Answer and Guide To MA1102 Calculus 1997-98 Semester 2 Exam

1. (a) For this part you would want to 'remove' the modulus sign and use all the known properties for inequalities. Note that

$$
|x-a|=\left\{\begin{array}{c}
x-a, \quad x-a \geq 0 \\
-(x-a), \quad x-a<0
\end{array}\right. \text {. }
$$

Thus looking at

$$
\begin{equation*}
|x+2|+|x-2| \leq 6 \tag{*}
\end{equation*}
$$

you would want to consider the real line to be the union of the following intervals, $(-\infty,-2),[-2,2),[2, \infty)$ and solve the inequality on each of the intervals.

For $x<-2$, (*) becomes $-(x+2)-(x-2) \leq 6$, i.e., $-2 x \leq 6$. Thus $x \geq-3$. Thus the solution for this part is $[-3,-2)$.

For $-2 \leq x<2$, the inequality becomes $x+2-(x-2) \leq 6$, i.e., $4 \leq 6$, which is always true. Therefore, the solution set for this part is $[-2,2)$.

For $x \geq 2$, the inequality becomes $x+2+(x-2) \leq 6$, i.e. $2 x \leq 6$. This is just $x \leq 3$.
Therefore, the solution for this part is $[2,3]$.
Hence the solution set for $(*)$ is $[-3,-2) \cup[-2,2) \cup[2,3]=[-3,3]$.
(ii) $\frac{1}{x} \leq x$

First note that when $x=0,1 / x$ does not make sense and so 0 is not in the solution set of (**). Multiplying (**) by non zero x would have some consequence. It would change the direction of the inequality $\left({ }^{(*)}\right.$ when x is negative.
For $x>0\left(^{(* *)}\right.$ becomes $1 \leq x^{2}=|x|^{2}$. Taking square root gives $1 \leq|x|$. I.e. $x \geq 1$ or $x \leq-1$. Therefore, the solution set for this part is $(1, \infty)$.
For $x<0,\left({ }^{* *}\right)$ becomes $1 \geq x^{2}=|x|^{2}$. Taking square root gives $|x| \leq 1$. I.e. $-1 \leq x \leq 1$. Therefore, the solution set for this part is $[-1,0)$.

Hence the solution set for $\left({ }^{* *}\right)$ is $[-1,0) \cup(1, \infty)$.
(b) (i) Note that $f(1)=\left[1^{2}\right]=1$ and $f(-1)=\left[(-1)^{2}\right]=1$. So $f(-1) \neq-f(1)$. Therefore f is not an odd function. Obviously $f(x)=\left[x^{2}\right]=\left[(-x)^{2}\right]=f(-x)$ for all x in \mathbf{R}. Therefore f is an even function.
(ii) To plot the graph of f over the interval $[-2,2]$, we shall have to make the following calculation. Note that $-2 \leq x \leq 2 \Leftrightarrow|x| \leq 2 \Leftrightarrow|x|^{2} \leq 4 \Leftrightarrow 0 \leq x^{2} \leq 4$. Thus the image of $[-2,2]$ under the squaring function is $[0,4]$. Since the 'bracket' function is constant on the intervals $[0,1),[1,2),[2,3),[3,4)$ and the point 4 . We shall look for the pre-image of these intervals.
$0 \leq x^{2}<1 \Leftrightarrow 0 \leq|x|^{2}<1 \Leftrightarrow|x|<1 \Leftrightarrow-1<x<1$. Therefore, we have
$-1<x<1 \Rightarrow 0 \leq x^{2}<1 \Rightarrow f(x)=\left[x^{2}\right]=0$.
$1 \leq x^{2}<2 \Leftrightarrow 1 \leq|x|<\sqrt{2} \Leftrightarrow-\sqrt{2}<x \leq-1$ or $1 \leq x<\sqrt{2}$. Therefore, we have
$-\sqrt{2}<x \leq-1$ or $1 \leq x<\sqrt{2} \Rightarrow 1 \leq x^{2}<2 \Rightarrow f(x)=\left[x^{2}\right]=1$. Similarly,
$2 \leq x^{2}<3 \Leftrightarrow \sqrt{2} \leq|x|<\sqrt{3} \Leftrightarrow-\sqrt{3}<x \leq-\sqrt{2}$ or $\sqrt{2} \leq x<\sqrt{3}$. Therefore,
$-\sqrt{3}<x \leq-\sqrt{2}$ or $\sqrt{2} \leq x<\sqrt{3} \Rightarrow 2 \leq x^{2}<3 \Rightarrow f(x)=\left[x^{2}\right]=2$. Likewise,
$3 \leq x^{2}<4 \Leftrightarrow \sqrt{3} \leq|x|<\sqrt{4}=2 \Leftrightarrow-2<x \leq-\sqrt{3}$ or $\sqrt{3} \leq x<2$. Therefore,
$-2<x \leq-\sqrt{3}$ or $\sqrt{3} \leq x<2 \Rightarrow 3 \leq x^{2}<4 \Rightarrow f(x)=\left[x^{2}\right]=3$. Finally
$f(2)=f(-2)=[4]=4$.

