
Answer and Guide To MA1102 Calculus Mock Test 1998-99 Semester 1

1.   This question tests the concept of the range of a function, continuity, differentiability       

and  integration over a piece-wise polynomial.

       The function   f  is defined by  .   f (x) =
 

 
 
 
 

(x + 3)2, x [ −3
2x, − 3 < x < 1
x2 + 1, x m 1

      Recall  range f  = .  Examine this definition carefully.  The intuitive            { f (x);x c R}

geometrical preconception about the range depends on quite a number of concepts          

among them one which assume, without proof, what the graph of a function would         

look like in its entirety.  Indeed this would involve the methods of calculus.                     

Very often the range does not call for this kind of analysis. 

       y  is in the range of  f  if and only if  we can find an element x in the domain of  f such that    

                   f (x)  = y  

       So we need to know when we can solve this equation for x in the domain of  f  .  Usually

this would take the form of a condition on y which would allow us to specify the range of   

f .   But our function is defined in a piecewise manner.  So we consider  our function as

three functions with each  of the following intervals  as their(−∞, −3], (−3, 1), [1, ∞)

respective domains.  So  the range of  f  is the union of the range of these three functions.

More precisely, the  range of  f  is the union of the images of these  three intervals under  f .

     

(a)   For .  Thus if y is in the image of   .                   x [ −3 , f (x) = (x + 3)2 m 0 (−∞, −3] y m 0

Now for any    f (x)  = y can be solved for  .  This is done as follows.  For  y m 0 x [ −3

, we can take   so that   y m 0 and f (x) = (x + 3)2 = y x + 3 = − y x = −3 − y [ −3.

Therefore,  the image of  .   Also,  − 3 < x < 1 if and only  if(−∞, −3] under f is [0, +∞)

 −6 < 2x  < 2.  Thus, since for −3 < x < 1,   f  (x) = 2x,  f  maps (−3, 1)  onto  (−6,  2).

Therefore, the image of  (−3, 1) under  f  is (−6, 2).  Finally for  

  And for any   , we can  solve  for  x m 1 , f (x) = x2 + 1 m 2. y m 2 f (x) = x2 + 1 = y

 by taking  .   Therefore, the image of  x m 1 x = y − 1 m 1 [1, ∞) under f is [2, ∞).

Hence the range of  f  is .[0, ∞) 4 (−6, 2) 4 [2, ∞) = (−6, ∞)



(b)  (i)  From part (a)  − 5  is in the image of  under  f  .   Thus, to find the preimage      (−3, 1)

we need to solve the equation   for x < − 4.  Solving this gives  .2x = −5 x = −5
2

       (ii)  From part (a)  − 7 is not in the range of  f .   Thus, there is no value of  x for which  

                   f (x) = −7. 

      (iii)  0  is in the images of  (-3,1) and .   Solving   f  (x) = 0 for x  in   means(−∞, −3] (−∞, −3]

solving   which gives x = −3.  Solving  f  (x) = 0 for x in  means solving  (x + 3)2 = 0 (−3, 1)

 which gives x = 0.2x = 0

(c)   When  , which is a polynomial function, therefore  f  is                   x < −3 , f (x) = (x + 3)2

continuous on  , since any polynomial function is continuous on the reals and so is(−∞, −3)

continuous on any interval.  Similarly, when ,  f (x) is a polynomial           −3 < x < 1

function and so  f   is continuous on this interval.   Finally when ,  f (x) is also ax > 1

polynomial function and so it is continuous for x > 1.  Thus it remains to check if   f   is

continuous at x = − 3 or 1.  Consider the left limit at x = − 3,                                               

                        and the right limit at x = −3                          
xd(−3) −

lim f (x) =
xd(−3)−

lim (x + 3)2 = 0

                     .                                                                      
xd(−3)+

lim f (x) =
xd(−3)+

lim 2x = −6

Therefor, the left and the right limits are not the same.  Thus the limit at x = − 3 does not

exist.  Therefore  f  is not continuous at x = − 3.   Now consider the left limit of  f  at  x =

