EXAMPLE ESSION 3

Limits

1. $\lim _{x \rightarrow \infty} \frac{3 x^{3}+x^{2}+1}{5 x^{3}+2 x+7}$

Note that the limit of the denominator is $+\infty$ and that of the numerator is also $+\infty$.

- First consideration is to rewrite the function so that the denominator will have a finite non-zero limit.
- In our case we divide the denominator as well as the numerator by x^{3}.

Note the generic $\quad \lim _{x \rightarrow \pm \infty} \frac{1}{x}=\lim _{x \rightarrow \pm \infty} \frac{1}{x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{1}{x^{3}}$.
$\lim _{x \rightarrow \infty} \frac{3 x^{3}+x^{2}+1}{5 x^{3}+2 x+7}=\lim _{x \rightarrow \infty} \frac{\left(3 x^{3}+x^{2}+1\right) / x^{3}}{\left(5 x^{3}+2 x+7\right) / x^{3}}=\lim _{x \rightarrow \infty} \frac{3+1 / x+1 / x^{3}}{5+2 / x^{2}+7 / x^{3}}=\frac{3+0+0}{5+0+0}=\frac{3}{5}$.
2. $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x^{2}+x+1}{2 x^{2}+7}}=\sqrt[3]{\lim _{x \rightarrow \infty} \frac{3 x^{2}+x+1}{2 x^{2}+7}}=\sqrt[3]{\lim _{x \rightarrow \infty} \frac{\left(3 x^{2}+x+1\right) / x^{2}}{\left(2 x^{2}+7\right) / x^{2}}}$

$$
=\sqrt[3]{\frac{\lim _{x \rightarrow \infty} 3+\frac{1}{x}+\frac{1}{x^{2}}}{\lim _{x \rightarrow \infty} 2+\frac{7}{x^{2}}}}=\sqrt[3]{\frac{3}{2}} .
$$

3. $\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+5}}{x-2}$.

- In this case we have square root involved.

To bring x^{2} inside the $\sqrt{ }$ sign, we must use the identity:

$$
\begin{gathered}
\sqrt{x^{2}}=|x| . \\
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+5}}{x-2}=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+5}\right) / \sqrt{x^{2}}}{(x-2) / \sqrt{x^{2}}} \\
=\lim _{x \rightarrow \infty} \frac{\sqrt{1+5 / x^{2}}}{(x-2) /|x|}
\end{gathered}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+5 / x^{2}}}{(x-2) / x} \text { since for } x>0, \quad|x|=x \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{1+5 / x^{2}}}{1-2 / x}=\frac{\sqrt{1}}{1-0}=1 .
\end{aligned}
$$

4.

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-x\right)=\lim _{x \rightarrow \infty} \frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right)}=\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}}{\sqrt{x^{2}+1}+x} \\
& =\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x^{2}+1}+x}=\lim _{x \rightarrow \infty} \frac{1|x|}{\sqrt{x^{2}+1}|x|+x|x|} \\
& =\lim _{x \rightarrow \infty} \frac{1 / x}{\sqrt{1+1 / x^{2}}+1} \\
& =\lim _{x \rightarrow \infty} \frac{0}{\sqrt{1+0}+1}=\frac{0}{2}=0 .
\end{aligned}
$$

5. Find all values of x at which the following function is continuous.

$$
f(x)=\left\{\begin{array}{c}
3 x^{2}+1, x \leq 1 \\
5-3 x, 1<x<3 \\
x-7, x \geq 3
\end{array}\right.
$$

- Note the following criterion:

If f is continuous on an interval, then it is continuous on any sub-open interval

$$
E \subseteq I
$$

Since $3 x^{2}+1$ is continuous on \mathbf{R}, it is therefore continuous on $(-\infty, 1)$. Now for

$$
x<1, \quad f(x)=3 x^{2}+1 ; \text { continuous on } \quad(-\infty, 1)
$$

Similarly since $5-3 x$ is continuous on $(1,3), f(x)$ is continuous on $(1,3)$.

Also $x-7$ is continuous on $(3, \infty)$ that f is continuous on $(3, \infty)$

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 3 x^{2}+1=4 \text { and } \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 5-3 x=5-3=2
$$

Since $\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x), \lim _{x \rightarrow 1} f(x)$ does not exist and so f is not continuous at $x=1$.

$$
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} 5-3 x=5-9=-4 \text { and } \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} x-7=3-7=-4
$$

Therefore $\lim _{x \rightarrow 3} f(x)=-4=f(3)$. Hence f is continuous at $x=3$.
Thus f is continuous on $\mathbf{R}-\{1\}$.
6. $\lim _{x \rightarrow 0} \frac{\sin (9 x)}{2 x}=\lim _{x \rightarrow 0} \frac{9}{2} \cdot \frac{\sin (9 x)}{9 x}=\lim _{9 x \rightarrow 0} \frac{9}{2} \cdot \frac{\sin (9 x)}{9 x}=\frac{9}{2} \cdot \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=\frac{9}{2} \cdot 1=\frac{9}{2}$
7. $\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{x}=\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)} \cdot \frac{\sin (2 x)}{2 x} \cdot 2$

$$
=\lim _{x \rightarrow 0} \frac{\sin (\sin (2 x))}{\sin (2 x)} \cdot \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \cdot 2=1 \cdot 1 \cdot 2=2
$$

8. $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}+3 x}=\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}} \cdot \frac{1}{1+\frac{3}{x}}=\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x^{2}} \cdot \frac{x}{x+3}=1 \cdot \frac{0}{3}=0$.
9. $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x^{2}}\right)=0$.

Now $0 \leq\left|x \cos \left(\frac{1}{x^{2}}\right)\right| \leq|x|$. Since $\lim _{x \rightarrow 0}|x|$, by the Squeeze Theorem $\lim _{x \rightarrow 0}\left|x \cos \left(\frac{1}{x^{2}}\right)\right|=0$ and so by a Corollary to the Squeeze Theorem $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x^{2}}\right)=0$.

