. . . mN27 . m 2
Now the number of positive integers in (O, (7) ] is bounded above by (?j . Therefore,
2
if a> [(%) ] + 1, then a € N ,(x) for some n > N and for each x in [k, K]. Thus if b > a,
then b € N,(x) for some m such that m > n. Hence, for all x in [k, K],
J=b sin(,/j xm) sin(,/j xm) sin(/j xm)
2—[ = X —\/._+Sn+1(x)+---+Sm(x)— > L
j=a J JENA() . j2a J JENm(x) ,j>b J
sin(,/j x7) sin(,/j x7)
< —\/J_ + 181 (xX) + -+ Su(x)] + > —\/J_
JENm(x) , j>a J JENm(x) , j>b J

< |Sn(x)| + |Sn+l (X) + o+ Sm(x)l + |Sm(x)|
< ? + ? + ? =é&.
This shows that S(x) is uniformly convergent on [k, K].

It follows that S(x) is pointwise convergent on (0, ). Since sine is an odd function,
consequently, S(x) is pointwise convergent on ( —o, 0). S(x) is plainly convergent at 0 and so
S(x) is pointwise convergent on R.

Now we proceed to show that S(x) is not uniformly convergent on [0, K] any K > 0. For this

sin(/7 xm)
t

purpose we shall use the function, g(¢) = on each interval

2
[(%)2, (m; L ) ], m=0,1,2,---. Fix any x > 0. Note that |g(¢)| has precisely one local

2
maximum (hence absolute maximum ) in each interval except on [0, (%) ], where g(7) is

decreasing. g(¢) alternates in sign as A(%).

cos(/t xm)/t xmt/2 — sin( /1 x7)

We can deduce this as follows. The derivative of g, g'(f) = P

Thus g'(f) = 0 if and only if tan(/f x7) = /£ xn/2. But tan(f) = 6/2 has only one solution in
each interval [mm , (m+1)n] m >0 and none in [0, «]. This is because if there were two

5



solutions in [mm , (m+1)x], then by the Mean Value Theorem there would be a point 1 in the
interval such that tan '(n) = sec’(n) = 1/2. This contradicts that sec’(r)) > 1. This means g(¢)

. . L . . 2
has only one stationary point which is the maximum on the interval [(%) , (mTH) ] when

2
m is even and bigger than 0 and a minimum on the interval [(%)2, (mTH) ] when m is odd.
Thus, for m > 0, |g(?)| increases from 0 to its maximum and decreases to zero after that on

2 2 2 2
each interval [(%) ,(m ;CL 1) ] Now the maximum for |g(7)| in [(%) (2 ; 1) ] is less
than (%)2 for m > 0. Note also that tlir61+ g(f) = +o0.

With (%)2 in place of 1 as in the case for (), following the estimate for D,(x), we can

deduce similarly that form > 1,
(m+1)2/x? m+1)2/x2

( 2
o lg@lde-(3)" <18u@)l < [ g+ (5
It follows that for m > 1,

(m+1)2/x? 2 (m+1)%/x2 2
o 8dt— (5)” < Sulx) < e gOdi+ (€ —— (17)
Form=0, No# @, ifand only if, 0 < x> <1 and so since g is decreasing on (0, x%] ,
1/x?
So@ <[, g,

where the integral is a convergent improper integral. Also we have

1 1/x?
[oedi+So@ =, gl
This means

1/x? 1 1/x?
J, gde- gdt<Sox)< |, gt (18)
Observe that (18) holds when N =, i.e., Sy(x) = 0 and x% < 1. We shall prove the

pointwise convergence of S(x) using this estimate. Central to this approach is the
convergence of the improper integralf g(t)dt.

jg(t)dt = f sin (fxn)d 2 j sin (u) ——du, by change of variable u = /7 x7.
Thus,

{7 ewar=1{7 Sm(ﬁ sinJtxm) o i Sm(”)d =2 L=, e (19)
assuming the convergence of the improper integral j Sm(u) = % This can be
established by complex variable technique. Note also that

(m+1)2/x2 (m+1)n sin(u)

e SOA=2] (20)
and [, gdt={, Sm([ rxm) SR = [ SInG) 4, Q1)
Rewriting (17) using (20) we get form > 1