The graph of $f(x)=\left[x^{2}\right]$
2. You can use L'Hôpital's Rule here.
(i) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{8+x}-2}{x}=\lim _{x \rightarrow 0} \frac{(\sqrt[3]{8+x}-2)\left((\sqrt[3]{8+x})^{2}+2 \sqrt[3]{8+x}+4\right)}{x\left((\sqrt[3]{8+x})^{2}+2 \sqrt[3]{8+x}+4\right)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{(8+x-8)}{x\left((\sqrt[3]{8+x})^{2}+2 \sqrt[3]{8+x}+4\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{\left((\sqrt[3]{8+x})^{2}+2 \sqrt[3]{8+x}+4\right)}=\frac{1}{4+4+4}=\frac{1}{12} .
\end{aligned}
$$

Or you can use L'Hôpital's Rule:

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{8+x}-2}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{3}(8+x)^{-2 / 3}}{1}=\frac{1}{3 \cdot 8^{2 / 3}}=\frac{1}{12} .
$$

(ii) $100<x<101 \Rightarrow 1<\frac{x}{100}<\frac{101}{100} \Rightarrow\left[\frac{x}{100}\right]=1$. Therefore, $\lim _{x \rightarrow 100^{+}}\left[\frac{x}{100}\right]=1$.
$99<x<100 \Rightarrow 0<\frac{99}{100}<\frac{x}{100}<1 \Rightarrow\left[\frac{x}{100}\right]=0$. Therefore, $\lim _{x \rightarrow 100^{-}}\left[\frac{x}{100}\right]=0$.
Therefore, the limit $\lim _{x \rightarrow 100}\left[\frac{x}{100}\right]$ does not exist.
(iii) You will need to use the definition of the limit. Recall that we say the limit $\lim _{x \rightarrow \infty} g(x)$ exists if and only if we can find a real number L such that $\lim _{x \rightarrow \infty} g(x)=L$. Thus the limit $\lim _{x \rightarrow \infty} g(x)$ does not exist if and only if for any real number $L \lim _{x \rightarrow \infty} g(x) \neq L$. Therefore, we must know what it means to say $\lim _{x \rightarrow \infty} g(x) \neq L$. Recall $\lim _{x \rightarrow \infty} g(x)=L$ if and only if for any $\varepsilon>0$ we can find an integer N such that for all $x>N|g(x)-L|<\varepsilon$. Negating this statement means to say $\lim _{x \rightarrow \infty} g(x) \neq L$ if and only if we can find an $\varepsilon>0$ such that for any N we can find a particular $x>N$ such that $|g(x)-L| \geq \varepsilon$.

