Continuity and Differentiability

1. Show that the equation $x=\sqrt{1-x^{2}}$ has a solution between $\frac{1}{2}$ and $\frac{3}{4}$.

The question suggests use of the Intermediate Value Theorem.

Consider the function

$$
g(x)=x-\sqrt{1-x^{2}} \quad \text { for } x \in[-1,]
$$

Then $g(x)$ is continuous on $\left[\frac{1}{2}, \frac{3}{4}\right]$ because $\sqrt{1-x^{2}}$ and x are continuous on $[-1,1]$.

$$
\begin{array}{r}
g\left(\frac{1}{2}\right)=\frac{1}{2}-\sqrt{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{2}-\sqrt{1-\frac{1}{4}} \\
=\frac{1}{2}-\sqrt{\frac{3}{4}}=\frac{1-\sqrt{3}}{2}<0 \\
g\left(\frac{3}{4}\right)=\frac{3}{4}-\sqrt{1-\left(\frac{3}{4}\right)^{2}}=\frac{3}{4}-\sqrt{1-\frac{9}{16}} \\
=\frac{3}{4}-\sqrt{\frac{7}{16}}=\frac{3-\sqrt{7}}{4}>0
\end{array}
$$

Therefore, by the Intermediate Value Theorem there exists a $c \in\left(\frac{1}{2}, \frac{3}{4}\right)$ such that $g(c)=0$.

That is, $\quad c=\sqrt{1-c^{2}}$.
2. Find the derivative of $f(x)=x|x|$.

First rewrite the function as a piecewise polynomial.

$$
f(x)=\left\{\begin{array}{c}
x \cdot x, x \geq 0 \\
x \cdot(-x), x<0
\end{array}=\left\{\begin{array}{c}
x^{2}, x \geq 0 \\
-x^{2}, x<0
\end{array} .\right.\right.
$$

Since x^{2} is differentiable on $(0, \infty)$ with derivative equaling $2 x$ and $-x^{2}$ is likewise differentiable on $(-\infty, 0)$ with derivative $-2 x$,

$$
f^{\prime}(x)=\left\{\begin{array}{c}
2 x, x>0 \\
-2 x, x<0
\end{array} .\right.
$$

Now $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}-0}{x-0}=\lim _{x \rightarrow 0^{+}} x=0$

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{-x^{2}-0}{x-0}=\lim _{x \rightarrow 0^{+}}-x=0
$$

Therefore, $f^{\prime}(0)=0$.
3. Find the derivative of the following function wherever it exists.

$$
f(x)=\left\{\begin{array}{c}
x^{3}+x, x \leq 2 \\
x^{2}+7 x, x>2
\end{array} .\right.
$$

Observe first that since f is a piecewise polynomial,

$$
f^{\prime}(x)=\left\{\begin{array}{c}
3 x^{2}+1, x<2 \\
2 x+7, x>2
\end{array} .\right.
$$

Also $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+7 x\right)=4+14=18$ and
$\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}+x\right)=8+2=10$.

Thus $\lim _{x \rightarrow 2} f(x)$ does not exist and so f is not continuous at $x=2$.

Therefore, f is not differentiable at $x=2$.
4. Find the derivative of

$$
f(x)=\left\{\begin{array}{c}
x^{4} \sin \left(\frac{1}{x}\right), x \neq 0 \\
0, x=0
\end{array} .\right.
$$

Note that away from $0, x^{4} \sin \left(\frac{1}{x}\right)$ is defined and differentiable and whose derivative is evaluated as follows by the product and chain rule :---

$$
\begin{aligned}
& 4 x^{3} \sin \left(\frac{1}{x}\right)+x^{4} \cos \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right) \\
& =4 x^{3} \sin \left(\frac{1}{x}\right)-x^{2} \cos \left(\frac{1}{x}\right)
\end{aligned}
$$

$i . e$.

$$
f^{\prime}(x)=\left\{\begin{array}{l}
4 x^{3} \sin \left(\frac{1}{x}\right)-x^{2} \cos \left(\frac{1}{x}\right), x>0 \\
4 x^{3} \sin \left(\frac{1}{x}\right)-x^{2} \cos \left(\frac{1}{x}\right), x<0
\end{array}\right.
$$

Now for $x=0$, we shall have to use the definition of the derivative.

