
Problems on convergence and uniform convergence of series of functions

by Ng Tze Beng

In this note I describe a method of summing a series by grouping terms of the same sign.  If

the series formed by this grouping is convergent, then the original series is convergent and

converges to the same value.   The estimation of the sum of the terms of the same sign is

crucial to this method.  In a method, the sum of each grouping is estimated by the integral of a

non-negative  or non-positive differentiable function with precisely one local stationary point

in a closed and bounded interval.  The argument of convergence is then given by observing

that each term of the series formed by grouping the terms of the same sign is equal to the

terms of a convergent series up to o( n−β ) , β > 1.   In another method, the sum of the integral

forms an improper integral up to o( n−β ) , β > 1.  Thus, the knowledge of the convergence of

the improper integral is crucial in this method.  

Problem 1  The series    converges pointwise on R.   S(x) convergesS(x) = �
n=1

∞ sin( n x�)
n

uniformly on [k, K]  for any k > 0 and any K > k.  It does not converge uniformly on [0, K],

any K > 0.

The technique to solve this problem is to group all the terms with the same sign and show that

the series formed by the grouping of terms of the same sign is convergent.  

Firstly, we note that S(0) is obviously convergent and S(0) = 0.  Now fix any x > 0.

For each integer m ≥ 0, let .Nm = {n : n is an integer and
m
x

2
< n [

m + 1
x

2

}

Then Nm  may be empty.  If Nm = ∅, then .
m + 1

x

2

− m
x

2
= 2m + 1

x2 < 1

If  Nm ≠ ∅, then for each n ∈ Nm ,    and so   .  Thism < n x [ m + 1 m� < n x� [ (m + 1)�
means that  is of the same sign or 0 for all n in Nm .  More precisely, for m even,  sin( n x�)

 for all n in  Nm and for m odd,   for all n in  Nm .  We partitionsin( n x�) m 0 sin( n x�) [ 0

[0, ∞ ) into non-overlapping intervals , where for t in each
m
x

2
,

m + 1
x

2

, m = 0, 1, 2,£

interval  ,  is of the same sign in the interior and 0 at the
m
x

2
,

m + 1
x

2

h(t) = sin( t x�)

end points.  Note that the maximum of | h (t) | on   occurs at 
m
x

2
,

m + 1
x

2 m + 1/2
x

2

and is equal to 1.  For integer m ≥ 0, define                              

                                      .Sm(x) =

 

 

 
 

 
�

n c Nm

sin( n x�)
n if Nm ! —,

0 if Nm = —.

Thus, all terms in  Sm(x) are of the same sign or 0.  If we can show that the alternating series 

 is convergent for x >  0, then S(x) is convergent for x > 0.�
m = 0

∞

Sm(x)

Suppose now Nm ≠ ∅.  For each n ∈ Nm ,  so that for m > 0,   
m
x

2
< n [

m + 1
x

2

                                                 .    ------------------------------------    (1)
x

m + 1

2

[
1
n < x

m
2

Now  N 0 ≠ ∅, if and only if,   0 < x 2  ≤ 1.  Thus, n  ∈ N 0 implies that .x2 [
1
n [ 1

Hence, for Nm ≠ ∅ and m > 0, it follows from (1) that 



                     .  --------   (2)
x

m + 1

2

�
n c Nm

sin( n x�) [ Sm(x) [ x
m

2

�
n c Nm

sin( n x�)

If  N 0 ≠ ∅, 

                                    .    -------------------- (3)x2 �
n c N0

sin( n x�) [ S0(x) [ �
n c N0

sin( n x�)

Now we are going to estimate the sum   when Nm ≠ ∅. �
n c Nm

sin( n x�)

Let                                       Dm(x) =
 

 
 
 

 

�
n c Nm

sin( n x�) if Nm ! —,

0 if Nm = —.
.

Then we can write (2) as

                                

                                      ------------------ (4)
x

m + 1

2

Dm(x) [ Sm(x) [ x
m

2
Dm(x) , m > 0

and (3) as 

                                                 .   -------------------------------------  (5) .x2D0(x) [ S0(x) [ D0(x)
Now, if  Nm ≠ ∅,  write  Nm = {a1 , a2 ,  … , a L}, where  a i  are integers and a i +1 − a i  = 1, i =

1, …, L−1.  If | Nm | =  L ≥  1, then, in general, we have the following three cases.   

           (A) There exists k  such that    and  or  ak [
m + 1/2

x

2

ak+1 > m + 1/2
x

2

           (B)    or  a1 m
m + 1/2

x

2

           (C)  .aL [
m + 1/2

x

2

If | Nm | =  L ≥  2, then we can have only cases (A) and (B).   This is because if  

 and L ≥  2, then  and so aL [
m + 1/2

x

2 m + 1/2
x

2

− m
x

2
> 1

m + 1
x

2

− m + 1/2
x

2

> 1

and it follows that contradicting that .aL + 1 < m + 1
x

2

aL + 1 > m + 1
x

2

The function  for t in   is increasing on h(t) = sin( t x�) m
x

2
,

m + 1
x

2

 and decreasing on  for m even and is decreasing
m
x

2
,

m + 1/2
x

2 m + 1/2
x

2

,
m + 1

x
2

on  and increasing on  for m odd.   Hence 
m
x

2
,

m + 1/2
x

2 m + 1/2
x

2

,
m + 1

x
2

h(t)

for t in   is increasing on  and decreasing on 
m
x

2
,

m + 1
x

2 m
x

2
,

m + 1/2
x

2

.   Then we have        
m + 1/2

x

2

,
m + 1

x
2

if L ≥ 2, by using the monotonicity of  |h(t)| described above, for case (A),

                   �
i=1

L

h(a i) [ ¶a1

aL

h(t) dt + max( h(ak) , h(ak+1) ) [ ¶
a1

aL

h(t) dt + 1

and for case (B) 

                                  �
i=1

L

h(a i) [ ¶a1

aL

h(t) dt + 1

and so                                .�
i=1

L

h(a i) [ ¶m2/x2

(m+1)2/x2

h(t) dt + 1

                                        

If L = 1,  then plainly  .h(a1) [ 1 [ ¶
m2/x2

(m+1)2/x2

h(t) dt + 1

Thus, we have if  Nm ≠ ∅,  .  �
i=1

L

h(a i) [ ¶m2/x2

(m+1)2/x2

h(t) dt + 1

Consequently, for m ≥ 0,

2



                                          ,       ---------------------------  (6)Dm(x) [ ¶
m2/x2

(m+1)2/x2

h(t) dt + 1

since Dm(x) = 0 when Nm = ∅.