(m+n sin(u (m+hyr sin(u
2" ()d —(E) <Saw<2 " ()d +(E) e (22)
and using (21),
2 jn Sln(u) _ 2 jxn Sln(u) du < S (x) 2 svn Sln(u) du. ______________ (23)

j*(m+1)7z s1n(u)

Hence, because the series 2 is convergent as the improper integral

r) s1n(u)

0 duis convergent and Z( ) is also convergent, the two series defined by the

terms on the left and right of (23) and (22) are convergent. Therefore, 2 Sm(x) is

m=0

6



convergent for each x > 0. And we can now conclude as before that S(x) is convergent for

each x > 0 and S(x) = 2 Sn(x). Now we shall show that the convergence of S(x) on [0, K] for

any K > 0 is not unlform. If S(x) converges uniformly on [0, K], then S(x) is continuous on
[0, K] and so lirn S(x) = S(0).
But from (22) and (23) forx > 0
5 j*oo s1n(u)d 2 2 . j*xrz sm(u)du < S <2 § s1n(u)d iy 2
2

, 72 7[ 5 svxn sm(u)

so that 7 —x — —du < S(x) < m+x? ? because Z % ="c-

xn s1n(u)
0

Since linol j du = 0, by the Squeeze Theorem,
xll% S(x) =m+S(0)=0.
This contradiction shows that the convergence is not uniform on [0, K].

* sin(/n xm)

Problem 2. For % < B <1, the series T(x)= 2, —§  converges pointwise on R,

n=1
converges uniformly on [k, K] for any k> 0 and any K > £ but not uniformly on [0, K], any
K>0.

Plainly, 7(0) is convergent and 7(0) = 0. Fix anyx > 0. For integer m > 0, let
¥ sin(/n x7)

=1 w2 ol mFE (24)
0if N, =O.
Following problem 1, we can show that form > 1,
(m+1j Du@)| < 1Tu) < (5) 71D, (25)
and x?Do(x) < To(x) < Do(x).

Then from (10) and (25) we get,
) )
) Zeme -1} <inm <) Zrem 1), m21 - 6)

2
and X ST <5+ 1 (27)
Subsequently, for m >1,
4 1 2 x %
| T ()] < 228 m2t T o228 m2b Gir) y
4 1 2 X
|Tm(x)| 2 228 (m + I)Zﬁ—l a nxz—zﬂ(m + 1)2ﬂ B (Wl + 1)

R — %
nx228 (m+ 1)1 ax2-2bm2p ms -
Thus, we have for m even and m > 0,

4 1 2 x\2$
Tn() < 235 pt + an—Z[)’mZﬁ +(30)
2

and Tn(x) 2 x> 2 (m+ 1)1 x> ZﬂmZﬂ ( ) T (28).

4 1 2 28
Foroddm > 1, Th(x)<— 223 (g 1) g T (ﬁ)

4 1 2 x \28
and T(x) > T 228 m2l T p228m2f (ﬁ) <o TTTTTTTTTTT (29)

o2 (it D21 meven and m > 0

4 1 >
2 2F e M odd

Let cm(x) =

7



4 1

X228 261>

meven and m >0

dm(x) = 4 1 )
~ 723 (my D" odd
2
co®) = —S5 —x,
and
2
do(x) = s 1.
Then from (28) and (29) we have,
9 2 ) 2
Cm(x) = o 2-2Bm2b (%) < Tw(x) <dwm(x)+ 222kt (%) ,m>1, - (30)
co(x) < To(x) < do(x)
Now 2 cm(x) and 2 dn(x) are convergent with 2 cm(x) = %2/; —x% and

m=0

Z dn(x) = 2 + 1. Since 23 > 1, 2 {m ( ) } is convergent being a constant

times a convergent p-series. Therefore, we conclude from (30) that ), T,,(x) is convergent.
m=0

We can now conclude that for x > 0, 7(x) is convergent and 7(x) = Y. Tu(x).
m=0

Now, for x in [k, K], K >k > 0, we deduce from (30) that, form > 1,

2 K\ 2 K\
cm(X)—W‘(m) STm(X)ng(X)+W+(m) ------- (31
and T —KzﬂsTo(x)£W+l.
We now claim that Y, c,,(x) converges uniformly on [k, K]. This is seen as follows.
m=0

co(x)+ci(x)if nis odd

. . Hence, for m > n, and for
co(x)+ci1(x) +cn(x)ifnis even ’ ’

The partial sum Y, cx(x) = {
=0
all x in [k, K].

