
Answer and Guide To MA1102 Calculus 1997-98 Semester 2 Exam

1.   (a)  For this part you would want to ‘remove’ the modulus sign and use all the known

properties for inequalities.   Note that

                         .   x − a =
 

 
 

x − a, x − a m 0
−(x − a), x − a < 0

      Thus looking at                                                                                                                     

                                 ---------------------------   (*)                                    x + 2 + x − 2 [ 6

you would want to consider the real line to be the union of the following intervals, 

 and solve the inequality on each of the intervals.                             (−∞, −2), [−2, 2), [2, ∞)

For x < −2,  (*) becomes , i.e.,  .   Thus   Thus the−(x + 2) − (x − 2) [ 6 −2x [ 6 x m −3.

solution for this part is .[−3, −2)

       For  , the inequality becomes  , i.e., , which is always true.−2 [ x < 2 x + 2 − (x − 2) [ 6 4 [ 6

Therefore, the solution set for this part is [−2, 2).  

     For , the inequality becomes , i.e. .  This is just .          x m 2 x + 2 + (x − 2) [ 6 2x [ 6 x [ 3

Therefore, the solution for this part is [2, 3].       

        Hence the solution set for (*) is .[−3, −2) 4 [−2, 2) 4 [2, 3] = [−3, 3]

(ii)       ------------------------------------------  (**)                                                          1
x [ x

First note that when x = 0, 1/ x does not make sense and so 0 is not in the solution set of

(**).  Multiplying (**) by non zero x would have some consequence.  It would change the

direction of the inequality (**) when x is negative.                                                               

For x > 0 (**) becomes .  Taking square root gives .  I.e.   or  1 [ x2 = x 2 1 [ x x m 1

.  Therefore, the solution set for this part is .                                                      x [ −1 (1, ∞)

For x <0, (**) becomes   .  Taking square root gives .  I.e. .1 m x2 = x 2 x [ 1 −1 [ x [ 1

Therefore, the solution set for this part is [−1, 0).                                                                 

Hence the solution set for (**) is    [−1, 0) 4 (1, ∞).

(b)  (i)  Note that  So   Therefore f  isf (1) = [12] = 1 and f (−1) = [(−1)2] = 1. f (−1) ! − f (1).

not an odd function.  Obviously  for all x in R.  Therefore  f  f (x) = [x2 ] = [(−x)2 ] = f (−x)

is an even function.



       (ii)  To plot the graph of  f  over the interval [−2, 2],  we shall have to make the following

calculation.   Note that  .  Thus the image of−2 [ x [ 2 w x [ 2 w x 2 [ 4 w 0 [ x2 [ 4

[−2, 2] under the squaring function is [0, 4] .  Since the ‘bracket’ function is constant on  

the intervals [0, 1), [1,2), [2, 3), [3,4) and the point 4.  We shall look for the pre-image of

these intervals.                                             

  Therefore, we have 0 [ x2 < 1 w 0 [ x 2 < 1 w x < 1 w −1 < x < 1.

.    −1 < x < 1 e 0 [ x2 < 1 e f (x) = [x2] = 0

.    Therefore, we have             1 [ x2 < 2 w 1 [ x < 2 w − 2 < x [ −1 or 1 [ x < 2

   Similarly,                            − 2 < x [ −1 or 1 [ x < 2 e 1 [ x2 < 2 e f (x) = [x2] = 1.

 .  Therefore,                2 [ x2 < 3 w 2 [ x < 3 w − 3 < x [ − 2 or 2 [ x < 3

 .  Likewise,                    − 3 < x [ − 2 or 2 [ x < 3 e 2 [ x2 < 3 e f (x) = [x2] = 2

   Therefore,                  3 [ x2 < 4 w 3 [ x < 4 = 2 w −2 < x [ − 3 or 3 [ x < 2.

.   Finally                          −2 < x [ − 3 or 3 [ x < 2 e 3 [ x2 < 4 e f (x) = [x2] = 3

f (2) = f (−2) = [4] = 4.
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           The graph of      f (x) = [x2]

2.  You can use  L’Hôpital’s  Rule here.
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(i)                                                    
xd0
lim

3 8 + x − 2
x =

xd0
lim

( 3 8 + x − 2)(( 3 8 + x )2 + 2 3 8 + x + 4)
x(( 3 8 + x )2 + 2 3 8 + x + 4)

                                                                                         =
xd0
lim

(8 + x − 8)
x(( 3 8 + x )2 + 2 3 8 + x + 4)

                                                               =
xd0
lim 1

(( 3 8 + x )2 + 2 3 8 + x + 4)
= 1

4 + 4 + 4 = 1
12 .

 Or you can use  L’Hôpital’s  Rule:                     

 
xd0
lim

3 8 + x − 2
x =

xd0
lim

1
3 (8 + x)−2/3

1 = 1
3 $ 82/3 = 1

12 .