1,                                                                                                                                         

                        and the right limit at x = 1,                                          
xd1−
lim f (x) =

xd1−
lim 2x = 2

                       .  
xd1+
lim f (x) =

xd1+
lim x2 + 1 = 12 + 1 = 2 = f (1)

       Therefore, the left and the right limits of  f  at x = 1 are the same and is equal to the value    

of the function  f  at x = 1 and so  f  is continuous at x = 1.  Thus  f  is continuous at x for

all .x ! −3

(d)    f   is differentiable at x = 1.  This is seen as follows.                                                             

                    and                                               
h d 0−
lim

f (1 + h) − f (1)
h =

h d 0−
lim

2(1 + h) − 2
h = 2

   
h d 0+
lim

f (1 + h) − f (1)
h =

h d 0+
lim

(1 + h)2 + 1 − 2
h =

h d 0+
lim h2 + 2h

h = 2 =
h d 0−
lim

f (1 + h) − f (1)
h .

Therefore,    and  so  f  is differentiable at x = 1 and  .
h d 0
lim

f (1 + h) − f (1)
h = 2 f ∏(1) = 2
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(e)                                                      ¶0
2 f (x)dx = ¶0

1 f (x)dx + ¶1
2 f (x)dx = ¶0

1 2xdx + ¶1
2(x2 + 1)dx

                   .= [x2 ]0
1 + x3

3 + x
1

2

= 1 + 1
3 (8 − 1) + 1 = 4 1

3

(f)                       
0 1 3 4-1-2-3-4 2-5 5

y

y = f (x)

-6

6

2

2.  You can use  L’Hôpital’s  Rule here.

(a)   
xd∞lim 10 + 9x3 − x2

3x3 − 7 + 5x =
xd∞lim

10
x3 + 9 − 1

x

3 − 7
x3 + 5

x2

= 0 + 9 + 0
3 − 0 + 0 = 9

3 = 3.

(b)                       
xd0
lim

5x2 + 4 − 2
x2 =

xd0
lim

( 5x2 + 4 − 2)( 5x2 + 4 + 2)
x2( 5x2 + 4 + 2)

=
xd0
lim 5x2 + 4 − 4

x2( 5x2 + 4 + 2)

                               =
xd0
lim 5

( 5x2 + 4 + 2)
= 5

4 .

       Or you can use  L’Hôpital’s  Rule:

                 .
xd0
lim

5x2 + 4 − 2
x2 =

xd0
lim

1
2 (5x2 + 4)−1/2 $ 10x

2x =
xd0
lim 5

2 (5x2 + 4)−1/2 = 5
4

(c)    since   .                              
xd0
lim

sin(x)
7x − x2 =

xd0
lim

sin(x)
x $ 1

(7 − x) = 1 $ 1
7 − 0 = 1

7 xd0
lim

sin(x)
x = 1

  Or    by  L’Hôpital’s  Rule                                                              
xd0
lim

sin(x)
7x − x2 =

xd0
lim

cos(x)
7 − 2x

                            =
cos(0)
7 − 0 = 1

7 .
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 (d)                                             
xd∞lim 16x2 + 3 − 4x =

xd∞lim 16x2 + 3 − 4x $
16x2 + 3 + 4x

16x2 + 3 + 4x

                                   =
xd∞lim 16x2 + 3 − 16x2

16x2 + 3 + 4x
=

xd∞lim 3/x

16 + 3
x2 + 4

= 0
8 = 0.

       Notice here we make use of the fact that for x > 0, .x2 = x

(e)                                         
xd1
lim

sin(x − 1)
x − 1

=
xd1
lim

sin(x − 1)
x − 1

$
x + 1
x + 1

=
xd1
lim

sin(x − 1)
x − 1 $ ( x + 1)

                             =  .
xd1
lim

sin(x − 1)
x − 1 $

xd1
lim ( x + 1) = 1 $ (1 + 1) = 2

       Or    by  L’Hôpital’s  Rule                                                     
xd1
lim

sin(x − 1)
x − 1

=
xd1
lim

cos(x − 1)
1

2 x

                             = 
cos(0)

1/2 = 2.