Now if L ≥  2, then we have for case (A),

                                     �
i=1

L

h(a i) + 1 m ¶
m2/x2

(m+1)2/x2

h(t) dt

and for case (B),          �
i=1

L

h(a i) + ¶
m2/x2

a1

h(t) dt m ¶
m2/x2

(m+1)2/x2

h(t) dt

and since for this case , , we have again,a1 − m
x

2
[ 1 ¶

m2/x2

a1

h(t) d [ 1

                                      . �
i=1

L

h(a i) + 1 m ¶
m2/x2

(m+1)2/x2

h(t) dt

If L = 1, then   and  and so we have,a1 − m
x

2
[ 1

m + 1
x

2

− a1 [ 1

                                      .h(a1) + 1 m ¶
m2/x2

(m+1)2/x2

h(t) dt

Thus, for any m ≥ 0 and, Nm ≠ ∅,

                                        .  ---------------------------  (7)Dm(x) m ¶
m2/x2

(m+1)2/x2

h(t) dt − 1

Note that Nm = ∅ implies that  and so  .  It
m + 1

x

2

− m
x

2
= 2m + 1

x2 < 1 ¶
m2/x2

(m+1)2/x2

h(t) dt [ 1

follows that  .¶
m2/x2

(m+1)2/x2

h(t) dt − 1 [ 0 = Dm(x)
Hence, (7) holds for any m ≥ 0 without any condition.  Therefore, combining (6) and (7) we

have,

                                    .  ------------ (8)     ¶
m2/x2

(m+1)2/x2

h(t) dt − 1 [ Dm(x) [ ¶
m2/x2

(m+1)2/x2

h(t) dt + 1

Next, we shall evaluate the integral   .¶
m2/x2

(m+1)2/x2

h(t) dt

Now,        , by change of variable  ,¶ h(t)dt = ¶ sin( t x�)dt = ¶ 2 sin(u�) u
x2 du u = t x

                               , by integration by parts,= − 2
x2�

u cos(u�) + 2
x2�
¶ cos(u�)du

                              .= − 2
x2�

u cos(u�) + 2
x2�2 sin(u�) + C

Therefore,

                           ¶
m2/x2

(m+1)2/x2

h(t)dt = − 2
x2�

u cos(u�) + 2
x2�2 sin(u�)

m

m+1

                                                     = 2
x2�

−(m + 1)(−1)m+1 + m(−1)m

                                                   .             -----------------------------  (9)= 2
x2�

(2m + 1)(−1)m

Thus, (8) and (9) give us

                                ,  m ≥ 0.  -------  (10)
2

x2�
(2m + 1) − 1 [ Dm(x) [ 2

x2�
(2m + 1) + 1

Thus, it follows from (4) and (10) that for m > 0,

              .|Sm(x)| [ x
m

2
Dm(x) [ 2

m2�
(2m + 1) + x2

m2 = 4
m� + 2

m2�
+ x2

m2

And for m ≥ 0,

         |Sm(x)| m x
m + 1

2

Dm(x) m 2
(m + 1)2�

(2m + 1) − x2

(m + 1)2

                    .                           m
4

(m + 1)� − 2
(m + 1)2�

− x2

(m + 1)2

Hence, for m > 0,               

3



   ,
4

(m + 1)� − 2
m2�

− x2

m2 [
4

(m + 1)� − 2
(m + 1)2�

− x2

(m + 1)2 [ |Sm(x)| [ 4
m� + 2

m2�
+ x2

m2

                                                                                                      ----------------------  (11)

and from (5) and (10),

                                           .                   ---------------------- (12)
2
� − x2 [ S0(x) [ 2

x2�
+ 1

Thus, for m even and m > 0, 

                              , --------------  (13)
4

(m + 1)� − 2
m2�

− x2

m2 [ Sm(x) [ 4
m� + 2

m2�
+ x2

m2

and for m odd > 0,

                                 .---------  (14)− 4
m� − 2

m2�
− x2

m2 [ Sm(x) [ − 4
(m + 1)� + 2

m2�
+ x2

m2

Combining (13) and (14) we get, for m > 0,

                         ,   ------------------------   (15)cm − 2
m2�

− x2

m2 [ Sm(x) [ dm + 2
m2�

+ x2

m2

where   and .cm =
 

 
 
 

 

4
(m + 1)� , m even

− 4
m� , m odd

dm =
 

 
 
 

 

4
m� , m even

− 4
(m + 1)� , m odd

Observe that both the series  and  are convergent series and  while �
m=1

∞

cm �
m=1

∞

dm �
m=1

∞

cm = − 4
�

.  Therefore, it follows from (15) and (12) that the series  is a convergent�
m=1

∞

dm = 0 �
m=0

∞

Sm(x)

series since  and are
2
� − x2 + �

m=1

∞

cm − 2
m2�

− x2

m2

2
x2�

+ 1 + �
m=1

∞

dm + 2
m2�

+ x2

m2

convergent series for each x > 0.   We can now conclude that S(x) converges for x > 0.  This is

a consequence of the general result: if  the series formed by regrouping a given series into

terms of the same sign is convergent, then the given series is convergent.  We shall prove this

special case as the general case can be proven in the same manner.  

For a fixed x > 0,   is convergent implies that given any ε > 0, there exists an integer�
m=0

∞

Sm(x)

N > 0 such that for all m ≥ n ≥ N,  

                                                     .�
k=n

k=m

Sk(x) < �/3

The number of positive integers in  is bounded above by   if   0,
N
x

2 N
x

2

+ 1.

, then a ∈ Nn   for some n ≥ N.   Thus if b > a, then b ∈ N m  for some m sucha > N
x

2

+ 1

that m ≥ n.  Note that for fixed x > 0, each Nm depends on this fixed x.  We shall now denote

Nm by Nm(x) to emphasize its dependence on x. Then 

            �
j=a

j=b sin( j x�)
j

= �
jcNn(x) , jma

sin( j x�)
j

+ Sn+1(x) +£ + Sm(x) − �
jcNm(x) , j>b

sin( j x�)
j

                                  [ �
jcNm(x) , jma

sin( j x�)
j

+ Sn+1(x) +£ + Sm(x) + �
jcNm(x) , j>b

sin( j x�)
j

                                 [ Sn(x) + Sn+1(x) +£ + Sm(x) + Sm(x)
                                  .< �

3
+ �

3
+ �

3
= �

Hence S(x) is convergent.

Observe that the number of terms in each Sm(x) depends on x.  Indeed the number of terms

tends to infinity as x tends to 0 on the right.  For this reason it is reasonable to suggest that the

4



original series S(x) cannot converge uniformly on the interval [0, K] for any K > 0.  To prove

this we shall need a better estimate of Sm(x).  We shall do this later.  For now we shall show

that S(x) converges uniformly on the interval [k, K] for any k > 0 and any K > k.