(ii)   .       Therefore,                  100 < x < 101 e 1 < x
100 < 101

100 e x
100 = 1

xd100+
lim x

100 = 1.

 .  Therefore,                  99 < x < 100 e 0 < 99
100 < x

100 < 1 e x
100 = 0

xd100−
lim x

100 = 0.

Therefore, the limit  does not exist.
xd100
lim x

100

(iii)  You will need to use the definition of the limit.  Recall that we say the limit  exists
xd∞lim g(x)

if and only if we can find a real number L such that .  Thus the limit           
xd∞lim g(x) = L

 does not exist if and only if for any real number L  .   Therefore, we
xd∞lim g(x)

xd∞lim g(x) ! L

must know what it means to say  .  Recall  if and only if  for any       
xd∞lim g(x) ! L

xd∞lim g(x) = L

ε > 0 we can find an integer N such that for all x > N   .  Negating thisg(x) − L < e

statement means to say   if  and only if  we can find an ε > 0 such that for any
xd∞lim g(x) ! L

N we can find a particular x > N such that  .                                                g(x) − L m e

Now for any L we can find an .   The ε  we take here is 1.    n0 such that (4n0 + 1) o
2 m L + 1

Thus  for any  N  take n = max (N+1, ) and .  Then                                      n0 x = (4n + 1) o
2

              .                          (4n + 1) o
2 m (4n0 + 1) o

2 m L + 1 e x sin(x) − L = (4n + 1) o
2 − L m 1

This shows that  for any L.  Therefore the limit  does not exist.
xd∞lim x sin(x) ! L

xd∞lim x sin(x)

(iv)     by L’Hôpital’s Rule                                      
xd∞lim x sin( 1

x ) =
xd∞lim

sin( 1
x )

1
x

=
xd∞lim

cos( 1
x ) $ (− 1

x2 )

(− 1
x2 )

                                                                                                    =
xd∞lim cos( 1

x ) = cos(0) = 1.

Or  .
xd∞lim x sin( 1

x ) =
1/xd0
lim

sin( 1
x )

1
x

= 1
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(v)    since   .
xd0
lim

tan(3x)
x =

xd0
lim

sin(3x)
x cos(3x) =

xd0
lim

sin(3x)
3x $ 3

cos(3x) = 1 $ 3
cos(0) = 3

xd0
lim

sin(3x)
3x = 1

Or    by  L’Hôpital’s  Rule                                                      
xd0
lim

tan(3x)
x =

xd0
lim

sec2(3x) $ 3
1

                          =
sec2(0) $ 3

1 = 3.

(vi)   .                                                       g(x) =
 

 
 

x sin( 1
x ), x > 0,

x2 cos( 1
x ), x < 0

  by the Squeeze Theorem since   for  
xd0+
lim g(x) =

xd0+
lim x sin( 1

x ) = 0 − x [ x sin( 1
x ) [ x

x > 0 and                                                                         
xd0+
lim x = 0.

  by the Squeeze Theorem since  for x < 0
xd0−
lim g(x) =

xd0−
lim x2 cos( 1

x ) = 0 −x2 [ x2 cos( 1
x ) [ x2

and                                                                                                         
xd0−
lim x2 = 0.

Therefore, 
xd0
lim g(x) = 0.

3(a) (i)                                                          
xd∞lim 2x + 5

x2 − 4
=

xd∞lim
(2x + 5)/ x

x2 − 4 / x
=

xd∞lim
(2x + 5)/x
x2 − 4 / x2

                                                since   and for x > 0,                              x = x2 x = x

                             =
xd∞lim 2 + 5/x

1 − 4/x2
= 2 + 0

1 − 0
= 2.

       (ii)                                                     
xd−∞lim 2x + 5

x2 − 4
=

xd−∞lim
(2x + 5)/ x

x2 − 4 / x
=

xd−∞lim
(2x + 5)/(−x)

x2 − 4 / x2

                                                   since   and for x <0,                         x = x2 x = −x

                       .=
xd−∞lim −2 − 5/x

1 − 4/x2
= −2 − 0

1 − 0
= −2

(b)   f (x) =
 

 
 

−3x + b, x [ 1,
−3x3 + 6x + 3b, x > 1

    (i)  For x < 1,  f  is a polynomial  function and so  f  is continuous on  since any(−∞, 1)

polynomial function is continuous on the real numbers and so is continuous on any open

interval.  Similarly, for x > 1,  f  is also given by a polynomial function and so  f  is

continuous on   Now  (1, ∞).

                    and                                                               
xd1−
lim f (x) =

xd1−
lim −3x + b = −3 + b = f (1)

       .                                    
xd1+
lim f (x) =

xd1+
lim −3x3 + 6x + 3b = −3 + 6 + 3b = 3 + 3b
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Therefore, for  f  to be continuous at x = 1,  −3 + b = 3 + 3b.  I.e.  b = −3.   Thus with

this value of b,  f  is a continuous function on the whole of R.

