Answer and Guide To MA1102 Calculus Mock Test 1998-99 Semester 1

1. This question tests the concept of the range of a function, continuity, differentiability and integration over a piece-wise polynomial.

The function f is defined by $f(x)=\left\{\begin{array}{c}(x+3)^{2}, \quad x \leq-3 \\ 2 x,-3<x<1 \\ x^{2}+1, \quad x \geq 1\end{array}\right.$.
Recall range $f=\{f(x) ; x \in \mathbf{R}\}$. Examine this definition carefully. The intuitive geometrical preconception about the range depends on quite a number of concepts among them one which assume, without proof, what the graph of a function would look like in its entirety. Indeed this would involve the methods of calculus.

Very often the range does not call for this kind of analysis.
y is in the range of f if and only if we can find an element x in the domain of f such that

$$
f(x)=y
$$

So we need to know when we can solve this equation for x in the domain of f. Usually this would take the form of a condition on y which would allow us to specify the range of f. But our function is defined in a piecewise manner. So we consider our function as three functions with each of the following intervals $(-\infty,-3],(-3,1),[1, \infty)$ as their respective domains. So the range of f is the union of the range of these three functions. More precisely, the range of f is the union of the images of these three intervals under f.
(a) For $x \leq-3, f(x)=(x+3)^{2} \geq 0$. Thus if y is in the image of $(-\infty,-3] y \geq 0$. Now for any $y \geq 0 f(x)=y$ can be solved for $x \leq-3$. This is done as follows. For $y \geq 0$ and $f(x)=(x+3)^{2}=y$, we can take $x+3=-\sqrt{y}$ so that $x=-3-\sqrt{y} \leq-3$. Therefore, the image of $(-\infty,-3]$ under f is $[0,+\infty)$. Also, $-3<x<1$ if and only if $-6<2 x<2$. Thus, since for $-3<x<1, f(x)=2 x, f$ maps $(-3,1)$ onto $(-6,2)$. Therefore, the image of $(-3,1)$ under f is $(-6,2)$. Finally for $x \geq 1, f(x)=x^{2}+1 \geq 2$. And for any $y \geq 2$, we can solve $f(x)=x^{2}+1=y$ for $x \geq 1$ by taking $x=\sqrt{y-1} \geq 1$. Therefore, the image of $[1, \infty)$ under f is $[2, \infty)$. Hence the range of f is $[0, \infty) \cup(-6,2) \cup[2, \infty)=(-6, \infty)$.
(b) (i) From part (a) -5 is in the image of $(-3,1)$ under f. Thus, to find the preimage we need to solve the equation $2 x=-5$ for $x<-4$. Solving this gives $x=\frac{-5}{2}$.
(ii) From part (a) - 7 is not in the range of f. Thus, there is no value of x for which

$$
f(x)=-7 .
$$

(iii) 0 is in the images of $(-3,1)$ and $(-\infty,-3]$. Solving $f(x)=0$ for x in $(-\infty,-3]$ means solving $(x+3)^{2}=0$ which gives $x=-3$. Solving $f(x)=0$ for x in $(-3,1)$ means solving $2 x=0$ which gives $x=0$.
(c) When $x<-3, f(x)=(x+3)^{2}$, which is a polynomial function, therefore f is continuous on $(-\infty,-3)$, since any polynomial function is continuous on the reals and so is continuous on any interval. Similarly, when $-3<x<1, f(x)$ is a polynomial function and so f is continuous on this interval. Finally when $x>1, f(x)$ is also a polynomial function and so it is continuous for $x>1$. Thus it remains to check if f is continuous at $x=-3$ or 1 . Consider the left limit at $x=-3$,

$$
\begin{aligned}
& \lim _{x \rightarrow(-3)^{-}} f(x)=\lim _{x \rightarrow(-3)^{-}}(x+3)^{2}=0 \text { and the right limit at } x=-3 \\
& \lim _{x \rightarrow(-3)^{+}} f(x)=\lim _{x \rightarrow(-3)^{+}} 2 x=-6 .
\end{aligned}
$$