2 crx)

k=n+

4 1. _ 4 1 __ 8 1
X228 m2b1 T 228 p2bl S ph22p p2p-l-

<lem@) +len(x)l <

Since lim —>—7 k22 2};_1 =0, given any € > 0, there is an integer N such that for all n > N,
nk?_zﬁ nZ}H <e&. Therefore, forallm,n>N and m > n,
3 8 _1 :
k:%—l cx)| < k22 g2pT <¢ for all x in [k, K].

This means that ), cx(x) is uniformly convergent.
=0

d,(x) if n iseven

The partial sum ), di(x) = { . It follows that for m > n, and for all
=0

do(x) + d,(x) if n is odd
x in [k, K],
k:zn:ﬂ dk(X)‘ <ldn)| +1dn(0)l < g5 + 2725 3T < 7paap apr - Lherefore, as
in the case of the previous series, for allm,n>N and m > n,
k—%—l di(x)| < k2 5, 1 <e¢ forallxin [k K].

This means Y, di(x) is uniformly convergent on [k, K]. This implies that the two series
=0
defined by the terms on the left and right of (31) are uniformly convergent on [k, K]. It



follows that Y. T),(x) is uniformly convergent on [k, K]. We deduce as in problem 1 that
m=0

T(x) is uniformly convergent on [k, K]. This implies that 7(x) is pointwise convergent on (0,

o0 ) and so on (—o0, 0). Since it is convergent at 0, 7(x) is pointwise convergent on R.

We next show that 7{(x) is not uniformly convergent on [0, K].
From (26) we obtain for m even for anyx >0 in [0, K],

1 %
10> o T 2 em+ D) - (=)
1 2 7r_xz}
= (m+1)% nxz‘zﬂ{(2m+ -7
1 2

{am+1)- 4 K2 J (32)

K>
2

Then by using (32), we have

>
= (m+1)% nx22b

For any integer N > 0, choose an even integer 2n > N so that 4n > =5—. Then choose

211
CERITES

1 2 K
1) 2 G 1)y nyz—zlf{(4”+1)‘ =
1

= 2n+ 1) my226
>2.

>0 so small such that 0 <y

Hence Y, T,.(x) does not converge uniformly on [0, K]. Consequently, 7(x) cannot converge

m=0

uniformly on [0, K].

© sin(,/n x7)

Problem 3. The series T(x)= 2, In diverges for all x # 0.
n=1

Suppose x > 0. With the notation as in Problem 1, note that for N,, # &, n € N,, implies that
(ﬂ>2 <n<(m+ 1)2 so that for m >0
X = X 5

<. (33)
Let T,(x)=19 nen, ﬁ . Then the partial sums of the series

2 T'n(x) is a subsequence of the partial sums of 7(x). If 7(x) is convergent, then 2 Tm(x) is

m=0
also convergent.

It follows from (33) that

T(0)] 2~ 1D ()
> (m)j- ) {x2 2m+1)-1 } by inequality (8).
But lim (m)_c'_ 0 { 2n 2m+1)- } = % # 0. Thus, |Tx(x)| does not converge to 0. It

follows that Z Twm(x) is divergent for x > 0. This implies that 7(x) is divergent for x > 0.
m=0

Since sine is an odd function, for x <0, 7(x) = — T(—x) and so 7{(x) is divergent for x < 0. In
conclusion, 7(x) is divergent for all x = 0.



o cos(fx

Problem 4. The series 7(x)= 2 Tn diverges for all x .

We can use the same technique as in Problem 3 to show this. Obviously, 7(0)= . %
n=1
divergent.

Suppose x> 0.

2 2
For each integer m > 1, let N, = {n : n is an integer and (me_ I ) <n< (me—+1) }.