   (ii)  We note that any polynomial function is differentiable on the whole of R and so is

differentiable on any open interval.  Thus our function is differentiable on each of the

open intervals, .  Now the limit            (−∞, 1) and (1, ∞)

      
hd0+
lim

f (1 + h) − f (1)
h =

hd0+
lim

−3 (1 + h)3 + 6(1 + h) − 9 + 6
h =

hd0+
lim −3 h3 − 9h2 − 3h

h = −3

and  .  Therefore, by the definition of derivative  
hd0−
lim

−3(1 + h) − 3 + 6
h =

hd0−
lim −3h

h = − 3

f  is differentiable at x = 1 and  f ‘ (1) = −3.

4.  (a) (i)   Refer to your lectures for the statement of the Intermediate Value theorem.

          (ii)  Let g(x) = cos(x) − x.   Then g is continuous on the closed and bounded interval 

.    Also g(0) = cos(0) − 0 = 1 > 0 and .  Therefore,[0, o
2 ] g( o

2 ) = cos( o
2 ) − o

2 = − o
2 < 0

by the Intermediate Value Theorem,  there is a point c in the interval  such that(0, o
2 )

g(c) = 0, i.e. cos(c) = c.

(b)    ,  for x >0.  Since f  is a rational polynomial function for x >0,  f  isf (x) = 2x + 200
x

differentiable for x >0  and                                                                                                   

        ------------------------(*).   f ∏(x) = 2 − 200
x2 = 2 x2 − 100

x2 =
2(x − 10)(x + 10)

x2

    (i)  For 0< x <10,  x−10 < 0 and  x + 10 > 0 so that  f ‘(x) < 0 by (*).    Therefore,  f  is   

decreasing on (0, 10] since  f  is continuous at x = 10.                                                  

For x > 10, both (x −10) and (x +10) are positive so that f ‘(x) > 0 by (*).  Therefore,  f  

is increasing on  since  f  is continuous at x = 10.                                              [10, ∞)

Thus  is the minimum value of  f  on the interval .  f (10) = 2 $ 10 + 200
10 = 40 (0, ∞)

  (ii)     since  . Therefore  f  does
x d ∞lim f (x) =

x d ∞lim 2x + 200
x = ∞

x d ∞lim 2x = ∞ and
x d ∞lim 200

x = 0

not have a maximum value over .  (0, ∞)

5(a) The equation is   ---------------------------------------   (1)        y3 + xy2 + xy + 1 = 0

        Therefore, differentiating implicitly we get                                                                           

            .                                                                       3y2 dy
dx + y2 + 2xy

dy
dx + y + x

dy
dx = 0
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      Thus  .  Therefore, if  , then                             (3y2 + 2xy + x)
dy
dx = −(y + y2) 3y2 + 2xy + x ! 0

               ----------------------------  (2) 
dy
dx = −

y + y2

3y2 + 2xy + x

   (ii)  Note that  the point (1, −1) satisfies equation (1).  Therefore, the gradient of the tangent

line to the curve at the point (1, −1) is  given by (2) by substituting 1 for x and −1 for y.

It is    Therefore, the equation of the tangent line to the curve at the−
−1 + (−1)2

3(−1)2 − 2 + 1 = 0.

point (1, −1) is  y = − 1.

(b)  (i).   Refer to your lectures for the statement of Rolle’s Theorem.

      (ii)    For the curve ,  the gradient or slope of the tangent line at  is given by        y = x2 (x, x2)

                          .                                                                                          
dy
dx = 2x

Now   f  is given to be a differentiable function defined on R and so it is continuous on

R.  The slope of the tangent line to the graph of  f  at (x,  f (x)) is given by  f ‘ (x).

Therefore, for  these two tangent lines to have the same slope, we must have                

                                .--------------------------------- (3)                              f ∏(x) = 2x

We now consider the function   .  Thus, to find a point c such that (3)g(x) = f (x) − x2

holds is equivalent to finding a point c such that g’(c) = 0.  Recall that it is given that  

f (1) = 1 and   f (2) = 4.  Observe that g is continuous on the interval [1, 2]  since  the

function  f  and   are continuous on [1, 2] and that g is differentiable on (1, 2) sincex2

both  f  and    are differentiable on (1, 2). Furthermore x2 g(1) = f (1) − 12 = 1 − 1 = 0

and  .  Thus  .  Therefore, the condition forg(2) = f (2) − 22 = 4 − 4 = 0 g(1) = g(2)