Note that x ∈ [k, K] implies that .   So from (12) we have for all x in [k, K],
1
x [

1
k

                                             ,   ------------------------   (*)                   
2
� − K2 [ S0(x) [ 2

k2�
+ 1

and for all m > 0, for all x ∈ [k, K],

                                   .   -------------- (16)cm − 2
m2�

− K2

m2 [ Sm(x) [ dm + 2
m2�

+ K2

m2

Since the two series defined by the terms on the left and right of (16) and (*) are uniformly

convergent, the series 

                                        �
m=0

∞

Sm(x)

is uniformly convergent on [k, K].  It remains to show that the original series S(x) is uniformly

convergent on [k, K].  The proof is similar to the proof for convergence.  Since   is�
m=0

∞

Sm(x)

uniformly convergent, given any ε > 0, there exists an integer N > 0 such that for all m ≥ n ≥
N and for all x in [k, K],

                                             .�
k=n

k=m

Sk(x) < �/3

Now the number of positive integers in  is bounded above by   Therefore,0,
m
x

2 m
k

2

.

if   , then a ∈ N n(x) for some n ≥ N and for each x in [k, K].  Thus if b > a,a > N
k

2

+ 1

then b ∈ Nm(x)  for some m such that m ≥ n.  Hence, for all x in [k, K],

       �
j=a

j=b sin( j x�)
j

= �
jcNn(x) , jma

sin( j x�)
j

+ Sn+1(x) +£ + Sm(x) − �
jcNm(x) , j>b

sin( j x�)
j

                                 [ �
jcNm(x) , jma

sin( j x�)
j

+ Sn+1(x) +£ + Sm(x) + �
jcNm(x) , j>b

sin( j x�)
j

                                 [ Sn(x) + Sn+1(x) +£ + Sm(x) + Sm(x)
                                 .< �

3
+ �

3
+ �

3
= �

This shows that S(x) is uniformly convergent on [k, K].

It follows that S(x) is pointwise convergent on (0, ∞).  Since sine is an odd function,

consequently, S(x) is pointwise convergent on ( −∞, 0).   S(x) is plainly convergent at 0 and so

S(x) is pointwise convergent on R.

Now we proceed to show that S(x) is not uniformly convergent on [0, K] any K > 0.   For this

purpose we shall use the function,  on each intervalg(t) =
sin( t x�)

t

 .  Fix any x > 0.  Note that |g(t)| has precisely one local
m
x

2
,

m + 1
x

2

, m = 0, 1, 2,£

maximum (hence absolute maximum ) in each interval except on  , where g(t) is0,
1
x

2

decreasing.  g(t) alternates in sign as h(t).  

We can deduce this as follows.   The derivative of g,  g ∏(t) =
cos( t x�) t x�/2 − sin( t x�)

t2 .

Thus  g'(t) = 0 if and only if    But    has only one solution intan( t x�) = t x�/2. tan(�) = �/2
each interval [mπ , (m+1)π] m > 0 and none in [0 , π].   This is because if  there were two

5



solutions in [mπ , (m+1)π], then by the Mean Value Theorem there would be a point η in the

interval such that tan '(η) = sec2(η) = 1/2.  This contradicts that sec2(η) ≥ 1.  This means g(t)

has only one stationary point which is the maximum on the interval  when
m
x

2
,

m + 1
x

2

m is even and bigger than 0 and a minimum on the interval  when m is odd.
m
x

2
,

m + 1
x

2

Thus, for m > 0,  |g(t)| increases from 0 to its maximum and decreases to zero after that on

each interval . Now the maximum for |g(t)| in  is less
m
x

2
,

m + 1
x

2 m
x

2
,

m + 1
x

2

than  for m > 0.  Note also that .
x
m

2

t d 0+
lim g(t) = +∞

With  in place of 1 as in the case for h(t), following the estimate for Dm(x), we can
x
m

2

deduce similarly that for m ≥ 1,

                         .¶
m2/x2

(m+1)2/x2

g(t) dt − x
m

2
[ Sm(x) [ ¶

m2/x2

(m+1)2/x2

g(t) dt + x
m

2

It follows that for  m ≥ 1,

                          .  ----------  (17)¶
m2/x2

(m+1)2/x2

g(t)dt − x
m

2
[ Sm(x) [ ¶

m2/x2

(m+1)2/x2

g(t)dt + x
m

2

For m = 0,  N 0 ≠ ∅, if and only if, 0 <  x 2   ≤ 1 and so since g is decreasing on  ,            (0,
1
x2 ]

                                              ,S0(x) [ ¶
0

1/x2

g(t)dt

where the integral is a convergent improper integral.  Also we have

                                          ¶
0

1
g(t)dt + S0(x) m ¶

0

1/x2

g(t)dt.

This means

                                 .  ----------------------- (18)¶
0

1/x2

g(t)dt − ¶
0

1
g(t)dt [ S0(x) [ ¶

0

1/x2

g(t)dt

Observe that (18) holds when N 0 = ∅, i.e., S0(x) = 0 and  .  We shall prove the
1
x2 < 1

pointwise convergence of S(x) using this estimate.  Central to this approach is the

convergence of the improper integral .  ¶
0

∞
g(t)dt

           , by change of variable  .¶ g(t)dt = ¶ sin( t x�)
t dt = 2 ¶ sin(u)

u du u = t x�

Thus,

                         ,  ------------   (19)¶
0

∞
g(t)dt = ¶

0

∞ sin( t x�)
t dt = 2 ¶

0

∞ sin(u)
u du = 2 $

�
2

= �

assuming the convergence of the improper integral    This can be¶
0

∞ sin(u)
u du = �

2
.

established by complex variable technique.  Note also that 

                                        ------------------------------- (20)¶
m2/x2

(m+1)2/x2

g(t)dt = 2 ¶
m�

(m+1)� sin(u)
u du

and                               .   --------------------   (21)¶
0

1
g(t)dt = ¶

0

1 sin( t x�)
t dt = 2 ¶

0

x� sin(u)
u du

Rewriting (17) using (20) we get for m ≥ 1,

                        -------    (22)      2 ¶
m�

(m+1)� sin(u)
u du − x

m
2
[ Sm(x) [ 2 ¶

m�

(m+1)� sin(u)
u du + x

m
2

    

and using (21),              

                         .     --------------  (23)2 ¶
0

� sin(u)
u du − 2 ¶

0

x� sin(u)
u du [ S0(x) [ 2 ¶

0

� sin(u)
u du

Hence, because the series   is convergent as the improper integral �
m=0

∞

¶
m�

(m+1)� sin(u)
u

 is convergent and  is also convergent, the two series defined by the¶
0

∞ sin(u)
u du �

m=1

∞
x
m

2

terms on the left and right of (23) and (22)  are convergent.  Therefore,   is�
m=0