For m =0, let No = {n : n is an integer and 0 < n < (%)2}

Then N,, may be empty. IfN,,=J and m > 1, then (%)2 - (2mx_—1)2 = 8m

If N,#J andm > 1, then foreachn e N,,, 2m—1< /nx<2m+1 andso
TS le <o (34)

and (2m—-1)% < Jnx% <@m+1)% . Note that Ny = @, if and only if, (%)2 >1. When

No# D, n e N, implies that

(35)

< # <l
This means that cos(,/n xl) is of the same sign or O for all » in N,, . More precisely, for m
even, cos(\/_x )>0 for all nin N,, and for m odd, cos(J_x y<Oforallnin N, . We
partition [0, o) mto non-overlapping intervals

{[O’x%]} U H(mx— 1)2,(2mx+ 1)2]’,%: 1.2, }

where for 7 in each interval [(me_ 1 )2, (2mx+ 1 )2] , h(t) = cos(ﬁx%) is of the same sign in
the interior and 0 at the end points. Note that the maximum of | / (¢) | on
[(me_ 1)2’ (2mx+ 1 )2] occurs at (ZTm)Z and is equal to 1. For integer m > 0, define

cos(/_x )
Lw=1 %, & P
0if N, =O.
> cos(J_x Vif Ny + D,

and m(X) =19 "€Nn

0if Ny =O.
We deduce from (34) and (35) , that for m2>0,

ITa()| > 52|, o)l (36)

So now we shall estimate |E,,(x)| via the use of the function A(f). We can estimate A(Z) in
exactly the same manner as 4(¢) in Problem 1. We obtain similar to (7) in Problem 1, for m
>0,

2m+1)%/x?

0 > [l Ol (37)
and |Eo(x)| > § Ih(t)ldt— 1.
Now
j h(t)dt = f cos(/t x%)dt = j 2 cos(u%)ldu by change of variable u = /7 x,
= xiu s1n(u 7 )— j s1n(u 7 )du, by integration by parts,

10



=x4nusm(u2)+ 2gzcos(u2)+C
Therefore, form > 1,
Q2m+1)%/x? 4 8 o 2m+1
Jom o hoyde = | —usinw®) + -5 cos(uE)Lm_l
= )f {2m+ 1)(—1)’”+(2m— D(-1)"}
(—1)’”
Thus, form > 1,
@m+1)%/x* 16m
J Gty )1 = -7 (38)

Combining (37) and (38) gives us that for m > 1,
[Ep()] =492 1,
It follows then from (36) that for m > 0
X X 16m
Tl > 2m+1 |En ()] = 2m+1 { x2n 1}'

x 16m
But Jim, T T

= % #0. Thus |Tn(x)| does not converge to 0. It follows that

Z Tm(x) is divergent for x > 0. This implies that 7(x) is divergent for x > 0. Since cosine is
m=0

an even function, for x <0, 7(x) = T(—x) and so 7{(x) is divergent for x < 0. In conclusion,

o ] © cos(J/nx) .
T(x) is divergent for all x in R. Consequently, 2, T diverges for all x.
n=1 n

Problem 5. Forp > 1, the series ), sin((%)p) converges on [0, o) but not uniformly.
n=1

)p)‘ ( )p =x? np Since n§ ——1s convergent for p > 1, by the

Weierstrass M Test, the series Z sin((g) ) converges absolutely and uniformly on [0, K] for
n=1

any K > 0. Hence it is pointwise convergence on [0, ).
3
But for x > 0, sin((%)p) > (%)p - %(%) " . For each integer N >1, leta = N. Then

al(8))21-4-3

2\[ sin(<%>p> > %

This means that there does not exist an integer N such that for any n > N,
n

> sin((%)pj < % for all x in [0, ).

k=N

Consequently,

This means ), sin((%)@ does not converge uniformly on [0, o).
n=1

Problem 6. The series T(x)= 2 % sin(—= In ) converges for all x in R but not uniformly on

R.

It is easy to deduce the convergence of this series on a closed and bounded interval by using
Weierstrass M Test.

Take any K > 0. Observe that for any x in [-K, K],

11



le K
sin :
) r sin(— ) Ry
Since Y, K_ s convergent, by the Weierstrass M Test, ), % sin(%) is uniformly
n=l NJnNn n=1 n

convergent on [-K, K]. For any x in R, there exists a K > 0 such that x €[-K, K] and so by
what we have just proved, 7(x) is convergent. This means 7(x) is pointwise convergent on
R. Now we show that the convergent is not uniform on R.