Therefor, the left and the right limits are not the same. Thus the limit at $x=-3$ does not exist. Therefore f is not continuous at $x=-3$. Now consider the left limit of f at $x=$ 1,

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x=2 \text { and the right limit at } x=1, \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}+1=1^{2}+1=2=f(1)
\end{aligned}
$$

Therefore, the left and the right limits of f at $x=1$ are the same and is equal to the value of the function f at $x=1$ and so f is continuous at $x=1$. Thus f is continuous at x for all $x \neq-3$.
(d) f is differentiable at $x=1$. This is seen as follows.

$$
\begin{aligned}
& \qquad \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{2(1+h)-2}{h}=2 \text { and } \\
& \lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(1+h)^{2}+1-2}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}+2 h}{h}=2=\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} . \\
& \text { Therefore, } \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=2 \text { and so } f \text { is differentiable at } x=1 \text { and } f^{\prime}(1)=2 .
\end{aligned}
$$

(e) $\int_{0}^{2} f(x) d x=\int_{0}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\int_{0}^{1} 2 x d x+\int_{1}^{2}\left(x^{2}+1\right) d x$

$$
=\left[x^{2}\right]_{0}^{1}+\left[\frac{x^{3}}{3}+x\right]_{1}^{2}=1+\frac{1}{3}(8-1)+1=4 \frac{1}{3} .
$$

(f)

2. You can use L'Hôpital's Rule here.
(a) $\lim _{x \rightarrow \infty} \frac{10+9 x^{3}-x^{2}}{3 x^{3}-7+5 x}=\lim _{x \rightarrow \infty} \frac{\frac{10}{x^{3}}+9-\frac{1}{x}}{3-\frac{7}{x^{3}}+\frac{5}{x^{2}}}=\frac{0+9+0}{3-0+0}=\frac{9}{3}=3$.
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{5 x^{2}+4}-2}{x^{2}}=\lim _{x \rightarrow 0} \frac{\left(\sqrt{5 x^{2}+4}-2\right)\left(\sqrt{5 x^{2}+4}+2\right)}{x^{2}\left(\sqrt{5 x^{2}+4}+2\right)}=\lim _{x \rightarrow 0} \frac{5 x^{2}+4-4}{x^{2}\left(\sqrt{5 x^{2}+4}+2\right)}$

$$
=\lim _{x \rightarrow 0} \frac{5}{\left(\sqrt{5 x^{2}+4}+2\right)}=\frac{5}{4} .
$$

Or you can use L'Hôpital's Rule:

$$
\lim _{x \rightarrow 0} \frac{\sqrt{5 x^{2}+4}-2}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{1}{2}\left(5 x^{2}+4\right)^{-1 / 2} \cdot 10 x}{2 x}=\lim _{x \rightarrow 0} \frac{5}{2}\left(5 x^{2}+4\right)^{-1 / 2}=\frac{5}{4} .
$$

(c) $\lim _{x \rightarrow 0} \frac{\sin (x)}{7 x-x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \cdot \frac{1}{(7-x)}=1 \cdot \frac{1}{7-0}=\frac{1}{7}$ since $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.

Or $\lim _{x \rightarrow 0} \frac{\sin (x)}{7 x-x^{2}}=\lim _{x \rightarrow 0} \frac{\cos (x)}{7-2 x}$ by L'Hôpital's Rule

$$
=\frac{\cos (0)}{7-0}=\frac{1}{7} .
$$

(d) $\lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}+3}-4 x\right)=\lim _{x \rightarrow \infty}\left(\sqrt{16 x^{2}+3}-4 x\right) \cdot \frac{\sqrt{16 x^{2}+3}+4 x}{\sqrt{16 x^{2}+3}+4 x}$

$$
=\lim _{x \rightarrow \infty} \frac{16 x^{2}+3-16 x^{2}}{\sqrt{16 x^{2}+3}+4 x}=\lim _{x \rightarrow \infty} \frac{3 / x}{\sqrt{16+\frac{3}{x^{2}}}+4}=\frac{0}{8}=0 .
$$

