MA1102R Calculus

Test

Code N

1. Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{23 x^{5}+x \sin (x)+4 x^{2}+1}{-x^{4}+7 x^{5}+3}$.
(b) $\lim _{x \rightarrow 0} \frac{\sqrt{45 x^{2}+25}-5}{3 x^{2}}$.
(c) $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x \sin (x)+2 x^{3}\right)}{x^{3}}$
(d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{81 x^{2}-7}}{7-3 x}$
(e) $\lim _{x \rightarrow 0} \frac{x}{2+\sin \left(\frac{1}{x}\right)}$

Ans.
(a)

$$
\lim _{x \rightarrow \infty} \frac{23 x^{5}+x \sin (x)+4 x^{2}+1}{-x^{4}+7 x^{5}+3}=\lim _{x \rightarrow \infty} \frac{23+\frac{\sin (x)}{x^{4}}+\frac{4}{x^{3}}+\frac{1}{x^{5}}}{-\frac{1}{x}+7+\frac{3}{x^{5}}}=\frac{\lim _{x \rightarrow \infty} 23+\frac{\sin (x)}{x^{4}}+\frac{4}{x^{3}}+\frac{1}{x^{5}}}{\lim _{x \rightarrow \infty}-\frac{1}{x}+7+\frac{3}{x^{5}}}=\frac{23}{7}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt{45 x^{2}+25}-5}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{\left(\sqrt{45 x^{2}+25}-5\right)\left(\sqrt{45 x^{2}+25}+5\right)}{3 x^{2}\left(\sqrt{45 x^{2}+25}+5\right)}=\lim _{x \rightarrow 0} \frac{45 x^{2}}{3 x^{2}\left(\sqrt{45 x^{2}+25}+5\right)} \\
& \quad=\lim _{x \rightarrow 0} \frac{15}{\left(\sqrt{45 x^{2}+25}+5\right)}=\frac{15}{10}=\frac{3}{2}
\end{aligned}
$$

(c)

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x \sin (x)+2 x^{3}\right)}{x^{3}}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x \sin (x)+2 x^{3}\right)}{x \sin (x)+2 x^{3}} \cdot \frac{x \sin (x)+2 x^{3}}{x^{3}}
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x \sin (x)+2 x^{3}\right)}{x \sin (x)+2 x^{3}} \cdot\left(\frac{1}{x} \cdot \frac{\sin (x)}{x}+2\right)=+\infty
$$

since $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x \sin (x)+2 x^{3}\right)}{x \sin (x)+2 x^{3}}=1$ and $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x} \cdot \frac{\sin (x)}{x}+2\right)=+\infty$
(d)
$\lim _{x \rightarrow-\infty} \frac{\sqrt{81 x^{2}-7}}{7-3 x}=\lim _{x \rightarrow-\infty} \frac{\sqrt{81 x^{2}-7} / \sqrt{x^{2}}}{(7-3 x) /|x|}=\lim _{x \rightarrow-\infty} \frac{\sqrt{81-\frac{7}{x^{2}}}}{-\frac{7}{x}+3}=\frac{9}{3}=3$
(e)
$\lim _{x \rightarrow 0} \frac{x}{2+\sin \left(\frac{1}{x}\right)}=0$ by Squeeze Theorem since

$$
-|x| \leq \frac{x}{2+\sin \left(\frac{1}{x}\right)} \leq|x| \text { for } x \neq 0 \text { and } \lim _{x \rightarrow 0}|x|=0 .
$$

2. (a) State the Extreme Value Theorem about a continuous function defined on a closed and bounded interval.
(b) Let $f(x)=2 x^{3}-21 x^{2}+72 x-61$
(i) Show that $f(x)=0$ has a solution in the closed interval $[0,2]$.
(ii) Show that f has exactly one root in [0, 2].
(iii) Find the absolute maximum and absolute minimum values of the function f on the interval [0, 5].
(iv) Hence determine the image of $[0,5]$ under f, i.e., $f([0,5])$.
a) Extreme Value Theorem

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous and $[a, b]$ is a closed and bounded interval. Then there exists c and d in $[a, b]$ such that that $f(c) \geq f(x) \geq f(d)$ for all x in $[a, b]$, i.e., f has an absolute maximum and an absolute minimum.
(b) (i)

Note that since f is a polynomial function, f is continuous on $[0,2]$.
Now $f(0)=-61$ and $f(2)=15 f(2)>0>f(0)$ and so by the Intermediate Value theorem, there is a c in $[0,2]$ such that $f(c)=0$.
(ii)

Now $f^{\prime}(x)=6 x^{2}-42 x+72=6\left(x^{2}-7 x+12\right)=6(x-3)(x-4)$.
Therefore, $f^{\prime}(x)>0$ for all x in $(0,2)$. Hence f is increasing on $[0,2]$ and so f is injective on [0, 2]. Since by (i) it has one root in [0, 2], it has exactly one root by injectivity.
Alternatively:
Suppose $f(x)=0$ has two or more solutions in [0,2]. Let c and d be two such solutions in $[0,2]$. Assume without lost of generality that $c<d$. Then $f(c)=f(d)=0$. Since f is a polynomial function, f is continuous on $[c, d]$ and differentiable on (c, d). Therefore, the condition for Rolle's Theorem is satisfied. Hence there exists a point e in (c,d) such that f $'(e)=0$. That is, there exists a point e in $(0,1)$ such that $f^{\prime}(e)=0$. But by (1) $f^{\prime}(x) \neq 0$ for all x in $(0,2)$ and so $f^{\prime}(e) \neq 0$ and this contradicts $f^{\prime}(e)=0$. Hence $f(x)=0$ cannot have two or more solutions in [0, 1]. Therefore, since it has one solution in [0,1] by part (i), it has exactly one solution.
(iii) The function f is continuous on [0,5].