3
We shall use the inequality sin(x) > x — % forx > 0.

Take any integer N> 1. Letxy = JN . Then

3
sin{xNJ> 24 —l{xNJ _aw 1y N ANV (39)
Jn )T yn 6(Jn Jnoo bnyn o yn 6 nn
Hence,
nsm{ n]znn " nzﬁ (40)
Therefore,
2N 2N 2N
S Ll 2|, § IV 1§ NN @a1)
n=N n n=N Nyn 6 n=N I’lzﬁ
Observethat
= /N 1 S 1__1 N+1__1 1
= _Z . = l+_ - 42
%:vn %2N,/2N 272 i N"2/2 N 25( N) 2
and
2N 2N 2N
z:N\/_ NJN 1 L:L(1+L) ________ 43)
v ntfn T 6y N2 /N 6w N6 N
It follows from (42) and (43) that (41) becomes
2N
R N TR AR TR A | A TN )
2 nsm(\/_]>2\/_(l+N) 6(1+NJ_2{\/§ 3}(”1\/)
11 1
25 73 >0.
This means that for any ¥ % { J ( —%J Hence

NS

Therefore, My does not tend to 0 as N tends to infinity. Consequently 7(x) cannot converge
uniformly on R.

oo}

13
Problem 7. The series S(x) = 2 M

converges pointwise on R. S(x) converges

uniformly on [k, K] for any k& > 0 and any K > k. It does not converge uniformly on [0, K],
any K > 0.

This can be proven in the same manner as Problem 1.
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X COos 5
Problem 8 The series 7(x)= ). W converges pointwise on R — {0}. 7{(x)
n=1

converges uniformly on [k, K] for any k>0 and any K > k.
The technique to solve this problem is the same as Problem 1 to group all the terms with the

same sign and show that the series formed by the grouping of terms of the same sign is
convergent.

Firstly, we note that 7(0) is obviously divergent as 7(0) = Z % , which is divergent. Now fix
any x > 0.

2 2
For each integer m > 1, let N, = {n : n is an integer and (2mx— 1) <n< (%) }-

2
Form =0, let No = {n: nisaninteger and 0 <n < (%) }

2m+1Y (2m—1\* _8m
Then N,, may be emptzy. IfN, =Y and m > 1, then (T) _(T) =2 < 1.
If No= &, then (%) <1,i1e, 0< % < 1. Conversely, 0 < % < 1 implies that Ny = O.
If N,#andm > 1 then foreachn e N,,, 2m—1< /nx<2m+1 andso
x2 l x2
Qm+1)2 TS @m_1p (1
2
and (2m — 1)% < nxE<@m+ 1)% . Note that N, # & if and only if (%) >1. When N,

=, n € N, implies that

Pel<l 2)

This means that cos(/n x—) is of the same sign or 0 for all # in NV,, . More precisely, for m
even, cos(J_x )>0 for all nin N,, and for m odd, cos(J_x )<Oforallnin N, . We
partition [0, o) mto non-overlapping intervals

{[ij%]} U {[(me— 1)2,(2mx+ 1)2],,”: 1.2, }
where for ¢ in each interval [(me— 1)2, (me+ 1 )2] , h(t) = cos(ﬁx%) is of the same sign in
the interior and 0 at the end points. Note that the maximum of | 4 (¢) | on
[(me_ 1)2’ (2mx+ 1 )2] occurs at (ZTm)Z and is equal to 1. For integer m > 0, define

cos(/_x )
Tux)=1 &, —n if N, + 9, ’
0if N, =O.

and

Z cos(ﬁxg) if N,y + O,
En(x)=

0if Ny =O.
We deduce from (1) ghat form >0,
WlEm(x)l > |T(x)| > m|Em(X)| ------------------ (3)
and from (2) we have
Eo(x) > To(x)| > x*Eo(x). 4)
So now we shall estimate |E,,(x)| via the use of the function A(f). We can estimate A(Z) in

exactly the same manner as A(t) in Problem 1. Similar to the case in Problem 1, form >0 we
have the following deduction.
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Assume m > 0.
If N,#O, write N,={a1,a, ...,a .}, where a; areintegersanda ;1 —a,=1,i=1, ...,
L-1. If|Nm | = L> 1, then, in general, we have the following three cases.