Now for any L we can find an n_{0} such that $\left(4 n_{0}+1\right) \frac{\pi}{2} \geq L+1$. The ε we take here is 1 .
Thus for any N take $n=\max \left(N+1, n_{0}\right)$ and $x=(4 n+1) \frac{\pi}{2}$. Then

$$
(4 n+1) \frac{\pi}{2} \geq\left(4 n_{0}+1\right) \frac{\pi}{2} \geq L+1 \Rightarrow x \sin (x)-L=(4 n+1) \frac{\pi}{2}-L \geq 1 .
$$

This shows that $\lim _{x \rightarrow \infty} x \sin (x) \neq L$ for any L. Therefore the limit $\lim _{x \rightarrow \infty} x \sin (x)$ does not exist.
(iv) $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{\sin \left(\frac{1}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{\cos \left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)}$ by L'Hôpital's Rule

$$
=\lim _{x \rightarrow \infty} \cos \left(\frac{1}{x}\right)=\cos (0)=1 .
$$

Or $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)=\lim _{1 / x \rightarrow 0} \frac{\sin \left(\frac{1}{x}\right)}{\frac{1}{x}}=1$.
(v) $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{x \cos (3 x)}=\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x} \cdot \frac{3}{\cos (3 x)}=1 \cdot \frac{3}{\cos (0)}=3$ since $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{3 x}=1$.

Or $\lim _{x \rightarrow 0} \frac{\tan (3 x)}{x}=\lim _{x \rightarrow 0} \frac{\sec ^{2}(3 x) \cdot 3}{1}$ by L'Hôpital's Rule

$$
=\frac{\sec ^{2}(0) \cdot 3}{1}=3 .
$$

(vi) $g(x)=\left\{\begin{array}{l}\sqrt{x} \sin \left(\frac{1}{x}\right), x>0, \\ x^{2} \cos \left(\frac{1}{x}\right), x<0\end{array}\right.$
$\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} \sqrt{x} \sin \left(\frac{1}{x}\right)=0$ by the Squeeze Theorem since $-\sqrt{x} \leq \sqrt{x} \sin \left(\frac{1}{x}\right) \leq \sqrt{x}$ for $x>0$ and $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
$\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} x^{2} \cos \left(\frac{1}{x}\right)=0$ by the Squeeze Theorem since $-x^{2} \leq x^{2} \cos \left(\frac{1}{x}\right) \leq x^{2}$ for $x<0$ and $\lim _{x \rightarrow 0^{-}} x^{2}=0$.
Therefore, $\lim _{x \rightarrow 0} g(x)=0$.
3(a) (i) $\lim _{x \rightarrow \infty} \frac{2 x+5}{\sqrt{x^{2}-4}}=\lim _{x \rightarrow \infty} \frac{(2 x+5) /|x|}{\sqrt{x^{2}-4} /|x|}=\lim _{x \rightarrow \infty} \frac{(2 x+5) / x}{\sqrt{x^{2}-4} / \sqrt{x^{2}}}$
since $|x|=\sqrt{x^{2}}$ and for $x>0,|x|=x$
$=\lim _{x \rightarrow \infty} \frac{2+5 / x}{\sqrt{1-4 / x^{2}}}=\frac{2+0}{\sqrt{1-0}}=2$.
(ii) $\lim _{x \rightarrow-\infty} \frac{2 x+5}{\sqrt{x^{2}-4}}=\lim _{x \rightarrow-\infty} \frac{(2 x+5) /|x|}{\sqrt{x^{2}-4} /|x|}=\lim _{x \rightarrow-\infty} \frac{(2 x+5) /(-x)}{\sqrt{x^{2}-4} / \sqrt{x^{2}}}$
since $|x|=\sqrt{x^{2}}$ and for $x<0,|x|=-x$
$=\lim _{x \rightarrow-\infty} \frac{-2-5 / x}{\sqrt{1-4 / x^{2}}}=\frac{-2-0}{\sqrt{1-0}}=-2$.
(b) $f(x)=\left\{\begin{array}{c}-3 x+b, x \leq 1, \\ -3 x^{3}+6 x+3 b, x>1\end{array}\right.$
(i) For $x<1, f$ is a polynomial function and so f is continuous on $(-\infty, 1)$ since any polynomial function is continuous on the real numbers and so is continuous on any open interval. Similarly, for $x>1, f$ is also given by a polynomial function and so f is continuous on $(1, \infty)$. Now

