Absolute Maximum

Let the function f be defined on \mathbf{R} by $\quad f(x)=\left\{\begin{array}{c}2+x^{3}, x \leq 1 \\ 5 x-x^{2}-1, x>1\end{array}\right.$.
(i) Find the intervals on which is increasing and or decreasing.
(ii) Find the intervals on which the graph of f is concave upward or concave downward.
(iii) Find the relative extrema, absolute extrema of f if any.
(iv) Find the points of inflection of the graph of f.
(v) Sketch the graph of f.

First observe that the function is a piecewise polynomial function.

Then observe that it is continuous. This is deduced below.
f is continuous on \mathbf{R} because f is a polynomial function on $(-\infty, 1)$ and also on $(1, \infty)$ and that

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=3=f(1) .
$$

To find the interval on which f is increasing or decreasing we shall have to differentiate as we can.

Start by differentiating on the open interval where the function is given by a polynomial (or by a function whose derivative is known -- trigonometric, exponential, log , etc.)

Then $\quad f^{\prime}(x)=\left\{\begin{array}{c}3 x^{2}, x<1 \\ 5-2 x, x>1\end{array}\right.$

At this point we dont't need to know if the function is differentiable at $x=1$. Thus for $x<0$,

$$
f^{\prime}(x)=3 x^{2}>0
$$

and since f is continuous at $x=0, f$ is increasing on the interval $(-\infty, 0]$.
Also for $0<x<1, f^{\prime}(x)=3 x^{2}>0$ so that . Hence f is increasing on $[0,1]$ since f is continuous at $x=$ 0 and at $x=1$. For $x>1, f^{\prime}(x)=5-2 x$ and $f^{\prime}(x)=0$ when $x=5 / 2$.

For $1<x<5 / 2,(5-2 x)>0$ so that $f^{\prime}(x)=(5-2 x)>0$. Thus we have that f is increasing on [1,5/2] since f is continuous at $x=5 / 2$ too. Thus f is increasing on ($-\infty, 5 / 2$]. Finally for $x>5 / 2$, $5-2 x<0$ and so by (1) $f^{\prime}(x)<0$ and we conclude that f is decreasing on $[5 / 2, \infty)$.
Thus $f\left(\frac{5}{2}\right)$ is a relative maximum and also an absolute maximum
To investigate the concavity of the graph of f we would use all possible second derivative of f.

$$
f^{\prime \prime}(x)=\left\{\begin{array}{c}
6 x, x<1 \tag{2}\\
-2, x>1
\end{array}\right.
$$

From (2) when $x<0, f^{\prime \prime}(x)=6 x<0$. Hence the graph of f is concave downward on the interval $(-\infty, 0)$. Also from (2), when $1>x>0, f^{\prime \prime}(x)=6 x>0$.

Thus the graph of f is concave upward on the interval $(0,1)$. Again from (2), for $x>1$, and so the graph of f is concave downward on $(1, \infty)$. Thus $(0, f(0))=(0,2)$ and $(1, f(1))=(1,3)$ are the points of inflection of the graph of f. Now $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}-(x-2)^{2}+3=-\infty$. Thus f has no absolute minimum.

For the purpose of graph sketching note that $\quad \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 2+x^{3}=-\infty$.
Graph of f.