2 2
(A) There exists k£ such that a; < (ZTm) and gy > (2Tm) or
B 2m 2
(B) ar>(—) or
2 2
©) ar<(42). 2
If|Nm | = L= 2, then we can have only cases (A) and (B). This is because if a; < (2Tm)
2 2 2 2
and L > 2, then (2Tm) - (2mx_—l) > 1 and so (Zm + 1 ) (ZTm) > 1 and it follows that
2
(%) contradicting that a; + 1 > (2m -1 )
The function, h(f) = cos(/t x%) defined for 7 in [(2 T (2m +1 ) ] is increasing on
r 27
(2mx— 1) ( X ) and decreasing on [(2)?7 ) ,( mx+ 1 ) ] for m even and is decreasing on
r 2 27 2 2
_(me_ 1) , (2Tm)2 and increasing on [(2—’”) , (2mx+ 1) ] for m odd. Hence, |A(¢)| for ¢
i_n [(%3 (m;' L ) is increasing on [(2’” ) (2’") ] and decreasing on
(sz) , (%) Ik Then we have, if L > 2, by using the monotonicity of |A(¢)| described

above, for case (A),

Zlh(a )N < [ 1h(o)ldt+ max(hao), |haw)l) < J 7 1h(@)lde+ 1

ClL+1<

and for case (B)
L
Zln(al < [, h@ldr+1
L @m+1)2/x2
and so ;lh(ai)l < Lzm_lwx2|h(t)|dt+ 1.
: @m+1)2/x2
If L =1, then plainly |A(a))l <1< \h()ldt + 1.

(2m—1)2/x2
@m+1)2/x2
(2m—-1)2/x2

L
Thus, we have if N, = @, Dlh(a) < | \h(t)ldt + 1.
i=1

Consequently, for m >0,
2m+1)%/x?

|Em(x)| S (zm_l)Z/x2|h(t)|dt+ 15 (5)
since E,(x) =0 when N,, = &.

Now if L > 2, then we have, for case (A),
L @m+1)2/x2

;lh(ai)l +1> (2m+1)z/xz|h(f)|dl‘
and for case (B),
< 2/42
a @m+1)2/x
2|h(al)| + §(21 )2/x 2|h(t)|d Qm)2? |h(t)|dt

and since for this case a; — (2m) <l, j |h(t)ld < 1, we obtain again,

. (2m)2/x2
Q2m+1)2/x2
Z;,Ih(ai)l 1> (ZM;/XZ \h(t)\dt.
N 2
If L =1, then a; —(T) <1and (%) —a; <1 and so we have,

14



Qm+1)2/x2

lh(a))l +1> (2m_1)2/x2|h(t)|dt.
Thus, for any m >0 and N,, # &,
2m+1)%/x?
En@) 2], i Jh@)ldt—1. (6)
2 m+1)2/x2
Note that N,, = & implies that (2mx+ 1) (Zm ) =2 <1 and so ((imj;/leh(t)ldts 1.

It follows that [ ;f‘zlh(t)ldt— 1<0=]Ea()l.
Hence, (6) holds for any m > (0 without any condition. Therefore combining (5) and (6) we

have,
@2m+1)2/x2

(2m—-1)2/x2

2m+1)%/x?

(Zm_l)Q/x2|h(t)|dt— 1 <|En(x)] < |h(0)ldt+ 1. =emmmmmev (7
For m =0, h(f) = cos(/t x%) is non-negative and decresing on [0, x%]with maximum value 1
att=0. Thus, if Ny = &,

1/x2 1/x2 *
§, 1h@ldi=1<1Es)l <, 1h@)ldt. (7)
Now,
| h(oyde = | cos(ixT)dt=| 2 cos(u%)ldu by change of variable u = J/7x,
= xiu sin(uZ 2 )— j sin(uZ 2 )du, by integration by parts,

4
=n ¢ s1n(u 7 )+ 22 cos(u D )+ C.

Therefore, form > 1,
2m+1

2m+1)%/x? 8
oy MO = [x“n sin(u?) +— cos(u%)]m_1
- xi @m + 1)(—1)m +@m-1)(-1)")
1 m
(—1)
Thus, form > 1,
Qm+1)2/x2 16
moyal BN =30 ®)
Combining (7) and (8) gives us that for m> 1
|En@)l 2 -5~ 1.
It follows then from (3) that for m > 0
x2 16m
ITa@| 2 Gz En 0] = 5,50 {1321
2 16m
and NTw(x)l < W“Em(xﬂ = 2m - —1)2 { + 1}

Now

x2 1
[ h(t)dt:[ﬁiusu;uz)+ zcos(uz)]

T x2n T x2m?
Therefore, it follows from (4), (7)* and the above deduction of the integral that, for 0 <x <1,

2r 2qz 2B 2 |To(x)| > x2Eo(x) > x? (xzn - 1).