(f)    .
xd0
lim (1 + 7x2)

1
x2

        Let  .    Then  .                                                             y = (1 + 7x2)
1

x2 ln(y) = 1
x2 ln(1 + 7x2)

   by  L’Hôpital’s  Rule                                             
xd0
lim ln(y) =

xd0
lim

ln(1 + 7x2)
x2 =

xd0
lim

14x
1+7x2

2x

                                                                                                              =
xd0
lim 7

1 + 7x2 = 7.

Therefore,   .
xd0
lim (1 + 7x2)

1
x2 = exd0

limln(y) = e7

3  (a) (i)  For ,  g(0) = 5 > 0 and g(−2) = −32−2 +5 = −29 < 0 .                 Sinceg(x) = x5 + x + 5

g is a polynomial function on [−2, 0], g is continuous on [−2, 0].  Therefore,   by the

Intermediate Value Theorem, there is a point c in (−2, 0) such that g(c) = 0.

        (ii)   For x in R,   .                                                                                        g ∏(x) = 5x4 + 1

Suppose g has two distinct roots say c and c’  in R.  Without loss of generality we   

may assume that c < c’ .  Then since g is differentiable on the whole of R, g is        

continuous on [c, c’ ], differentiable on (c, c’ ).  Obviously, g(c) = g(c’ ) = 0.           

Therefore,  by Rolle's theorem, there is a point  d in (c, c’ ) with g ' (d) = 0.  But       

.  This contradiction shows that g can have only one root.  Thus byg ∏(d) = 5d4 + 1 > 0

part (i) g has exactly one such root c.

                alternatively, since  g is increasing on R and so g is injective on  g ∏(x) = 5x4 + 1 > 0

R.  Therefore by part (i) there is exactly one root c in R.

4
MA102/©NgTB



(b)   on [−2, 4].   Therefore, since h is a polynomial function h ish(x) = x4 − 4x2 + 16

continuous  on [-2, 4] and the derivative   on theh ∏(x) = 4x3 − 8x = 4x(x − 2 )(x + 2 )

open interval (−2, 4).  Therefore, in the interval (-2, 4)                                                          

            .                                 h ∏(x) = 0 g 4x(x − 2 )(x + 2 )x = 0 g x = 0, 2 or − 2

Thus, there are only three critical points in (−2, 4) occurring at x = 0 , .        2 and − 2

,  , ,        h(0) = 16 h( 2 ) = h(− 2 ) = 4 − 8 + 16 = 12 h(−2) = 16 − 4 $ 4 + 16 = 16

 .                                                                   h(4) = 16 $ 42 − 4 $ 42 + 16 = 13 % 16 = 208

Therefore, the absolute minimum value of h on [−2, 4] is 12 and the absolute maximum  

value of h on [−2,4] is  208.               

(c)    .                                                                                                        y2 − sin(y) = 2x

Differentiating implicitly we get   --------------------------- (1)               2y
dy
dx − cos(y)

dy
dx = 2

Differentiating  (1) implicitly again we get                                                                            

                  .                                              2
dy
dx

dy
dx + 2y

d2y
dx2 + sin(y)

dy
dx

dy
dx − cos(y)

d2y
dx2 = 0

Thus,    --------------------------------------(2)              (2y − cos(y))
d2y
dx2 = −

dy
dx

2

(sin(y) + 2)

From (1) we know that .  Thus,                              (2y − cos(y)) ! 0 and
dy
dx = − 2

2y − cos(y)

                    .
d2y
dx2 = −

4(sin(y) + 2)
(2y − cos(y))3

4.    Since ,  we note that  f  is continuous on R−−{1} because  f  is a               f (x) = 2 + x − x2

(x − 1)2

rational function.  Then we can rewrite the function in a simpler form as follows.