Rolle’s Theorem is satisfied.  Hence by Rolle’s Theorem there exists a point c in (1, 2)

such that g’(c) = 0.   I.e.,    .f ∏(c) = 2c

6. (a)  (i)                                                                                                              
xd0
lim 2 − ex − e−x

2x2

          by two  successive use of  L’Hôpital’s  Rule                =
xd0
lim −ex + e−x

4x =
xd0
lim −ex − e−x

4

         .                                                                                                         = −1 − 1
4 = −2

         (ii)          
xd∞lim x ln x − 1

x + 1 =
xd∞lim x ln 1 − 2

x + 1 =
xd∞lim

ln 1−
2

x + 1
1
x
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             by  L’Hôpital’s  Rule                               =
xd∞lim

2
(x + 1)2 / 1−

2
x + 1

−
1
x2

=
xd∞lim − 2x2

(x + 1)2 / 1 − 2
x + 1 = −2

xd∞lim 1
(1 + 1

x )2
/ 1 − 2

x + 1 = −2 1
1 = −2.

(b)                                                                          F(x) = ¶
sin(x2)

cos(x)
e t2

dt = ¶0
cos(x) e t2

dt + ¶
sin(x2)

0
e t2

dt

                                                          = ¶0
cos(x) e t2

dt + ¶
sin(x2)

0
e t2

dt = ¶0
cos(x) e t2

dt − ¶0
sin(x2) e t2

dt

                                                                                                      = G(cos(x)) − G(sin(x2))

                                                          where                                                  G(x) = ¶0
x e t2

dt

                                                                  = G ∏(cos(x))(− sin(x)) − G ∏(sin(x2)) $ cos(x2) $ 2x

                                                            by the Chain Rule                                                    

                 by the Fundamental Theorem of Calculus.= − sin(x)ecos2(x) − 2x cos(x2)esin2(x2)

 7. (a)  Since   for all x in [−1, 1],  a candidate for  f  is given by                               f ∏(x) = xe2x

                by integration by parts                             f (x) = ¶ xe2xdx = 1
2 e2xx − 1

2
¶ e2xdx

                        --------------------------    (1)                                     = 1
2 e2xx − 1

4 e2x + C

Since, , we have                                                                                                f (0) = −1

                       .                                  f (0) = 1
2 e2$0 $ 0 − 1

4 e2$0 + C = − 1
4 + C = −1

Therefore,  .  Thus   .C = −1 + 1
4 = − 3

4 f (x) = 1
2 e2xx − 1

4 e2x − 3
4

     (b)   (i)  Write the following as a Riemann sum                                                                       

               ,                                                    S
i=1

n 2i − n
n2 = S

i=1

n 1
n $ 2i

n − 1 = S
i=1

n
f (x i)Dx

 where .  Therefore,x0 < x1 < £ < xn is a regular partition and Dx = Dx i = x i − x i−1

we can take  so that .   Thus by comparing              x i = i
n Dx = 1

n , x0 = 0 and xn = 1

                       ,                                             f(x i)Dx with 1
n $ 2i

n − 1 = Dx 2i
n − 1

 we would want  .  Thus  .  Therefore,             f (x i) = 2i
n − 1 = 2x i − 1 f (x) = 2x − 1

  
n d ∞lim S

i=1

n 2i − n
n2 =

n d ∞lim S
i=1

n
f (x i)Dx = ¶

0

1
(2x − 1)dx = [x2 − x]0

1 = 0.

             You do not have to use Riemann sum to find this limit.  E.g.,         

                          S
i=1

n 2i − n
n2 = 2

n2 S
i=1

n
i − S

i=1

n 1
n = 2

n2 S
i=1

n
i − 1

n S
i=1

n
1 = 2

n2 $ n
2 (n + 1) − 1

n $ n

                .= 1 + 1
n − 1 = 1

n
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               Therefore ,  .
n d ∞lim S

i=1

n 2i − n
n2 =

n d ∞lim 1
n = 0

        (ii)   Write the following as a Riemann sum                                                                          

               ,                                                                        S
i=1

n 1
n sin(o $ i

n ) = S
i=1

n
f (x i)Dx

where .  Therefore, wex0 < x1 < £ < xn is a regular partition and Dx = Dx i = x i − x i−1

can take  so that .   Thus by comparing                      x i = i
n Dx = 1

n , x0 = 0 and xn = 1

                   ,                                              f (x i)Dx with 1
n sin(o $ i

n ) = Dx sin(o $ i
n )

we would want  .  Thus  .  Therefore,        f (x i) = sin(o $ i
n ) = sin(ox i) f (x) = sin(ox)

                                                  
n d ∞lim S

i=1

n 1
n sin(o $ i

n ) = ¶0
1 sin(ox)dx = − 1

o cos(ox)
0

1

                                   = − 1
o cos(o) + 1

o cos(0) = − 1
o $ (−1) + 1

o = 2
o .
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