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}-3 x+b=-3+b=f(1) \text { and } \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-3 x^{3}+6 x+3 b=-3+6+3 b=3+3 b .
\end{aligned}
$$

Therefore, for f to be continuous at $x=1,-3+b=3+3 b$. I.e. $b=-3$. Thus with this value of b, f is a continuous function on the whole of \mathbf{R}.
(ii) We note that any polynomial function is differentiable on the whole of \mathbf{R} and so is differentiable on any open interval. Thus our function is differentiable on each of the open intervals, $(-\infty, 1)$ and $(1, \infty)$. Now the limit
$\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{-3(1+h)^{3}+6(1+h)-9+6}{h}=\lim _{h \rightarrow 0^{+}} \frac{-3 h^{3}-9 h^{2}-3 h}{h}=-3$ and $\lim _{h \rightarrow 0^{-}} \frac{-3(1+h)-3+6}{h}=\lim _{h \rightarrow 0^{-}} \frac{-3 h}{h}=-3$. Therefore, by the definition of derivative f is differentiable at $x=1$ and $f(1)=-3$.
4. (a) (i) Refer to your lectures for the statement of the Intermediate Value theorem.
(ii) Let $g(x)=\cos (x)-x$. Then g is continuous on the closed and bounded interval $\left[0, \frac{\pi}{2}\right]$. Also $g(0)=\cos (0)-0=1>0$ and $g\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)-\frac{\pi}{2}=-\frac{\pi}{2}<0$. Therefore, by the Intermediate Value Theorem, there is a point c in the interval $\left(0, \frac{\pi}{2}\right)$ such that $g(c)=0$, i.e. $\cos (c)=c$.
(b) $f(x)=2 x+\frac{200}{x}$, for $x>0$. Since f is a rational polynomial function for $x>0, f$ is differentiable for $x>0$ and

$$
f^{\prime}(x)=2-\frac{200}{x^{2}}=2 \frac{x^{2}-100}{x^{2}}=\frac{2(x-10)(x+10)}{x^{2}}
$$

\qquad (*).
(i) For $0<x<10, x-10<0$ and $x+10>0$ so that $f(x)<0$ by (*). Therefore, f is decreasing on $(0,10]$ since f is continuous at $x=10$.

For $x>10$, both $(x-10)$ and $(x+10)$ are positive so that $f(x)>0$ by $(*)$. Therefore, f is increasing on $[10, \infty)$ since f is continuous at $x=10$.
Thus $f(10)=2 \cdot 10+\frac{200}{10}=40$ is the minimum value of f on the interval $(0, \infty)$.
(ii) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 2 x+\frac{200}{x}=\infty$ since $\lim _{x \rightarrow \infty} 2 x=\infty$ and $\lim _{x \rightarrow \infty} \frac{200}{x}=0$. Therefore f does not have a maximum value over $(0, \infty)$.

5(a) The equation is $y^{3}+x y^{2}+x y+1=0$
Therefore, differentiating implicitly we get

$$
3 y^{2} \frac{d y}{d x}+y^{2}+2 x y \frac{d y}{d x}+y+x \frac{d y}{d x}=0 .
$$

Thus $\left(3 y^{2}+2 x y+x\right) \frac{d y}{d x}=-\left(y+y^{2}\right)$. Therefore, if $3 y^{2}+2 x y+x \neq 0$, then

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y+y^{2}}{3 y^{2}+2 x y+x} \tag{2}
\end{equation*}
$$