        .                                      f ∏(x) =
2 − x(x − 1)

(x − 1)2 = 2
(x − 1)2 − x

(x − 1) = 2
(x − 1)2 − 1

(x − 1) − 1

 Then    ------------------  (1)            f ∏(x) = − 4
(x − 1)3 + 1

(x − 1)2 =
−4 + (x − 1)

(x − 1)3 = x − 5
(x − 1)3

              ------------------ (2)f ∏∏(x) = 12
(x − 1)4 − 2

(x − 1)3 =
12 − 2(x − 1)

(x − 1)4 = 2 7 − x
(x − 1)4

(a)   When  ,   so that by (1),  .  Thus   f  is increasing   x < 1 (x − 1)3 < 0 and x − 5 < 0 f ∏(x) > 0

on the interval .                       (−∞, 1)

        For ,   so that by (1),   .  Hence  f  is               1 < x < 5 (x − 1)3 > 0 and x − 5 < 0 f ∏ (x) < 0

decreasing on  , since  f  is continuous at x = 5 .(1, 5]
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       Finally for x > 5,   and so by (1)  and we conclude           (x − 1)3 > 0and x − 5 > 0 f ∏(x) > 0

   that  f  is increasing on  since  f  is continuous at x = 5.[5, ∞)

(b)   Since  f  is differentiable on its domain, by (1) it has only one critical point, namely x =  5.

(c)   From part (b) since  f  is differentiable on its domain the critical point is also a  stationary  

point.  Therefore, it can have only one relative extremum and                                              

                                                                                 is a relativef (5) = 2 + 5 − 25
16 = − 9

8

minimum since  f  is decreasing on  (1, 5] and increasing  on .  There are no relative[5, ∞)

maxima.

(d)   When x < 7 and ,  7 − x >0 and so by (2)  .  Hence the graph of  f  is             x ! 1 f ∏∏(x) > 0

concave  upward on the intervals  .  When  , by (2),    (−∞, 1) and (1, 7) x > 7, i.e., 7 − x < 0

 .   Thus the  graph of  f  is concave downward on the interval .f ∏∏(x) < 0 (7, ∞)

(e)     is a point of inflection since before        (7, f (7)) = (7, 2 + 7 − 49
36 ) = (7, − 40

36 ) = (7, − 10
9 )

and after the point x = 7 there is a change of concavity.

(f)   Now .   This is because                
xd1
lim f (x) =

xd1
lim 2 + x − x2

(x − 1)2 =
xd1
lim 1

(x − 1)2 $ (2 + x − x2) = ∞

.   Therefore, the line  x = 1 is a vertical
xd1
lim 1

(x − 1)2 = ∞ and
xd1
lim (2 + x − x2) = 2 > 0

asymptote of the graph of   f .  Also .   
xd!∞
lim f (x) =

xd!∞
lim 2 + x − x2

(x − 1)2 =
xd!∞
lim

−1 + 1
x + 2

x2

(1 − 1
x )2

= −1

Thus y = −1 is a horizontal asymptote of the graph of  f .

(g)     

y

x

2 30-1 1 4

2

75 6

-1
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              The graph of   f  (not drawn to scale)

5.   (a)                                                ¶ x2dx
(1 + x2)2 = ¶( 1 + x2 − 1

(1 + x2)2 dx = ¶( 1
(1 + x2) − 1

(1 + x2)2 )dx

                    .                                                                       = tan−1(x) − ¶ 1
(1 + x2)2 dx

   Now                                    ¶ 1
(1 + x2)2 dx = ¶ 1

(1 + tan2(h))2 sec2(h)dh = ¶ cos2(h)dh

                                                              where  so that            x = tan(h) dx = sec2(h)dh

                                                                   = ¶ 1
2 (1 + cos(2h))dh = 1

2 (h + 1
2 sin(2h)) + C

                                        = 1
2 tan−1(x) + 1

2

tan(h)
sec2(h) + C = 1

2 tan−1(x) + 1
2

tan(h)
1 + tan2(h) + C

                        .                                                               = 1
2 tan−1(x) + 1

2
x

1 + x2 + C

Therefore,  .    Thus                                           ¶ x2dx
(1 + x2)2 = 1

2 (tan−1(x) − x
1 + x2 ) + C

  ¶
0

1 1
(1 + x2)2 dx = 1

2 tan−1(x) − x
1 + x2 0

1

= 1
2 (tan−1(1) − 1

2 ) = o
8 − 1

4 .