Notice here we make use of the fact that for $x>0, \sqrt{x^{2}}=x$.
(e) $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{\sqrt{x}-1}=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{\sqrt{x}-1} \cdot \frac{\sqrt{x}+1}{\sqrt{x}+1}=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1} \cdot(\sqrt{x}+1)$

$$
=\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x-1} \cdot \lim _{x \rightarrow 1}(\sqrt{x}+1)=1 \cdot(1+1)=2 .
$$

Or $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{\sqrt{x}-1}=\lim _{x \rightarrow 1} \frac{\cos (x-1)}{\frac{1}{2 \sqrt{x}}}$ by L'Hôpital's Rule

$$
=\frac{\cos (0)}{1 / 2}=2 .
$$

(f) $\lim _{x \rightarrow 0}\left(1+7 x^{2}\right)^{\frac{1}{x^{2}}}$.

Let $y=\left(1+7 x^{2}\right)^{\frac{1}{x^{2}}}$. Then $\ln (y)=\frac{1}{x^{2}} \ln \left(1+7 x^{2}\right)$.
$\lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \frac{\ln \left(1+7 x^{2}\right)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\frac{14 x}{1+7 x^{2}}}{2 x}$ by L'Hôpital's Rule $=\lim _{x \rightarrow 0} \frac{7}{1+7 x^{2}}=7$.
Therefore, $\lim _{x \rightarrow 0}\left(1+7 x^{2}\right)^{\frac{1}{x^{2}}}=e^{\lim _{x \rightarrow 0} \ln (y)}=e^{7}$.
3 (a) (i) For $g(x)=x^{5}+x+5, g(0)=5>0$ and $g(-2)=-32-2+5=-29<0$.
Since g is a polynomial function on $[-2,0], g$ is continuous on $[-2,0]$. Therefore, by the Intermediate Value Theorem, there is a point c in $(-2,0)$ such that $g(c)=0$.
(ii) For x in $\mathbf{R}, g^{\prime}(x)=5 x^{4}+1$.

Suppose g has two distinct roots say c and c in \mathbf{R}. Without loss of generality we may assume that $c<c$. Then since g is differentiable on the whole of \mathbf{R}, g is continuous on $[c, c]$, differentiable on (c, c). Obviously, $g(c)=g(c)=0$. Therefore, by Rolle's theorem, there is a point d in (c, c) with $g^{\prime}(d)=0$. But $g^{\prime}(d)=5 d^{4}+1>0$. This contradiction shows that g can have only one root. Thus by part (i) g has exactly one such root c.
alternatively, since $g^{\prime}(x)=5 x^{4}+1>0 g$ is increasing on \mathbf{R} and so g is injective on
\mathbf{R}. Therefore by part (i) there is exactly one root c in \mathbf{R}.
(b) $h(x)=x^{4}-4 x^{2}+16$ on $[-2,4]$. Therefore, since h is a polynomial function h is continuous on $[-2,4]$ and the derivative $h^{\prime}(x)=4 x^{3}-8 x=4 x(x-\sqrt{2})(x+\sqrt{2})$ on the open interval $(-2,4)$. Therefore, in the interval $(-2,4)$

$$
h^{\prime}(x)=0 \Leftrightarrow 4 x(x-\sqrt{2})(x+\sqrt{2}) x=0 \Leftrightarrow x=0, \sqrt{2} \text { or }-\sqrt{2} .
$$

Thus, there are only three critical points in $(-2,4)$ occurring at $x=0, \sqrt{2}$ and $-\sqrt{2}$.
$h(0)=16, h(\sqrt{2})=h(-\sqrt{2})=4-8+16=12, h(-2)=16-4 \cdot 4+16=16$,
$h(4)=16 \cdot 4^{2}-4 \cdot 4^{2}+16=13 \times 16=208$.
Therefore, the absolute minimum value of h on $[-2,4]$ is 12 and the absolute maximum value of h on $[-2,4]$ is 208.
(c) $y^{2}-\sin (y)=2 x$.