(ii) Note that the point $(1,-1)$ satisfies equation (1). Therefore, the gradient of the tangent line to the curve at the point $(1,-1)$ is given by (2) by substituting 1 for x and -1 for y. It is $-\frac{-1+(-1)^{2}}{3(-1)^{2}-2+1}=0$. Therefore, the equation of the tangent line to the curve at the point $(1,-1)$ is $y=-1$.
(b) (i). Refer to your lectures for the statement of Rolle's Theorem.
(ii) For the curve $y=x^{2}$, the gradient or slope of the tangent line at $\left(x, x^{2}\right)$ is given by

$$
\frac{d y}{d x}=2 x .
$$

Now f is given to be a differentiable function defined on \mathbf{R} and so it is continuous on \mathbf{R}. The slope of the tangent line to the graph of f at $(x, f(x))$ is given by $f(x)$. Therefore, for these two tangent lines to have the same slope, we must have

$$
\begin{equation*}
f^{\prime}(x)=2 x \tag{3}
\end{equation*}
$$

We now consider the function $g(x)=f(x)-x^{2}$. Thus, to find a point c such that (3) holds is equivalent to finding a point c such that $g(c)=0$. Recall that it is given that $f(1)=1$ and $f(2)=4$. Observe that g is continuous on the interval $[1,2]$ since the function f and x^{2} are continuous on $[1,2]$ and that g is differentiable on $(1,2)$ since both f and x^{2} are differentiable on $(1,2)$. Furthermore $g(1)=f(1)-1^{2}=1-1=0$ and $g(2)=f(2)-2^{2}=4-4=0$. Thus $g(1)=g(2)$. Therefore, the condition for Rolle's Theorem is satisfied. Hence by Rolle's Theorem there exists a point c in $(1,2)$ such that $g(c)=0$. I.e., $f^{\prime}(c)=2 c$.
6. (a) (i) $\lim _{x \rightarrow 0} \frac{2-e^{x}-e^{-x}}{2 x^{2}}$
$=\lim _{x \rightarrow 0} \frac{-e^{x}+e^{-x}}{4 x}=\lim _{x \rightarrow 0} \frac{-e^{x}-e^{-x}}{4}$ by two successive use of L'Hôpital's Rule $=\frac{-1-1}{4}=-2$.
(ii) $\lim _{x \rightarrow \infty} x \ln \left(\frac{x-1}{x+1}\right)=\lim _{x \rightarrow \infty} x \ln \left(1-\frac{2}{x+1}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{2}{x+1}\right)}{\frac{1}{x}}$
$=\lim _{x \rightarrow \infty} \frac{\frac{2}{(x+1)^{2}} /\left(1-\frac{2}{x+1}\right)}{-\frac{1}{x^{2}}}$ by L'Hôpital's Rule

$$
=\lim _{x \rightarrow \infty}-\frac{2 x^{2}}{(x+1)^{2}} /\left(1-\frac{2}{x+1}\right)=-2 \lim _{x \rightarrow \infty} \frac{1}{\left(1+\frac{1}{x}\right)^{2}} /\left(1-\frac{2}{x+1}\right)=-2 \frac{1}{1}=-2 .
$$

(b) $\quad F(x)=\int_{\sin \left(x^{2}\right)}^{\cos (x)} e^{t^{2}} d t=\int_{0}^{\cos (x)} e^{t^{2}} d t+\int_{\sin \left(x^{2}\right)}^{0} e^{t^{2}} d t$

$$
\begin{aligned}
& =\int_{0}^{\cos (x)} e^{t^{2}} d t+\int_{\sin \left(x^{2}\right)}^{0} e^{t^{2}} d t=\int_{0}^{\cos (x)} e^{t^{2}} d t-\int_{0}^{\sin \left(x^{2}\right)} e^{t^{2}} d t \\
& \quad=G(\cos (x))-G\left(\sin \left(x^{2}\right)\right)
\end{aligned}
$$