∞

Sm(x)
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convergent for each x > 0.  And we can now conclude as before that S(x) is convergent for

each x > 0 and .  Now we shall show that the convergence of S(x) on [0, K] forS(x) = �
m=0

∞

Sm(x)

any K > 0 is not uniform.  If S(x) converges uniformly on [0, K], then S(x) is continuous on

[0, K] and so  .
x d 0+
lim S(x) = S(0)

But from (22) and (23) for x > 0,  

            , 2 ¶
0

∞ sin(u)
u du − x2 �

m=1

∞
1

m2 − 2 ¶
0

x� sin(u)
u du [ S(x) [ 2 ¶

0

∞ sin(u)
u du + x2 �

m=1

∞
1

m2

so that    because  .� − x2 �2

6
− 2 ¶

0

x� sin(u)
u du [ S(x) [ � + x2 �2

6 �
m=1

∞
1

m2 = �
2

6

Since  , by the Squeeze Theorem,
x d 0+
lim ¶

0

x� sin(u)
u du = 0

                                                           .
x d 0+
lim S(x) = � ! S(0) = 0

This contradiction shows that the convergence is not uniform on [0, K].

Problem 2.    For , the series    converges pointwise on R,
1
2

< � < 1 T(x) = �
n=1

∞ sin( n x�)
n�

converges uniformly on  [k, K]  for any k > 0 and any K > k  but not uniformly on [0, K], any

K > 0.

Plainly, T(0) is convergent and T(0) = 0.   Fix any x > 0.   For integer m ≥ 0, let 

                                  .          --------------------  (24)Tm(x) =

 

 

 
 

 
�

n c Nm

sin( n x�)
n�

if Nm ! —,

0 if Nm = —.

Following problem 1, we can show that for m ≥ 1,

                                    ---------------------    (25)
x

m + 1

2�

Dm(x) [ Tm(x) [ x
m

2�
Dm(x) ,

and                                        .x2�D0(x) [ T0(x) [ D0(x)
Then from (10) and (25) we get,

           ,  m ≥1 --- (26)
x

m + 1

2� 2
�x2 (2m + 1) − 1 [ Tm(x) [ x

m
2� 2
�x2 (2m + 1) + 1

and                                             .      ----------------------- (27)
2
�x2−2� − x2� [ T0(x) [ 2

�x2 + 1

Subsequently, for m ≥1,

                                ,      Tm(x) [ 4
�x2−2�

1
m2�−1

+ 2
�x2−2�m2� + x

m
2�

                               Tm(x) m 4
�x2−2�

1
(m + 1)2�−1

− 2
�x2−2�(m + 1)2� − x

m + 1

2�

                                            .m
4
�x2−2�

1
(m + 1)2�−1

− 2
�x2−2�m2� − x

m
2�

Thus, we have for m even and m > 0,

                                      Tm(x) [ 4
�x2−2�

1
m2�−1

+ 2
�x2−2�m2� + x

m
2�

and                                  .   --------- (28).Tm(x) m 4
�x2−2�

1
(m + 1)2�−1

− 2
�x2−2�m2� − x

m
2�

For odd m ≥ 1,             Tm(x) [ − 4
�x2−2�

1
(m + 1)2�−1

+ 2
�x2−2�m2� + x

m
2�

and                                 .    --------------  (29)Tm(x) m − 4
�x2−2�

1
m2�−1

− 2
�x2−2�m2� − x

m
2�

Let                             ,cm(x) =

 

 

 
 

 

4
�x2−2�

1
(m + 1)2�−1

, m even and m > 0

− 4
�x2−2�

1
m2�−1

, m odd
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                                   ,dm(x) =

 

 

 
 

 

4
�x2−2�

1
m2�−1

, m even and m > 0

− 4
�x2−2�

1
(m + 1)2�−1

, m odd

                                  

                                     ,c0(x) = 2
�x2−2� − x2�

and

                                    .d0(x) = 2
�x2 + 1

Then from (28) and (29) we have,

        , m ≥ 1,  ------ (30)cm(x) − 2
�x2−2�m2� − x

m
2�
[ Tm(x) [ dm(x) + 2

�x2−2�m2� + x
m

2�

                                                   .c0(x) [ T0(x) [ d0(x)

Now    and   are convergent with   and �
m=0

∞

cm(x) �
m=0

∞

dm(x) �
m=0

∞

cm(x) = − 2
�x2−2� − x2�

.  Since 2β > 1,   is convergent being a constant�
m=0

∞

dm(x) = 2
�x2 + 1 �

m=1

∞
2

�x2−2�m2� + x
m

2�

times a convergent p-series.   Therefore, we conclude from (30) that  is convergent.�
m=0

∞

Tm(x)

We can now conclude that for x > 0, T(x) is convergent and .T(x) = �
m=0

∞

Tm(x)

Now, for x in [k, K], K > k > 0, we deduce from (30) that, for m ≥ 1,

                     ------- (31)cm(x) − 2
�k2−2�m2� − K

m

2�

[ Tm(x) [ dm(x) + 2
�k2−2�m2� + K

m

2�

and                                   .
2

�K2−2� − K2� [ T0(x) [ 2
�k2 + 1

We now claim that  converges uniformly on [k, K].  This is seen as follows.�
m=0

∞

cm(x)

The partial sum   .  Hence, for m > n, and for�
k=0

n

ck(x) =
 

 
 

c0(x) + c1(x) if n is odd

c0(x) + c1(x) + cn(x) if n is even

all x in [k, K].                

         .�
k=n+1

m

ck(x) [ cm(x) + cn(x) [ 4
�x2−2�

1
m2�−1

+ 4
�x2−2�

1
n2�−1

[
8
�k2−2�

1
n2�−1

Since  , given any ε > 0, there is an integer N such that for all n ≥ N,  
n d ∞
lim

8
�k2−2�

1
n2�−1

= 0

.   Therefore,  for all m , n ≥ N  and m > n,
8
�k2−2�

1
n2�−1

< �

                                 for all x in [k, K].�
k=n+1

m

ck(x) [ 8
�k2−2�

1
n2�−1

< �

This means that   is uniformly convergent.  �
k=0

n

ck(x)

The partial sum   .  It follows that for m > n, and for all�
k=0

n

dk(x) =
 

 
 

do(x) if n iseven

d0(x) + dn(x) if n is odd

x in [k, K],                

   .  Therefore, as�
k=n+1

m

dk(x) [ dm(x) + dn(x) [ 4
�x2−2�

1
m2�−1

+ 4
�x2−2�

1
n2�−1

[
8
�k2−2�

1
n2�−1

in the case of the previous series, for all m , n ≥ N  and m > n,

                                 for all x in [k, K].�
k=n+1

m

dk(x) [ 8
�k2−2�

1
n2�−1

< �

This means  is uniformly convergent on [k, K].   This implies that the two series�
k=0

∞

dk(x)

defined by the terms on the left and right of (31) are uniformly convergent on [k, K].  It
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follows that  is uniformly convergent on [k, K].   We deduce as in problem 1 that�
m=0

∞

Tm(x)

T(x) is uniformly convergent on [k, K].  This implies that T(x) is pointwise convergent on (0,

∞ ) and so on (−∞, 0).  Since it is convergent at 0, T(x) is pointwise convergent on R.