Differentiating implicitly we get $2 y \frac{d y}{d x}-\cos (y) \frac{d y}{d x}=2$
Differentiating (1) implicitly again we get

$$
\begin{equation*}
2 \frac{d y}{d x} \frac{d y}{d x}+2 y \frac{d^{2} y}{d x^{2}}+\sin (y) \frac{d y}{d x} \frac{d y}{d x}-\cos (y) \frac{d^{2} y}{d x^{2}}=0 . \tag{2}
\end{equation*}
$$

Thus, $(2 y-\cos (y)) \frac{d^{2} y}{d x^{2}}=-\left(\frac{d y}{d x}\right)^{2}(\sin (y)+2)$
From (1) we know that $(2 y-\cos (y)) \neq 0$ and $\frac{d y}{d x}=-\frac{2}{2 y-\cos (y)}$. Thus,

$$
\frac{d^{2} y}{d x^{2}}=-\frac{4(\sin (y)+2)}{(2 y-\cos (y))^{3}} .
$$

4. Since $f(x)=\frac{2+x-x^{2}}{(x-1)^{2}}$, we note that f is continuous on $\mathbf{R}-\{1\}$ because f is a rational function. Then we can rewrite the function in a simpler form as follows.

$$
f^{\prime}(x)=\frac{2-x(x-1)}{(x-1)^{2}}=\frac{2}{(x-1)^{2}}-\frac{x}{(x-1)}=\frac{2}{(x-1)^{2}}-\frac{1}{(x-1)}-1 .
$$

Then $f^{\prime}(x)=-\frac{4}{(x-1)^{3}}+\frac{1}{(x-1)^{2}}=\frac{-4+(x-1)}{(x-1)^{3}}=\frac{x-5}{(x-1)^{3}}$

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{12}{(x-1)^{4}}-\frac{2}{(x-1)^{3}}=\frac{12-2(x-1)}{(x-1)^{4}}=2 \frac{7-x}{(x-1)^{4}} \tag{1}
\end{equation*}
$$

(a) When $x<1,(x-1)^{3}<0$ and $x-5<0$ so that by (1), $f^{\prime}(x)>0$. Thus f is increasing on the interval $(-\infty, 1)$.

For $1<x<5,(x-1)^{3}>0$ and $x-5<0$ so that by (1), $f^{\prime}(x)<0$. Hence f is decreasing on $(1,5]$, since f is continuous at $x=5$.

Finally for $x>5,(x-1)^{3}>0$ and $x-5>0$ and so by (1) $f^{\prime}(x)>0$ and we conclude that f is increasing on $[5, \infty)$ since f is continuous at $x=5$.
(b) Since f is differentiable on its domain, by (1) it has only one critical point, namely $x=5$.
(c) From part (b) since f is differentiable on its domain the critical point is also a stationary point. Therefore, it can have only one relative extremum and
$f(5)=\frac{2+5-25}{16}=-\frac{9}{8}$
is a relative
minimum since f is decreasing on $(1,5]$ and increasing on $[5, \infty)$. There are no relative maxima.
(d) When $x<7$ and $x \neq 1,7-x>0$ and so by (2) $f^{\prime \prime}(x)>0$. Hence the graph of f is concave upward on the intervals $(-\infty, 1)$ and $(1,7)$. When $x>7$, i.e., $7-x<0$, by (2), $f^{\prime \prime}(x)<0$. Thus the graph of f is concave downward on the interval $(7, \infty)$.
(e) $(7, f(7))=\left(7, \frac{2+7-49}{36}\right)=\left(7,-\frac{40}{36}\right)=\left(7,-\frac{10}{9}\right)$ is a point of inflection since before and after the point $x=7$ there is a change of concavity.
(f) Now $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{2+x-x^{2}}{(x-1)^{2}}=\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}} \cdot\left(2+x-x^{2}\right)=\infty$. This is because $\lim _{x \rightarrow 1} \frac{1}{(x-1)^{2}}=\infty$ and $\lim _{x \rightarrow 1}\left(2+x-x^{2}\right)=2>0$. Therefore, the line $x=1$ is a vertical asymptote of the graph of f. Also $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{2+x-x^{2}}{(x-1)^{2}}=\lim _{x \rightarrow \pm \infty} \frac{-1+\frac{1}{x}+\frac{2}{x^{2}}}{\left(1-\frac{1}{x}\right)^{2}}=-1$. Thus $y=-1$ is a horizontal asymptote of the graph of f.
(g)

