NATIONAL UNIVERSITY OF SINGAPORE
 SEMESTER EXAMINATION FOR THE DEGREE OF B.SC.
 SEMESTER 2
 MA1102 CALCULUS

April/May 1998 - Time allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper contains SEVEN (7) questions and comprises FOUR (4) printed pages.
2. Answer not more than FIVE (5) questions.
3. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.
4. (a) Solve the following inequalities:
(i) $|x+2|+|x-2| \leq 6$;
(ii) $\frac{1}{x} \leq x$.
(b) Consider the function $f(x)=\left[x^{2}\right]$, where $[t]$ denotes the greatest integer less than or equal to t.
(i) Is f an odd function, an even function, or neither?
(ii) Sketch the graph of f over the interval $[-2,2]$.
5. Evaluate the following limits. If the limits do not exist, state why not.
(i) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{8+x}-2}{x}$;
(ii) $\lim _{x \rightarrow 100}\left[\frac{x}{100}\right]$, where $[t]$ denotes the greatest integer less than or equal to $t \in \mathbb{R}$;
(iii) $\lim _{x \rightarrow+\infty} x \sin x$;
(iv) $\lim _{x \rightarrow+\infty} x \sin \frac{1}{x}$;
(v) $\lim _{x \rightarrow 0} \frac{\tan 3 x}{x}$;
(vi) $\lim _{x \rightarrow 0} g(x)$ where $g(x)= \begin{cases}\sqrt{x} \sin \frac{1}{x} & x>0, \\ x^{2} \cos \frac{1}{x} & x<0 .\end{cases}$
6. (a) Evaluate the following:
(i) $\lim _{x \rightarrow+\infty} \frac{2 x+5}{\sqrt{x^{2}-4}}$;
(ii) $\lim _{x \rightarrow-\infty} \frac{2 x+5}{\sqrt{x^{2}-4}}$.
(b) Let b denote a real constant, and suppose that

$$
f(x)= \begin{cases}-3 x+b & x \leq 1 \\ -3 x^{3}+6 x+3 b & x>1\end{cases}
$$

(i) For what value of b will f be continuous for all real values of x ? Explain.
(ii) For the value of b found in (i), will f be a differentiable function for all real values of x ? Explain.
4. (a) (i) State, without proof, the Intermediate Value Theorem.
(ii) Prove that there is a value $c \in\left(0, \frac{\pi}{2}\right)$ such that

$$
\cos c=c .
$$

(b) Consider the function

$$
f(x)=2 x+\frac{200}{x} \text { for all } x>0
$$

(i) Find the minimum value of f over the interval $(0, \infty)$.
(ii) Does f have a maximum value over $(0, \infty)$? Explain.
5. (a) Suppose that

$$
y^{3}+x y^{2}+x y+1=0
$$

(i) Find $\frac{d y}{d x}$ in terms of x and y.
(ii) What is the equation of the tangent line to the curve passing through the point $(1,-1)$?
(b) (i) State, without proof, Rolle's Theorem.
(ii) Let f be a differentiable function on \mathbb{R} such that $f(1)=1$ and $f(2)=4$. Show that there exists $c \in(1,2)$ such that the tangent lines to the graph of f and the graph of $y=x^{2}$ at the point $x=c$ have the same slope.
6. (a) Evaluate the following limits with the use of L'Hôpital's Rule, or otherwise:
(i) $\lim _{x \rightarrow 0} \frac{2-e^{x}-e^{-x}}{2 x^{2}}$;
(ii) $\lim _{x \rightarrow+\infty} x \ln \left(\frac{x-1}{x+1}\right)$.
(b) Let $F(x)=\int_{\sin \left(x^{2}\right)}^{\cos x} e^{-t^{2}} d t$.

Find $F^{\prime}(x)$.
7. (a) Suppose that f is a function defined on $[-1,1]$ such that

$$
f^{\prime}(x)=x e^{2 x} \quad \forall x \in[-1,1],
$$

and $f(0)=-1$.
Find $f(x)$.
(b) Evaluate the following limits using Riemann sums, or otherwise:
(i) $\lim _{x \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i-n}{n^{2}}$;
(ii) $\lim _{x \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \frac{\pi i}{n}$.

END OF PAPER