We next show that T(x) is not uniformly convergent on  [0, K].             

From (26) we obtain for m even for any x > 0  in [0, K],

                            Tm(x) m 1
(m + 1)2�

2
�x2−2� (2m + 1) − x

m + 1

2�

                                       m
1

(m + 1)2�
2
�x2−2� (2m + 1) − �x

2

2

                                       .  ----------------------  (32)m
1

(m + 1)2�
2
�x2−2� (2m + 1) − �K

2

2

For any integer N > 0, choose an even integer 2n > N so that .  Then choose 4n > �K
2

2

y > 0 so small such that .  Then by using  (32), we have0 < y2−2� < 1
(2n + 1)2�

1
�

                            T2n(y) m 1
(2n + 1)2�

2
�y2−2� (4n + 1) − �K

2

2

                                       m
1

(2n + 1)2�
2
�y2−2�

                                       .m 2

Hence  does not converge uniformly on [0, K].  Consequently, T(x) cannot converge�
m=0

∞

Tm(x)

uniformly on [0, K].

Problem 3.   The  series    diverges for all x ≠ 0.T(x) = �
n=1

∞ sin( n x�)
n

Suppose x > 0.  With the notation as in Problem 1, note that for Nm ≠ ∅,  n ∈ Nm  implies that 

 so that for m > 0,   
m
x

2
< n [

m + 1
x

2

                                                 .    ------------------------------------    (33)
x

m + 1
[

1
n

< x
m

Let    .   Then  the partial sums of the series   Tm(x) =

 

 

 
 

 
�

n c Nm

sin( n x�)
n

if Nm ! —,

0 if Nm = —.

 is a subsequence of the partial sums of T(x).  If T(x) is convergent, then  is�
m=0

∞

Tm(x) �
m=0

∞

Tm(x)

also convergent.  

It follows from (33) that

                                              |Tm(x)| m x
m + 1

|Dm(x)|

                                                            by inequality (8).m
x

(m + 1)
2

x2�
(2m + 1) − 1

But    Thus,   does not converge to 0.  It
m d ∞
lim

x
(m + 1)

2
x2�

(2m + 1) − 1 = 4
�x ! 0. |Tm(x)|

follows that  is divergent for x > 0.   This implies that T(x) is divergent for x > 0.�
m=0

∞

Tm(x)

Since sine is an odd function, for x < 0 , T(x) = − T(−x) and so T(x) is divergent for x < 0. In

conclusion, T(x) is divergent for all x ≠ 0.
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Problem 4.  The  series    diverges for all x .T(x) = �
n=1

∞ cos( n x
�
2

)

n

We can use the same technique as in Problem 3 to show this.  Obviously,   isT(0) = �
n=1

∞
1
n

divergent.   

Suppose  x > 0.

For each integer m ≥ 1, let .Nm = {n : n is an integer and
2m − 1

x

2

< n [
2m + 1

x

2

}

For m = 0, let  .N0 = {n : n is an integer and 0 < n [
1
x

2

}

Then Nm  may be empty. If Nm = ∅ and m ≥ 1,  then .
2m + 1

x

2

− 2m − 1
x

2

= 8m
x2 < 1

If  Nm ≠ ∅ and m ≥ 1, then for each n ∈ Nm ,      and so 2m − 1 < n x [ 2m + 1

                                               -------------------------  (34)
x

2m + 1
< 1

n
[

x
2m − 1

and   .  Note that N0 ≠ ∅, if and only if,     When(2m − 1)�
2

< n x
�
2
[ (2m + 1)�

2
1
x

2

m 1.

N0 ≠ ∅,   n ∈ N0  implies that  

                                                        .  -----------------------------------  (35)x < 1
n
[ 1

This means that  is of the same sign or 0 for all n in Nm .  More precisely, for mcos( n x
�
2

)

even,   for all n in  Nm and for m odd,   for all n in  Nm .  Wecos( n x
�
2

) m 0 cos( n x
�
2

) [ 0

partition [0, ∞ ) into non-overlapping intervals      

                       , [0,
1
x2 ] 4 2m − 1

x

2

,
2m + 1

x

2

, m = 1, 2,£

where for t in each interval  ,  is of the same sign in
2m − 1

x

2

,
2m + 1

x

2

h(t) = cos( t x
�
2

)

the interior and 0 at the end points.  Note that the maximum of | h (t) | on  

 occurs at  and is equal to 1.  For integer m ≥ 0, define              
2m − 1

x

2

,
2m + 1

x

2 2m
x

2

                

                                       ,Tm(x) =

 

 

 
 

 
�

n c Nm

cos( n x
�
2

)

n
if Nm ! —,

0 if Nm = —.

and                                 .Em(x) =
 

 
 
 

 

�
n c Nm

cos( n x
�
2

) if Nm ! —,

0 if Nm = —.