5. (a) $\int \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}=\int\left(\frac{1+x^{2}-1}{\left(1+x^{2}\right)^{2}} d x=\int\left(\frac{1}{\left(1+x^{2}\right)}-\frac{1}{\left(1+x^{2}\right)^{2}}\right) d x\right.$

$$
=\tan ^{-1}(x)-\int \frac{1}{\left(1+x^{2}\right)^{2}} d x .
$$

Now $\int \frac{1}{\left(1+x^{2}\right)^{2}} d x=\int \frac{1}{\left(1+\tan ^{2}(\theta)\right)^{2}} \sec ^{2}(\theta) d \theta=\int \cos ^{2}(\theta) d \theta$
where $x=\tan (\theta)$ so that $d x=\sec ^{2}(\theta) d \theta$

$$
\begin{aligned}
& =\int \frac{1}{2}(1+\cos (2 \theta)) d \theta=\frac{1}{2}\left(\theta+\frac{1}{2} \sin (2 \theta)\right)+C \\
& =\frac{1}{2} \tan ^{-1}(x)+\frac{1}{2} \frac{\tan (\theta)}{\sec ^{2}(\theta)}+C=\frac{1}{2} \tan ^{-1}(x)+\frac{1}{2} \frac{\tan (\theta)}{1+\tan ^{2}(\theta)}+C \\
& =\frac{1}{2} \tan ^{-1}(x)+\frac{1}{2} \frac{x}{1+x^{2}}+C .
\end{aligned}
$$

Therefore, $\int \frac{x^{2} d x}{\left(1+x^{2}\right)^{2}}=\frac{1}{2}\left(\tan ^{-1}(x)-\frac{x}{1+x^{2}}\right)+C$. Thus

$$
\int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{2}} d x=\frac{1}{2}\left[\tan ^{-1}(x)-\frac{x}{1+x^{2}}\right]_{0}^{1}=\frac{1}{2}\left(\tan ^{-1}(1)-\frac{1}{2}\right)=\frac{\pi}{8}-\frac{1}{4} .
$$

(b) $\int(\ln (3 x))^{2} d x=x(\ln (3 x))^{2}-\int x \cdot 2 \ln (3 x) \cdot \frac{1}{x} d x \quad$ by integration by parts

$$
=x(\ln (3 x))^{2}-2 \int \ln (3 x) d x=x(\ln (3 x))^{2}-2\left(x \ln (3 x)-\int x \cdot \frac{1}{x} d x\right)
$$

by integration by parts

$$
=x(\ln (3 x))^{2}-2 x \ln (3 x)+2 x+C .
$$

(c) $\int \cos (\sin (y)) \cos (y) d y=\int \cos (u) d u$, where $u=\sin (y)$ so that $d u=\cos (y) d y$

$$
=\sin (u)+C=\sin (\sin (y))+C .
$$

(d) $\int \frac{e^{x}}{e^{2 x}+3 e^{x}+2} d x=\int \frac{1}{u^{2}+3 u+2} d u$, where $u=e^{x}$ so that $d u=e^{x} d x$

$$
\begin{aligned}
& =\int \frac{1}{(u+2)(u+1)} d u=\int\left(\frac{1}{u+1}-\frac{1}{u+2}\right) d u=\ln |u+1|-\ln |u+2|+C \\
& =\ln \left|\frac{u+1}{u+2}\right|+C=\ln \left(\frac{e^{x}+1}{e^{x}+2}\right)+C .
\end{aligned}
$$

