NATIONAL UNIVERSITY OF SINGAPORE

1998-99 1st Semester MA1102 CALCULUS MOCK TEST

1. (1989) Let the function f be defined on the real numbers by

$$
f(x)=\left\{\begin{array}{cc}
(x+3)^{2}, & x \leq-3 \\
2 x, & -3<x<1 \\
x^{2}+1, & x \geq 1
\end{array} .\right.
$$

(a) Find the range of the function f.
(b) Find the values of x (if any) where (i) $f(x)=-5$, (ii) $f(x)=-7$ and (iii) $f(x)=0$.
(c) Determine all x in \mathbf{R} at which the function f is continuous.
(d) Is the function f differentiable at $x=1$? Justify your answer.
(e) Compute $\int_{0}^{2} f(x) d x$.
(f) Sketch the graph of the function f.
2. (1996) Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{10+9 x^{3}-x^{2}}{3 x^{3}-7+5 x}$.
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{5 x^{2}+4}-2}{x^{2}}$.
(c) $\lim _{x \rightarrow 0} \frac{\sin (x)}{7 x-x^{2}}$.
(d) $\lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}+3}-4 x\right)$.
(e) $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{\sqrt{x}-1}$.
(f) $\lim _{x \rightarrow 0}\left(1+7 x^{2}\right)^{\frac{1}{x^{2}}}$.
3. (1995) (a) Let g be the function defined on \mathbf{R} by $g(x)=x^{5}+x+5$.
(i) Use the Intermediate Value Theorem to show that there is a number c in \mathbf{R} such that $g(c)=0$.
(ii) Using Rolle's Theorem or otherwise, show that there is exactly one such c with $g(c)=0$.
(b) Determine the absolute extrema of the function h on $[-2,4]$ defined by
$h(x)=x^{4}-4 x^{2}+16$.
(c) Find $\frac{d^{2} y}{d x^{2}}$ by implicit differentiation if $y^{2}-\sin (y)=2 x$.
4. (1987) Let $f(x)=\frac{2+x-x^{2}}{(x-1)^{2}}$.
(a) Find the intervals on which f is (i) increasing and (ii) decreasing.
(b) Find the critical points of f.
(c) Determine the relative extrema of f.
(d) Find the intervals on which f is concave upward or concave downward.
(e) Determine the point(s) of inflection of the graph of f.
(f) Find the vertical and horizontal asymptotes of f if any.
(g) Sketch the graph of f.
5. Find the following integrals.
(a) $\int_{0}^{1} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x$.
(b) $\int(\ln (3 x))^{2} d x$.
(c) $\int \cos (\sin (y)) \cos (y) d y$.
(d) $\int \frac{e^{x}}{e^{2 x}+3 e^{x}+2} d x$.
(e) $\int \frac{1}{\sqrt{2 \sqrt{x}+5}} d x$.
(1996)
6. (1994) (a) Evaluate $\int_{2}^{5}(|x-3|+|x-4|) d x$.
(b) Prove that $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} \sin \left(\frac{\pi}{2} \frac{i}{n}\right)=1$.
(c) Let f be a function defined on \mathbf{R} such that $f(x)>0$ for all x in \mathbf{R}. Prove that $g(x)=x \int_{0}^{x} f(t) d t$ is increasing on $(0, \infty)$.
7. (1996) (a) Differentiate each of the following functions.
(i) $g(x)=\int_{x^{3}}^{x^{4}} \frac{1}{1+t^{2}} d t$.
(ii) $\quad h(x)=3^{\left(x^{2}\right)}$.
(iii) $k(x)=\left(1+x^{2}\right)^{\ln (x)}$.
(b) Let f be the function defined on the set \mathbf{R} of real numbers by

$$
f(x)=\int_{1}^{x} \sqrt{8+t^{2}} d t
$$

(i) Without integrating, show that the function f is injective.
(ii) Determine $\left(f^{-1}\right)^{\prime}(0)$.
(Extra practice)
8. (1994) (a) Determine a value for the constant k for which the function f defined by

$$
f(x)=\left\{\begin{array}{cc}
\frac{\sin (3 x)}{x}, & x \neq 0 \\
k, & x=0
\end{array}\right.
$$

will be continuous at $x=0$.
(b) Suppose that the function f satisfies
(1) $f(x+y)=f(x) f(y)$ for all values of x and y,
(2) $f(0)=1$ and
(3) f is differentiable at $x=0$ and $f(0)=1$.

Show that f is differentiable at x for all x and $f(x)=f(x)$.