We deduce from (34) and (35) , that for m ≥ 0,

                                           .       ----------------------   (36)Tm(x) m x
2m + 1

Em(x)

So now we shall estimate  via the use of the function  h(t).   We can estimate h(t) inEm(x)
exactly the same manner as h(t) in Problem 1.   We obtain similar to (7) in Problem 1,  for m

> 0, 

                                      ,  ---------------------------  (37)Em(x) m ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt − 1

and                                 .E0(x) m ¶
0

1/x2

h(t) dt − 1

Now 

     , by change of variable  ,¶ h(t)dt = ¶ cos( t x
�
2

)dt = ¶ 2 cos(u �
2

) u
x2 du u = t x

                              ,  by integration by parts,= 4
x2�

u sin(u�
2

) − 4
x2�
¶ sin(u �

2
)du
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                              .= 4
x2�

u sin(u�
2

) + 8
x2�2 cos(u �

2
) + C

Therefore, for m ≥ 1,

                           ¶
(2m−1)2/x2

(2m+1)2/x2

h(t)dt = 4
x2�

u sin(u �
2

) + 8
x2�2 cos(u�

2
)

2m−1

2m+1

                                                     = 4
x2�

(2m + 1)(−1)m + (2m − 1)(−1)m

                                                   .            = 16m
x2�

(−1)m

Thus, for m ≥ 1,

                                       .                  -----------------------  (38)¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt = 16m
x2�

Combining (37) and (38) gives us that for m ≥ 1,

                                           . Em(x) m 16m
x2�

− 1

It follows then from (36) that for m > 0,                      

                        .Tm(x) m x
2m + 1

Em(x) m x
2m + 1

16m
x2�

− 1

But    Thus   does not converge to 0.  It follows that 
m d ∞
lim

x
2m + 1

16m
x2�

− 1 = 8
�x ! 0. |Tm(x)|

 is divergent for x > 0.   This implies that T(x) is divergent for x > 0.  Since cosine is�
m=0

∞

Tm(x)

an even function, for x < 0 , T(x) =  T(−x) and so T(x) is divergent for x < 0. In conclusion,

T(x) is divergent for all x in R.  Consequently,  diverges for all x.�
n=1

∞ cos( n x)
n

Problem 5.   For p > 1, the  series   converges on [0, ∞) but not uniformly.�
n=1

∞

sin
x
n

p

For x ≥ 0, .  Since is convergent for p > 1, by thesin
x
n

p
[

x
n

p
= xp $

1
np �

n=1

∞
1
np

Weierstrass M Test, the series  converges absolutely and uniformly on [0, K] for�
n=1

∞

sin
x
n

p

any K > 0.    Hence it is pointwise convergence on [0, ∞).  

But for x ≥ 0,   .  For each integer N >1, let a = N.  Thensin
x
n

p
m

x
n

p
− 1

6
x
n

3p

                                                  .sin
a
N

p

m 1 − 1
6

= 5
6

Consequently,

                                              .�
n=N

∞

sin
a
n

p
m

5
6

This means that there does not exist an integer N such that for any n ≥ N,

                                            for all x in [0, ∞).�
k=N

n

sin
x
k

p

< 5
6

This means  does not converge uniformly on [0, ∞).�
n=1

∞

sin
x
n

p

Problem 6.   The  series   converges for all x in R but not uniformly onT(x) = �
n=1

∞
1
n sin( x

n
)

R.

It is easy to deduce the convergence of this series on a closed and bounded interval by using

Weierstrass M Test.

Take any K > 0.  Observe that for any x in [−K, K], 
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                                     .
1
n sin( x

n
) [

|x|

n n
[

K
n n

Since  is convergent, by the Weierstrass M Test,  is uniformly�
n=1

∞
K

n n
�
n=1

∞
1
n sin( x

n
)

convergent on  [−K, K].   For any x in R, there exists a K > 0 such that x ∈[−K, K] and so by

what we have just proved, T(x) is convergent.   This means T(x) is pointwise convergent on

R.  Now we show that the convergent is not uniform on R.

We shall use the inequality  for x ≥ 0.sin(x) m x − x3

6
Take any integer N > 1.  Let  .  ThenxN = N

          .  ------  (39)sin
xN

n
m

xN

n
− 1

6
xN

n

3

=
xN

n
− 1

6

xN
3

n n
=

N

n
− 1

6

N N

n n

Hence,

                                   .  --------------------    (40)
1
n sin

xN

n
m

N

n n
− 1

6
$

N N

n2 n

Therefore, 

                     .  -------------------     (41)�
n=N

2N
1
n sin

xN

n
m �

n=N

2N N

n n
− 1

6 �n=N

2N N N

n2 n

Observe that 

       ---- (42)�
n=N

2N N

n n
m �

n=N

2N N

2N 2N
= 1

2 2
�
n=N

2N
1
N
m

1

2 2
$

N + 1
N

= 1

2 2
1 + 1

N

and 

       . -------- (43)
1
6 �n=N

2N N N

n2 n
[

1
6 �n=N

2N N N

N2 N
= 1

6 �n=N

2N
1
N

= 1
6

1 + 1
N

It follows from (42) and (43) that (41) becomes

        �
n=N

2N
1
n sin

xN

n
m

1

2 2
1 + 1

N
− 1

6
1 + 1

N
= 1

2
1

2
− 1

3
1 + 1

N

                                   .m
1
2

1

2
− 1

3
> 0

This means that for any N > 1, .   Hence�
n=N

∞
1
n sin

xN

n
m

1
2

1

2
− 1

3

                 .MN = sup
 

 
 �

n=N

∞
1
n sin

x
n

: x c R
 

 
 m 1

2
1

2
− 1

3

Therefore, MN does not tend to 0 as N tends to infinity.  Consequently T(x) cannot converge

uniformly on R.

Problem 7.  The series    converges pointwise on R.   S(x) convergesS(x) = �
n=1

∞ sin(n1/3x�)
n

uniformly on [k, K]  for any k > 0 and any K > k.  It does not converge uniformly on [0, K],

any K > 0.

This can be proven in the same manner as Problem 1.  
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Problem 8  The series    converges pointwise on R −−−− {0}.   T(x)T(x) = �
n=1

∞ cos( n x
�
2 )

n

converges uniformly on [k, K]  for any k > 0 and any K > k.  

The technique to solve this problem is the same as Problem 1 to group all the terms with the

same sign and show that the series formed by the grouping of terms of the same sign is

convergent.  

Firstly, we note that T(0) is obviously divergent as  , which is divergent.  Now fixT(0) = �
n=1

∞
1
n

any x > 0.

For each integer m ≥ 1, let .Nm = {n : n is an integer and
2m − 1

x

2

< n [
2m + 1

x

2

}

For m = 0, let .  N0 = {n : n is an integer and 0 < n [
1
x

2

}

Then Nm  may be empty. If Nm = ∅ and m ≥ 1,  then .
2m + 1

x

2

− 2m − 1
x

2

= 8m
x2 < 1

If  N0 =  ∅ ,  then  , i.e.,  .  Conversely,  implies that N0 =  ∅.
1
x

2

< 1 0 < 1
x < 1 0 < 1

x < 1

If  Nm ≠ ∅ and m ≥ 1 then for each n ∈ Nm ,      and so 2m − 1 < n x [ 2m + 1

                                               -------------------------  (1)
x2

(2m + 1)2 < 1
n [

x2

(2m − 1)2

and   .  Note that N0 ≠ ∅ if and only if     When N0(2m − 1)�
2

< n x
�
2
[ (2m + 1)�

2
1
x

2

m 1.