(e) $\int \frac{1}{\sqrt{2 \sqrt{x}+5}} d x$

Use the substitution $y=\sqrt{2 \sqrt{x}+5}$ so that $y^{2}=2 \sqrt{x}+5$ and $2 y d y=\frac{1}{\sqrt{x}} d x$.
Note that $d x=2 y\left(y^{2}-5\right) / 2 d y=y\left(y^{2}-5\right) d y$. Therefore,

$$
\begin{aligned}
\int \frac{1}{\sqrt{2 \sqrt{x}+5}} d x & =\int \frac{y\left(y^{2}-5\right)}{y} d y=\int\left(y^{2}-5\right) d y=\frac{y^{3}}{3}-5 y+C \\
& =\frac{1}{3}(2 \sqrt{x}+5)^{\frac{3}{2}}-5(2 \sqrt{x}+5)^{\frac{1}{2}}+C .
\end{aligned}
$$

6. (a) $\int_{2}^{5}(|x-3|+|x-4|) d x=\int_{2}^{3}(|x-3|+|x-4|) d x$

$$
\begin{aligned}
& \qquad+\int_{3}^{4}(|x-3|+|x-4|) d x+\int_{4}^{5}(|x-3|+|x-4|) d x \\
& =-\int_{2}^{3}((x-3)+(x-4)) d x+\int_{3}^{4}((x-3)-(x-4)) d x+\int_{4}^{5}((x-3)+(x-4)) d x \\
& =-\int_{2}^{3}(2 x-7) d x+\int_{3}^{4} 1 d x+\int_{4}^{5}(2 x-7) d x \\
& =-\left[x^{2}-7 x\right]_{2}^{3}+1+\left[x^{2}-7 x\right]_{4}^{5}=-5+9+1=5 .
\end{aligned}
$$

(b) Write the following as a Riemann sum

$$
\sum_{i=1}^{n} \frac{\pi}{2 n} \sin \left(\frac{\pi}{2} \cdot \frac{i}{n}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$. Therefore, we can take $x_{i}=\frac{\pi}{2} \cdot \frac{i}{n}$ so that $\Delta x=\frac{\pi}{2 n}, x_{0}=0$ and $x_{n}=\frac{\pi}{2}$. Thus by comparing

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{\pi}{2 n} \sin \left(\frac{\pi}{2} \cdot \frac{i}{n}\right),
$$

we would want $f\left(x_{i}\right)=\sin \left(\frac{\pi}{2} \cdot \frac{i}{n}\right)=\sin \left(x_{i}\right)$ Thus $f(x)=\sin (x)$. Therefore,
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{2 n} \sin \left(\frac{\pi}{2} \cdot \frac{i}{n}\right)=\int_{0}^{\frac{\pi}{2}} \sin (x) d x=[-\cos (x)]_{0}^{\frac{\pi}{2}}=\cos (0)=1$.
(c) Since $g(x)=x \int_{0}^{x} f(x) d x$, by the Product Rule and the Fundamental Theorem of calculus,

$$
g^{\prime}(x)=\int_{0}^{x} f(x)+x f(x) .
$$

Since it is given that for all x in $\mathbf{R}, f(x)>0$, for any $x>0, x f(x)>0$ and the integral $\int_{0}^{x} f(x) \geq 0$. Therefore, $g^{\prime}(x)=\int_{0}^{x} f(x)+x f(x)>0$ for $x>0$. Hence g is increasing on $(0, \infty)$.
7. (a) (i) $g(x)=\int_{x^{3}}^{x^{4}} \frac{1}{1+t^{2}} d t=\int_{0}^{x^{4}} \frac{1}{1+t^{2}} d t+\int_{x^{3}}^{0} \frac{1}{1+t^{2}} d t$

$$
=\int_{0}^{x^{4}} \frac{1}{1+t^{2}} d t-\int_{0}^{x^{3}} \frac{1}{1+t^{2}} d t=F\left(x^{4}\right)-F\left(x^{3}\right), \text { where } F(x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t .
$$

