Curves, Absolute extrema

1. Given curve defined by the equation

$$
\begin{equation*}
y=x^{4}-6 x . \tag{1}
\end{equation*}
$$

Find the equation of the tangent line to the curve parallel to the line

$$
\begin{equation*}
10 x+y+3=0 . \tag{2}
\end{equation*}
$$

Find too the equation of the tangent line perpendicular to the line

$$
\begin{equation*}
x-2 y+1=0 . \tag{3}
\end{equation*}
$$

Differentiate (1) giving $\quad \frac{d y}{d x}=4 x^{3}-6$
From (2), the gradient of the line is -10 .

Thus setting $\frac{d y}{d x}=4 x^{3}-6=-10$ yield $4 x^{3}-6=-10$ so that $4 x^{3}=-4$. Since we are seeking real solution $x=-1$. Substitute this in (1) gives $y=(-1)^{4}-6(-1)=1+6=7$.

Therefore, equation of the tangent line is $\frac{y-7}{x+1}=-10$.
Gradient of line (3) is $\frac{1}{2}$. Thus the gradient of any line perpendicular to (3) is -2 .
Thus for a tangent line to (1) to be perpendicular to line (3), we must have

$$
\frac{d y}{d x}=4 x^{3}-6=-2
$$

giving rise to $4 x^{3}=4$ which implies that $x=1$. Substituting this value in (1) gives

$$
y=1^{4}-6 \cdot 1=-5 .
$$

Therefore, equation of the tangent line to (1) perpendicular to line (3) is given by

$$
\frac{y-(-5)}{x-1}=-2 \quad \text { i.e., } \quad y+5=-2 x+2
$$

2. Find the absolute extrema of the function defined on the interval [0, 4] by

$$
f(x)=\left\{\begin{array}{c}
x^{2}-2 x+5,0 \leq x \leq 2 \\
x^{3}-3 x^{2}-9 x+27,2<x \leq 4
\end{array} .\right.
$$

First check that f is continuous on $[0,4]$.

Then try to differentiate f wherever you can on the open interval $(0,4)$ with the intention locate the stationary points. Note that f is continuous on $[0,4]-\{2\}$.
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{2}-2 x+5\right)=4-4+5=5$ and
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{3}-3 x^{2}-9 x+27\right)=8-12-18+27=5=f(2)$

Thus $\lim _{x \rightarrow 2} f(x)=f(2)$.

Therefore f is continuous at $x=2$. So f is continuous on [0,4].

$$
f^{\prime}(x)=\left\{\begin{array}{c}
2 x-2,0<x<2 \\
3 x^{2}-6 x-9,2<x<4
\end{array} .\right.
$$

Thus solving $f^{\prime}(x)=0$ for $0<x<2$ gives $2 x-2=0$. Thus $x=1$. Also solving $f^{\prime}(x)=0$ for $2<x<4$ gives $3 x^{2}-6 x-9=0$.
I.e. $\quad 3\left(x^{2}-2 x-3\right)=3(x-3)(x+1)=3-$ - (1)

Solution in $2<x<4$ is $x=3$. Thus we have 2 stationary points in $(0,4)-\{2\}$.

Since 2 is a probable critical point we shall take into consideration the value of f at $x=2$.
Thus the points of interest are 1,2,3,0,4.
$f(0)=5, f(1)=4, f(2)=5, \quad f(3)=3^{3}-3^{3}-9 \times 3+27=0$ and $f(4)=4^{3}-3 \times 4^{2}-9 \times 4+27=7$

Therefore, the absolute maximum is 7 and the absolute minimum is 0 .