≠ ∅,   n ∈ N0  implies that  

                                                        .  -----------------------------------  (2)x2 [
1
n [ 1

This means that  is of the same sign or 0 for all n in Nm .  More precisely, for mcos( n x
�
2

)

even,   for all n in  Nm and for m odd,   for all n in  Nm .  Wecos( n x
�
2

) m 0 cos( n x
�
2

) [ 0

partition [0, ∞ ) into non-overlapping intervals      

                       , [0,
1
x2 ] 4 2m − 1

x

2

,
2m + 1

x

2

, m = 1, 2,£

where for t in each interval  ,  is of the same sign in
2m − 1

x

2

,
2m + 1

x

2

h(t) = cos( t x
�
2

)

the interior and 0 at the end points.  Note that the maximum of | h (t) | on  

 occurs at  and is equal to 1.  For integer m ≥ 0, define              
2m − 1

x

2

,
2m + 1

x

2 2m
x

2

                

                                       ,Tm(x) =

 

 

 
 

 
�

n c Nm

cos( n x
�
2

)
n if Nm ! —,

0 if Nm = —.

and                                 .Em(x) =
 

 
 
 

 

�
n c Nm

cos( n x
�
2

) if Nm ! —,

0 if Nm = —.

We deduce from (1)  that for m > 0,

                          ,  ------------------   (3)
x2

(2m − 1)2 Em(x) m Tm(x) m x2

(2m + 1)2 Em(x)

and from (2) we have  

                                         .       ----------------------   (4)E0(x) m T0(x) m x2E0(x)
So now we shall estimate  via the use of the function  h(t).   We can estimate h(t) inEm(x)
exactly the same manner as h(t) in Problem 1.  Similar to the case in Problem 1,  for m > 0 we

have the following deduction.
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Assume m > 0.

If  Nm ≠ ∅,  write  Nm = {a1 , a2 ,  … , a L}, where  a i  are integers and a i +1 − a i  = 1, i = 1, …,

L−1.  If | Nm | =  L ≥  1 , then, in general, we have the following three cases.   

           (A) There exists k  such that    and  or  ak [
2m
x

2

ak+1 > 2m
x

2

           (B)    or  a1 m
2m
x

2

           (C)  .aL [
2m
x

2

If | Nm | =  L ≥  2, then we can have only cases (A) and (B).   This is because if  aL [
2m
x

2

and L ≥  2, then  and so  and it follows that 
2m
x

2

− 2m − 1
x

2

> 1
2m + 1

x

2

− 2m
x

2

> 1

 contradicting that .aL + 1 < 2m + 1
x

2

aL + 1 > 2m + 1
x

2

The function,  defined for t in , is increasing on h(t) = cos( t x
�
2

) 2m − 1
x

2

,
2m + 1

x

2

 and decreasing on  for m even and is decreasing on
2m − 1

x

2

,
2m
x

2 2m
x

2

,
2m + 1

x

2

 and increasing on  for m odd.   Hence,   for t
2m − 1

x

2

,
2m
x

2 2m
x

2

,
2m + 1

x

2

h(t)

in   is increasing on  and decreasing on 
m
x

2
,

m + 1
x

2 2m − 1
x

2

,
2m
x

2

.   Then we have, if L ≥ 2, by using the monotonicity of  |h(t)| described
2m
x

2

,
2m + 1

x

2

above, for case (A),

                   �
i=1

L

h(a i) [ ¶a1

aL

h(t) dt + max( h(ak) , h(ak+1) ) [ ¶
a1

aL

h(t) dt + 1

and for case (B), 

                                         �
i=1

L

h(a i) [ ¶a1

aL

h(t) dt + 1

and so                                .�
i=1

L

h(a i) [ ¶(2m−1)2/x2

(2m+1)2/x2

h(t) dt + 1

                                        

If L = 1,  then plainly  .h(a1) [ 1 [ ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt + 1

Thus, we have if  Nm ≠ ∅,  .  �
i=1

L

h(a i) [ ¶(2m−1)2/x2

(2m+1)2/x2

h(t) dt + 1

Consequently, for m > 0,

                                          ,       ---------------------------  (5)Em(x) [ ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt + 1

since Em(x) = 0 when Nm = ∅.

Now if L ≥  2, then we have, for case (A),

                                     �
i=1

L

h(a i) + 1 m ¶
(2m+1)2/x2

(2m+1)2/x2

h(t) dt

and for case (B),         

                       �
i=1

L

h(a i) + ¶
(2m)2/x2

a1

h(t) dt m ¶
(2m)2/x2

(2m+1)2/x2

h(t) dt

and since for this case , , we obtain again,a1 − 2m
x

2

[ 1 ¶(2m)2/x2

a1

h(t) d [ 1

                                      . �
i=1

L

h(a i) + 1 m ¶
(2m)2/x2

(2m+1)2/x2

h(t) dt

If L = 1, then   and  and so we have,a1 − 2m
x

2

[ 1
2m + 1

x

2

− a1 [ 1
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                                      .h(a1) + 1 m ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt

Thus, for any m > 0 and Nm ≠ ∅,

                                        .  ---------------------------  (6)Em(x) m ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt − 1

Note that Nm = ∅ implies that  and so  .
2m + 1

x

2

− 2m − 1
x

2

= 8m
x2 < 1 ¶

(2m−1)2/x2

(2m+1)2/x2

h(t) dt [ 1

It follows that  .¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt − 1 [ 0 = Em(x)

Hence, (6) holds for any m > 0 without any condition.  Therefore combining (5) and (6) we

have,

                                    .  ------------ (7)     ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt − 1 [ Em(x) [ ¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt + 1

For  m = 0,  is non-negative and decresing on with maximum value 1h(t) = cos( t x
�
2

) [0,
1
x2 ]

at t = 0.  Thus, if N0 ≠ ∅,

                                   . -------------------   (7)*¶
0

1/x2

h(t) dt − 1 [ E0(x) [ ¶
0

1/x2

h(t) dt

Now, 

     , by change of variable  ,¶ h(t)dt = ¶ cos( t x
�
2

)dt = ¶ 2 cos(u �
2

) u
x2 du u = t x

                              , by integration by parts,= 4
x2�

u sin(u�
2

) − 4
x2�
¶ sin(u �

2
)du

                              .= 4
x2�

u sin(u�
2

) + 8
x2�2 cos(u �

2
) + C

Therefore, for m ≥ 1,

                           ¶
(2m−1)2/x2

(2m+1)2/x2

h(t)dt = 4
x2�

u sin(u �
2

) + 8
x2�2 cos(u�

2
)