Therefore, $g^{\prime}(x)=F^{\prime}\left(x^{4}\right) \cdot 4 x^{3}-F^{\prime}\left(x^{3}\right) \cdot 3 x^{2} \quad$ by the Chain Rule $=\frac{4 x^{3}}{1+x^{8}}-\frac{3 x^{2}}{1+x^{6}}$ by the Fundamental Theorem of Calculus.
(ii) Since $h(x)=3^{\left(x^{2}\right)}, \ln (h(x))=x^{2} \ln (3)$. Thus, differentiating the above on both sides gives $\frac{h^{\prime}(x)}{h(x)}=\ln (3)(2 x)$. Therefore, $h^{\prime}(x)=3^{\left(x^{2}\right)} \ln (3)(2 x)$.
(iii) Since $k(x)=\left(1+x^{2}\right)^{\ln (x)}, \ln (k(x))=\ln (x) \ln \left(1+x^{2}\right)$

Differentiating this equation on both sides gives

$$
\frac{k^{\prime}(x)}{k(x)}=\frac{1}{x} \ln \left(1+x^{2}\right)+\ln (x) \cdot \frac{2 x}{1+x^{2}}
$$

Therefore, $k^{\prime}(x)=\left(1+x^{2}\right)^{\ln (x)}\left(\frac{\ln \left(1+x^{2}\right)}{x}+\frac{2 x \ln (x)}{1+x^{2}}\right)$.
(b) (i) Since $f(x)=\int_{1}^{x} \sqrt{8+t^{2}} d t$, by the Fundamental Theorem of Calculus,

$$
f^{\prime}(x)=\sqrt{8+x^{2}} \geq \sqrt{8}>0
$$

Therefore, f is increasing on the whole of \mathbf{R}. Thus f is injective.
(ii) Now $\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}$. So we need to know the value of $f^{-1}(0)$. Now

$$
f^{-1}(0)=x \Leftrightarrow f(x)=0 \Leftrightarrow \int_{1}^{x} \sqrt{8+t^{2}} d t=0 . \text { Since } f(1)=\int_{1}^{1} \sqrt{8+t^{2}} d t=0
$$

and f is injective, $x=1$. Therefore, $f^{-1}(0)=1$.
Thus, $\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{\sqrt{8+1}}=\frac{1}{3}$.
8 (a) Since $f(x)=\left\{\begin{array}{c}\frac{\sin (3 x)}{x}, x \neq 0 \\ k, x=0\end{array}, \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot 3=1 \cdot 3=3\right.$ because $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=1$. (You can use L'Hôpital's Rule here.)

Now recall the definition of continuity of a function at a point. f is continuous at $x=0$ if and only if the limit $\lim _{x \rightarrow 0} f(x)$ exists and is equal to $f(0)$. This means

$$
\lim _{x \rightarrow 0} f(x)=f(0)=k .
$$

Hence $k=3$.
(b) This is a very good question. You will have to refer to the definition of differentiability and work with it. Condition (3) is a statement about differentiability of f at $x=0$.

It says $f(0)=1$. I,e,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(h+0)-f(0)}{h}=1 \tag{*}
\end{equation*}
$$

he function f is differentiable at the point x if and only if the limit

$$
\lim _{h \rightarrow 0} \frac{f(h+x)-f(x)}{h}
$$

exists. So we shall start with this limit
$\lim _{h \rightarrow 0} \frac{f(h+x)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{f(h) f(x)-f(x)}{h}$ by condition (1) $(f(h+x)=f(h) f(x))$
$=\lim _{h \rightarrow 0} f(x) \frac{f(h)-1}{h}$
$=\lim _{h \rightarrow 0} f(x) \frac{f(h)-f(0)}{h}$ since $f(0)=1$ by Condition (2)
$=f(x) \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=f(x) f^{\prime}(0)$ by $\left(^{*}\right)$ (i.e., by condition (3) which says that the limit exists)
$=f(x) \cdot 1 \quad$ since $f^{\prime}(0)=1$ by Condition (3)
$=f(x)$.
Therefore, the function f is differentiable at x for any x in \mathbf{R} and for any x in \mathbf{R}, $f^{\prime}(x)=f(x)$.