        (b)      by integration by parts                          ¶(ln(3x))2dx = x(ln(3x))2 − ¶ x $ 2 ln(3x) $ 1
x dx

                                                = x(ln(3x))2 − 2 ¶ ln(3x)dx = x(ln(3x))2 − 2(x ln(3x) − ¶ x $ 1
x dx)

                                                                                by integration by parts                            

                                    = x(ln(3x))2 − 2x ln(3x) + 2x + C.

        (c)   , where u = sin(y) so that du = cos(y)dy                    ¶ cos(sin(y)) cos(y)dy = ¶ cos(u)du

                                         = sin(u) + C = sin(sin(y)) + C.

        (d)   ,  where                            ¶ ex

e2x + 3ex + 2 dx = ¶ 1
u2 + 3u + 2 du u = ex so that du = exdx

                                         = ¶ 1
(u + 2)(u + 1) du = ¶( 1

u + 1 − 1
u + 2 )du = ln u + 1 − ln u + 2 + C

                         .                    = ln u + 1
u + 2 + C = ln( ex + 1

ex + 2 ) + C.

        (e)    ¶ 1
2 x + 5

dx
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               Use the substitution  so that   and  .            y = 2 x + 5 y2 = 2 x + 5 2ydy = 1
x

dx

           Note that .   Therefore,                                             dx = 2y(y2 − 5)/2dy = y(y2 − 5)dy

                                                 ¶ 1
2 x + 5

dx = ¶ y(y2 − 5)
y dy = ¶(y2 − 5)dy =

y3

3 − 5y + C

                                        .= 1
3 (2 x + 5)

3
2 − 5(2 x + 5)

1
2 + C.

6.  (a)                                                                     ¶2
5( x − 3 + x − 4 )dx = ¶2

3( x − 3 + x − 4 )dx

                                         + ¶3
4( x − 3 + x − 4 )dx + ¶4

5( x − 3 + x − 4 )dx

                                  = − ¶2
3((x − 3) + (x − 4))dx + ¶3

4((x − 3) − (x − 4))dx + ¶4
5((x − 3) + (x − 4))dx

                                                                                 = − ¶2
3(2x − 7)dx + ¶3

4 1dx + ¶4
5(2x − 7)dx

               = −[x2 − 7x]2
3 + 1 + [x2 − 7x]4

5 = −5 + 9 + 1 = 5.

(b)   Write the following as a Riemann sum                                                                                  

     ,                                                                                 S
i=1

n o
2n sin( o

2 $ i
n ) = S

i=1

n
f (x i)Dx

where .  Therefore, we canx0 < x1 < £ < xn is a regular partition and Dx = Dx i = x i − x i−1

take  so that .   Thus by comparing                            x i = o
2 $ i

n Dx = o
2n , x0 = 0 and xn = o

2

                     ,                                                                          f(x i)Dx with o
2n sin( o

2 $ i
n )

we would want  .    Thus  .  Therefore,               f (x i) = sin( o
2 $ i

n ) = sin(x i) f (x) = sin(x)

n d ∞lim S
i=1

n o
2n sin( o

2 $ i
n ) = ¶0

o
2 sin(x)dx = [− cos(x)]0

o
2 = cos(0) = 1.

(c)   Since by the Product Rule and the Fundamental Theorem of calculus,     g(x) = x ¶0
x f (x)dx,

                .g ∏(x) = ¶0
x f (x) + x f (x)

       Since it is given that for all x in R,  f (x) > 0,  for any x > 0,   and the integral        x f (x) > 0

.  Therefore,  Hence g is increasing on        ¶0
x f (x) m 0 g ∏(x) = ¶0

x f (x) + x f (x) > 0 for x > 0.

                        (0, ∞).