2m−1

2m+1

                                                     = 4
x2�

(2m + 1)(−1)m + (2m − 1)(−1)m

                                                   .            = 16m
x2�

(−1)m

Thus, for m ≥ 1,

                                       .                  -----------------------  (8)¶
(2m−1)2/x2

(2m+1)2/x2

h(t) dt = 16m
x2�

Combining (7) and (8) gives us that for m ≥ 1,

                                           . Em(x) m 16m
x2�

− 1

It follows then from (3) that for m > 0,                      

                                Tm(x) m x2

(2m + 1)2 Em(x) m x2

(2m + 1)2

16m
x2�

− 1

and                    / .Tm(x) [ x2

(2m − 1)2 Em(x) [ x2

(2m − 1)2

16m
x2�

+ 1

Now 

                           ¶
0

1/x2

h(t)dt = 4
x2�

u sin(u �
2

) + 8
x2�2 cos(u �

2
)

0

1

                                             .= 4
x2�

− 8
x2�2

Therefore, it follows from (4), (7)* and the above deduction of the integral that, for 0 < x ≤ 1, 

                     .   
4

x2�
− 8

x2�2 m E0(x) m T0(x) m x2E0(x) m x2 4
x2�

− 8
x2�2 − 1

For m > 0, 

                      .
16m

(2m + 1)2�
− x2

(2m + 1)2 [ |Tm(x)| [ 16m
(2m − 1)2�

+ x2

(2m − 1)2
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Thus, for m even and m > 0,

                    .  --------------  (9)
16m

(2m + 1)2�
− x2

(2m + 1)2 [ Tm(x) [ 16m
(2m − 1)2�

+ x2

(2m − 1)2

And  for m odd > 0,

                 .  ------------ (10) − 16m
(2m − 1)2�

− x2

(2m − 1)2 [ Tm(x) [ − 16m
(2m + 1)2�

+ x2

(2m + 1)2

We also have that for for 0 < x ≤ 1, 

                          .   
4
� − 8
�2 − 1 [

4
� − 8
�2 − x2 [ T0(x) [ 4

x2�
− 8

x2�2

Note that here T0(x) = 0, if N0 = ∅, if and only if, x2 > 1.     

                                  .   ---------------------------  (11)
4
� − 8
�2 − 1 [ T0(x) [ 4

x2�
− 8

x2�2

Observe that the above inequality also holds when x > 1 when T0(x) = 0.

Thus, for k ≥ 1,  ,
32k

(4k + 1)2�
− x2

(4k + 1)2 [ T2k(x) [ 32k
(4k − 1)2�

+ x2

(4k − 1)2

                     

                             ,− 32k − 16
(4k − 3)2�

− x2

(4k − 3)2 [ T2k−1(x) [ − 32k − 16
(4k − 1)2�

+ x2

(4k − 1)2

and                      .− 32k + 16
(4k + 1)2�

− x2

(4k + 1)2 [ T2k+1(x) [ − 32k + 16
(4k + 3)2�

+ x2

(4k + 3)2

For m ≥ 1, let

  ,   ,cm =

 

 

 
 

 

16m
(2m − 1)2�

, m even

− 16m
(2m + 1)2�

, m odd
dm =

 

 

 
 

 

16m
(2m + 1)2�

, m even

− 16m
(2m − 1)2�

, m odd

 and .em =

 

 

 
 

 

x2

(2m − 1)2 , m even

x2

(2m + 1)2 , m odd
fm =

 

 

 
 

 

x2

(2m + 1)2 , m even

x2

(2m − 1)2 , m odd

Hence, for m ≥ 1, 

                                .dm − fm [ Tm(x) [ cm + em

Let  ,   ,  and e0 = 4
x2�

− 8
x2�2 f0 = 0 c0 = 0 d0 = 4

� − 8
�2 − 1.

Note that  and   are convergent alternating series since  and .�
m=1

∞

cm �
m=1

∞

dm cm t 0 dm t 0

For m ≥ 1,  .  Hence, by Comparison Test,  and   are convergent.0 [ em, fm [
x2

m2 �
m=1

∞

em �
m=1

∞

fm

Thus,   and  are convergent and so are Cauchy series.   Therefore,�
m=1

∞

(cm + em ) �
m=1

∞

(dm − fm )

   is a Cauchy series and so is convergent.  We then deduce as in Problem 1 that�
m=1

∞

Tm(x)

 is convergent for x > 0.  Since cosine is an even function T(x) = �
n=1

∞ cos( n x
�
2 )

n

is also convergent for x < 0.  Thus it is convergent for x ≠ 0.T(x) = �
n=1

∞ cos( n x
�
2 )

n
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For now we shall show that T(x) converges uniformly on the interval [k, K] for any k > 0 and

any K > k.

Note that x ∈ [k, K] implies that .   So from (11) we have for all x in [k, K],
1
x [

1
k

                             ------------------------   (*)                   
4
� − 8
�2 − 1 [ T0(x) [ 4

k2�
− 8

k2�2

and for all m > 0, for all x ∈ [k, K],

                                 dm − K2

m2 [ Tm(x) [ cm + K2

m2

and                         .      ------------------- (12)d0 − f0 [ T0(x) [ c0 + 4
k2�

(1 − 2
� )

Since the two series defined by the terms on the left and right of (12) and (*) are uniformly

convergent, the series 

                                        �
m=0

∞

Tm(x)

is uniformly convergent on [k, K].  It remains to show that the original series T(x) is

uniformly convergent on [k, K].  The proof is similar to the proof for convergence.  Since  

 is uniformly convergent, given any ε > 0, there exists an integer N > 0 such that for�
m=0

∞

Tm(x)

all m ≥ n ≥ N and for all x in [k, K].

                                             .�
k=n

k=m

Tk(x) < �/3

Now the number of positive integers in  is bounded above by 0,
2N − 1

x

2 2N − 1
k

2

+ 1.

Therefore, if   , then a ∈ N n(x) for some n ≥ N and for each x in [k, K].a > 2N − 1
k

2

+ 1

Thus, if b > a, then b ∈ Nm(x) for some m such that m ≥ n.  

Hence, for all x in [k, K],

       �
j=a

j=b cos( j x
�
2 )

j
= �

jcNn(x) , jma

cos( j x
�
2 )

j
+ Tn+1(x) +£ + Tm(x) − �

jcNm(x) , j>b

cos( j x
�
2 )

j

                                   

        [ �
jcNm(x) , jma

cos( j x
�
2 )

j
+ Tn+1(x) +£ + Tm(x) + �

jcNm(x) , j>b

cos( j x
�
2 )

j

        [ Tn(x) + Tn+1(x) +£ + Tm(x) + Tm(x)
        .< �

3
+ �

3
+ �

3
= �

This shows that T(x) is uniformly convergent on [k, K].
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