$$
\text { where } G(x)=\int_{0}^{x} e^{t^{2}} d t
$$

$$
=G^{\prime}(\cos (x))(-\sin (x))-G^{\prime}\left(\sin \left(x^{2}\right)\right) \cdot \cos \left(x^{2}\right) \cdot 2 x
$$

by the Chain Rule

$$
=-\sin (x) e^{\cos ^{2}(x)}-2 x \cos \left(x^{2}\right) e^{\sin ^{2}\left(x^{2}\right)} \quad \text { by the Fundamental Theorem of Calculus. }
$$

7. (a) Since $f^{\prime}(x)=x e^{2 x}$ for all x in $[-1,1]$, a candidate for f is given by

Since, $f(0)=-1$, we have

$$
f(0)=\frac{1}{2} e^{2 \cdot 0} \cdot 0-\frac{1}{4} e^{2 \cdot 0}+C=-\frac{1}{4}+C=-1 .
$$

Therefore, $C=-1+\frac{1}{4}=-\frac{3}{4}$. Thus $f(x)=\frac{1}{2} e^{2 x} x-\frac{1}{4} e^{2 x}-\frac{3}{4}$.
(b) (i) Write the following as a Riemann sum

$$
\sum_{i=1}^{n} \frac{2 i-n}{n^{2}}=\sum_{i=1}^{n} \frac{1}{n} \cdot\left(\frac{2 i}{n}-1\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x,
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$. Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{1}{n} \cdot\left(\frac{2 i}{n}-1\right)=\Delta x\left(\frac{2 i}{n}-1\right),
$$

we would want $f\left(x_{i}\right)=\frac{2 i}{n}-1=2 x_{i}-1$. Thus $f(x)=2 x-1$. Therefore,

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i-n}{n^{2}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{0}^{1}(2 x-1) d x=\left[x^{2}-x\right]_{0}^{1}=0 .
$$

You do not have to use Riemann sum to find this limit. E.g.,

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{2 i-n}{n^{2}} & =\frac{2}{n^{2}} \sum_{i=1}^{n} i-\sum_{i=1}^{n} \frac{1}{n}=\frac{2}{n^{2}} \sum_{i=1}^{n} i-\frac{1}{n} \sum_{i=1}^{n} 1=\frac{2}{n^{2}} \cdot \frac{n}{2}(n+1)-\frac{1}{n} \cdot n \\
& =1+\frac{1}{n}-1=\frac{1}{n} .
\end{aligned}
$$

$$
\begin{align*}
& f(x)=\int x e^{2 x} d x=\frac{1}{2} e^{2 x} x-\frac{1}{2} \int e^{2 x} d x \quad \text { by integration by parts } \\
& =\frac{1}{2} e^{2 x} x-\frac{1}{4} e^{2 x}+C \tag{1}
\end{align*}
$$

Therefore, $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2 i-n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
(ii) Write the following as a Riemann sum

$$
\sum_{i=1}^{n} \frac{1}{n} \sin \left(\pi \cdot \frac{i}{n}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$. Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{1}{n} \sin \left(\pi \cdot \frac{i}{n}\right)=\Delta x \sin \left(\pi \cdot \frac{i}{n}\right),
$$

we would want $f\left(x_{i}\right)=\sin \left(\pi \cdot \frac{i}{n}\right)=\sin \left(\pi x_{i}\right)$. Thus $f(x)=\sin (\pi x)$. Therefore,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \sin \left(\pi \cdot \frac{i}{n}\right) & =\int_{0}^{1} \sin (\pi x) d x=\left[-\frac{1}{\pi} \cos (\pi x)\right]_{0}^{1} \\
& =-\frac{1}{\pi} \cos (\pi)+\frac{1}{\pi} \cos (0)=-\frac{1}{\pi} \cdot(-1)+\frac{1}{\pi}=\frac{2}{\pi} .
\end{aligned}
$$