7.   (a)  (i)                                                           g(x) = ¶x3
x4 1

1 + t2 dt = ¶0
x4 1

1 + t2 dt + ¶x3
0 1

1 + t2 dt

                       , where .           = ¶0
x4 1

1 + t2 dt − ¶0
x3 1

1 + t2 dt = F(x4) − F(x3) F(x) = ¶0
x 1

1 + t2 dt

                 Therefore,      by the Chain Rule                        g ∏(x) = F∏(x4) $ 4x3 − F∏(x3) $ 3x2

                                               by the Fundamental Theorem of Calculus.= 4x3

1 + x8 − 3x2

1 + x6

8
MA102/©NgTB



            (ii)  Since  , .  Thus, differentiating the above on both          h(x) = 3(x2) ln(h(x)) = x2 ln(3)

              sides gives  .  Therefore,   .
h ∏(x)
h(x) = ln(3)(2x) h ∏(x) = 3(x2) ln(3)(2x)

          (iii)   Since , .                                                   k(x) = (1 + x2) ln(x) ln(k(x)) = ln(x) ln(1 + x2)

               Differentiating this equation on both sides gives                                                      

                                  .                                                     
k ∏(x)
k(x) = 1

x ln(1 + x2) + ln(x) $ 2x
1 + x2

               Therefore,  .k ∏(x) = (1 + x2) ln(x) ln(1 + x2)
x +

2x ln(x)
1 + x2

(b)  (i) Since  , by the Fundamental Theorem of Calculus,                             f (x) = ¶1
x 8 + t2 dt

                      .                                                                              f ∏(x) = 8 + x2 m 8 > 0

       Therefore,  f  is increasing on the whole of R.  Thus  f  is injective.

    (ii)   Now  .  So we need to know the value of  .  Now              ( f −1) ∏(0) = 1
f ∏( f −1(0)) f −1(0)

       .  Since                     f −1(0) = x g f (x) = 0 g ¶1
x 8 + t2 dt = 0 f (1) = ¶1

1 8 + t2 dt = 0

       and  f  is injective, x = 1.  Therefore, .                                                             f −1(0) = 1

       Thus,  .( f −1) ∏(0) = 1
f ∏( f −1(0)) = 1

f ∏(1) = 1
8 + 1

= 1
3

8 (a)   Since  ,         f (x) =
 

 
 
 

 

sin(3x)
x , x ! 0
k, x = 0 xd 0

lim f (x) =
xd0
lim

sin(3x)
x =

xd0
lim

sin(3x)
3x $ 3 = 1 $ 3 = 3

because    (You can use L’Hôpital’s Rule here.)                                      
xd0
lim

sin(3x)
3x = 1.

Now recall the definition of continuity of a function at a point.   f  is continuous at           

x = 0 if and only if the limit  exists and is equal to f (0).  This means
xd 0
lim f (x)

                           .                                                                                         
xd 0
lim f (x) = f (0) = k

 Hence k = 3.

 (b)   This is a very good question. You will have to refer to the definition of differentiability      

and work with it.  Condition (3) is a statement about differentiability of  f  at x = 0.            

It says  f ‘ (0) = 1.  I,e,                                                                                                        

                                  ---------------------    (*)                               
h d 0
lim

f (h + 0) − f (0)
h = 1

he function  f  is differentiable at the point x if and only if the limit                                      

                                                                                                           
h d 0
lim

f (h + x) − f (x)
h

9
MA102/©NgTB



 exists.   So we shall start with this limit                                                                              

   by condition (1)                                            
h d 0
lim

f (h + x) − f (x)
h =

h d 0
lim

f (h)f (x) − f (x)
h

                                                                    (  )                                    f (h + x) = f (h)f (x)

                                                                                                           =
h d 0
lim f (x)

f (h) − 1
h

                                     since  f (0) = 1 by Condition (2)                 =
h d 0
lim f (x)

f (h) − f (0)
h

                                                                                                     = f (x)
h d 0
lim

f (h) − f (0)
h

                                      by (*) (i.e., by condition (3) which says that the         = f (x) f ∏(0)

                                                                    limit exists)                                                     

                                            since   by Condition (3)                             = f (x) $ 1 f ∏(0) = 1

                                  .                                                                                    = f (x)

Therefore, the function  f  is differentiable at x  for any x in R and for any x in R, 

.  f ∏(x) = f (x)
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