Form >0,
lom . x>
Qm-1)2  2m-1)%"

16m x2
@m+1)2r " @me 1y S Tnl<
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Thus, for m even and m > 0,
16m x? 16m ¥2
Qm+ 12~ Qm+1)2 = Tn(x) < Qm—-1yz T @m—1)p T )
And for m odd > 0,
2 16m x2

16
“(2m _nf)zn - (2mx_ 1)2 < Tn(x) S_(2m+ 1)z * Cm+1)2" T (10)

We also have that for for 0 <x <1,
4 8 4 8 4 8
LR ST
Note that here Ty(x) = 0, if Ny = &, if and only if, x> > 1.
4 8
T 723 -1< T()(x) <— x27'c 2
Observe that the above inequality also holds when x > 1 when Ty(x) = 0.

(11)

32k x?

32k x? N
@k- 1 T @-1)2

(@k+ )2~ (4k+ 1)

Thus, for k> 1, < Toplx) <

32k—16 x2

32k—16 X2 .
(4k— D2 T @k—1)2

T(@k-3)2n ~ (4k-3)?

< T2k_1(x) <-—

32k+16 x2

32k+16 x2 N
(4k+3)2m  (4k+3)% -

T@k+ )2 T (Bk+1)?

and < Top(x) < —

Form>1, let

16—7”1 m even 16—m m even
@m— 1727 Qm+ 1)2n
=N dem g T dem
Qm+ 1)2n @m—1y2n
x2 x2
@m—Tyz> Mmeven @11z meven
Cm = 2 and f,, = 2
m, m odd m, m odd

Hence, form > 1,
Am —fmn S Tw(X) < +em.
4 8
i

4 fo=0,Co=Oandd0=_—ﬁ—l.

Let eg=——
07 2z T x2m2’

Note that D, ¢,, and D, d,, are convergent alternating series since ¢, — 0 and d,, — 0.

m=1 m=1

2
Form>1, 0<eu,fn g . Hence, by Comparison Test, 2 e, and 2 fm are convergent.

m=1

Thus, 2 (¢ +em) and 2 (dn — fn) are convergent and so are Cauchy series. Therefore,

m=1

2 Tm(x) is a Cauchy series and so is convergent. We then deduce as in Problem 1 that

m=1

S cos(vnxy

T(x) = Z (J_ — 2 ) is convergent for x > 0. Since cosine is an even function
) cos(ynx

T(x) = 2 (‘/_ 2) is also convergent for x < 0. Thus it is convergent for x # 0.
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For now we shall show that 7(x) converges uniformly on the interval [k, K] for any £ > 0 and
any K > k.

Note that x € [k, K] implies that % < % So from (11) we have for all x in [k, K],
4 8 4 8
7z LT <y — e )
and for all m > 0, for all x € [k, K],
K’ K’
dp—"5<Tu(X)<Cn+"5
m m
and do— fo < To(x) < co +ﬁ(1 ~2), (12)

Since the two series defined by the terms on the left and right of (12) and (*) are uniformly
convergent, the series

> T()
m=0

is uniformly convergent on [k, K]. It remains to show that the original series 7(x) is
uniformly convergent on [k, K]. The proof is similar to the proof for convergence. Since

Y. T.(x) is uniformly convergent, given any & > 0, there exists an integer N > 0 such that for
m=0

all m > n > N and for all x in [k, K].

k=m
‘ z Ti(x)| < &/3.
k=n
2 2
Now the number of positive integers in (O, (ZNX_ 1 ) ] is bounded above by [(2Nk_ 1 j ] + 1.

2
Therefore, if a > [(2N—k_1) ] + 1, then a € N ,(x) for some n > N and for each x in [£, K].

Thus, if b > a, then b € N,(x) for some m such that m > n.
Hence, for all x in [£, K],

= cos(Jj x5) cos(/j x5) cos(,/j x3)
>y —"= — 4+ T )+ + Tp(x) - 2, ———
Jj=a J JEN(X) , j>a J JENm(X) , j>b J
cos(/j x75) cos(./j x75)
< # T )+ + T+ X #
JENm(X) , j>a J JENm(x) , j>b J

< |g1n(x2:| +|(C'Z—'n-%—1(x)+ o+ Tm(x)l +|Tm(x)|
< g + § + § =é&.
This shows that 7(x) is uniformly convergent on [£, K].
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