Recall $f(0)=0$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{+}} \frac{x^{4} \sin \left(\frac{1}{x}\right)-0}{x-0}=\lim _{x \rightarrow 0^{+}} x^{3} \sin \left(\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

by the Squeeze Theorem since $0 \leq\left|x^{3} \sin \left(\frac{1}{x}\right)\right| \leq\left|x^{3}\right|$ and $\lim _{x \rightarrow 0^{+}}\left|x^{3}\right|=0$.

Similarly by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} x^{3} \sin \left(\frac{1}{x}\right)=0
$$

Therefore, $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0$, i.e. $f^{\prime}(0)=0$. Hence
$f^{\prime}(x)=\left\{\begin{array}{c}4 x^{3} \sin \left(\frac{1}{x}\right)-x^{2} \cos \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$.
5. Let $f(x)=\left\{\begin{array}{c}a x+1, x<1 \\ \beta x^{2}+3 x+1, x \geq 1\end{array}\right.$.

Find α and β so that the derivative $f^{\prime}(1)$ exist.

Since we know by [Ng, Theorem 5.1.5] that differentiability at $x=1$ implies continuity at $x=1$. So we first formulate condition for f to be continuous at $x=1$; then formulate condition for the derivative to exist at $x=1$.

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(a x+1)=a+1 \text { and }
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(\beta x^{2}+3 x+1\right)=\beta+3+1=\beta+4(=f(1))$

Therefore for continuity, $a+1=\beta+4(=f(1))$,

$$
\begin{equation*}
\text { i.e. } \quad a=\beta+3 \tag{1}
\end{equation*}
$$

Recall $f(1)=\beta+4$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{a(1+h)+1-(\beta+4)}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{a h+(a-\beta-3)}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{a h}{h} \quad \text { since } a-\beta-3=0 \text { by }(1) \\
& =a .
\end{aligned}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}= & \lim _{h \rightarrow 0^{+}} \frac{\beta(1+h)^{2}+3(1+h)+1-(\beta+4)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\beta\left(1+2 h+h^{2}\right)+3(1+h)+1-(\beta+4)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\beta\left(2 h+h^{2}\right)+3 h}{h}=\lim _{h \rightarrow 0^{+}} 2 \beta+\beta h+3 \\
& =2 \beta+3 .
\end{aligned}
$$

Therefore, for differentiability at $x=1$, we must have

$$
\begin{equation*}
\alpha=2 \beta+3 \tag{2}
\end{equation*}
$$

Equation (2) - Equation (1) gives $0=\beta$.

Then substituting this value of β in (2) gives $\alpha=3$.

Thus $\alpha=3$ and $\beta=0$.
6. Differentiate $f(x)=\sin \left(\cos ^{2}(2 x)\right)$.

Remember the chain rule

$$
\left.\frac{d}{d x}(g(h(x)))\right|_{x_{0}}=\left.\left.\frac{d}{d x} g\right|_{h\left(x_{0}\right)} \cdot \frac{d}{d x} h\right|_{x_{0}}
$$

Applying the chain rule 3 times

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\frac{d}{d x} \sin \left(\cos ^{2}(2 x)\right) \\
& =\cos \left(\cos ^{2}(2 x)\right) \cdot \frac{d}{d x} \cos ^{2}(2 x)
\end{aligned}
$$

$$
\begin{aligned}
& =\cos \left(\cos ^{2}(2 x)\right) \cdot 2 \cos (2 x) \cdot \frac{d}{d x} \cos (2 x) \\
& =\cos \left(\cos ^{2}(2 x)\right) \cdot 2 \cos (2 x) \cdot(-\sin (2 x)) \cdot \frac{d}{d x}(2 x) \\
& =\cos \left(\cos ^{2}(2 x)\right) \cdot 2 \cos (2 x) \cdot(-\sin (2 x)) \cdot 2 \\
& =-4 \sin (2 x) \cos (2 x) \cos \left(\cos ^{2}(2 x)\right) \\
& =-2 \sin (4 x) \cos \left(\cos ^{2}(2 x)\right) \text { since } 2 \sin (2 x) \cos (2 x)=\sin (4 x)
\end{aligned}
$$