From (ii), there are two critical points of f in $(0,5)$, namely 3 and 4.
Now $f(0)=-61, f(3)=20, f(4)=19, f(5)=24$.
Therefore, the absolute minimum value on [0,5] is -61 and the absolute maximum value on $[0,5]$ is 24 .
(iv) By (iii) since $-61 \leq f(x) \leq 24$ for all x in $[0,5], f([0,5]) \subseteq[-61,24]$.

By the Intermediate value Theorem, for any value y such that $f(0)=-61 \leq y \leq 24=f$
(5), there exists k in $[0,5]$ such that $f(k)=y$. Hence $[-61,24] \subseteq f([0,5])$. Therefore, $f([0,5])=[-61,24]$.
3. (a) Let $g(x)=\left\{\begin{array}{c}2 x^{3}+3 x^{2}-36 x+1, \quad 1 \leq x \leq 4 \\ x^{2}-6 x+41, \quad 4<x \leq 5\end{array}\right.$
(i) Show that g is continuous at $x=4$.
(ii) Consider the function g with $[1,4]$ as its domain, i.e., $\left.g\right|_{[1,4]}:[1,4] \rightarrow \mathbf{R}$.

Find the intervals on which $\left.g\right|_{[1,4]}:[1,4] \rightarrow \mathbf{R}$ is (1) increasing and (2) decreasing.
(iii) Is g differentiable at $x=4$? Justify your answer.
(b) Differentiate the following function
(i) $\cos ^{5}\left(\cos \left(2 x^{2}+x\right)+2 x\right)$ (ii) $\tan \left(\sin (x)+\cos ^{2}(x)\right)$

Answer:
(a)
(i) First $\lim _{x \rightarrow 4^{-}} g(x)=\lim _{x \rightarrow 4^{-}} 2 x^{3}+3 x^{2}-36 x+1=33$ and $\lim _{x \rightarrow 4^{+}} g(x)=\lim _{x \rightarrow 4^{+}} x^{2}-6 x+41=33$ so
$\lim _{x \rightarrow 4} g(x)=33$. Thus since $g(4)=33, \quad \lim _{x \rightarrow 4} g(x)=g(4)$. therefore, g is continuous at $x=4$.
(ii)
$g^{\prime}(x)=\left\{\begin{array}{c}6 x^{2}+6 x-36, \quad 1<x<4 \\ 2 x-6,4<x<5\end{array}=\left\{\begin{array}{cc}6(x-2)(x+3), & 1<x<4 \\ 2(x-3), & 4<x<5\end{array}\right.\right.$
Note that $\left.g\right|_{[1,4]}:[1,4] \rightarrow \mathbf{R}$ is continuous since it is a polynomial function.
$\mathrm{g}^{\prime}(x)<0$ for $1<x<2$ and $\mathrm{g}^{\prime}(x)>0$ for $2<x<4$.
Therefore, $\left.g\right|_{[1,4]}:[1,4] \rightarrow \mathbf{R}$ is decreasing on [1, 2] and increasing on [2, 4].
(iii) $\lim _{x \rightarrow 4^{-}} g^{\prime}(x)=\lim _{x \rightarrow 4^{-}} 6 x^{2}+6 x-36=84$ and $\lim _{x \rightarrow 4^{+}} g^{\prime}(x)=\lim _{x \rightarrow 4^{+}} 2 x-6=2$. Since both limits are finite and are not the same g is not differentiable at $x=4$.
Alternatively:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{g(4+h)-g(4)}{h}= & \lim _{x \rightarrow 0^{-}} \frac{2(4+h)^{3}+3(4+h)^{2}-36(4+h)+1-33}{h} \\
& \lim _{x \rightarrow 0^{-}} \frac{84 h+27 h^{2}+2 h^{3}}{h}=84
\end{aligned}
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{g(4+h)-g(4)}{h}=\lim _{x \rightarrow 0^{-}} \frac{(4+h)^{2}-6(4+h)+41-33}{h}=\lim _{x \rightarrow 0^{-}} \frac{2 h+h^{2}}{h}=2
$$

Therefore, since the above left and right limits are not the same, g is not differentiable at x $=4$.
(b)
(i) $\frac{d}{d x} \cos ^{5}\left(\cos \left(2 x^{2}+x\right)+2 x\right)$
$=5 \cos ^{4}\left(\cos \left(2 x^{2}+x\right)+2 x\right)\left(-\sin \left(\cos \left(2 x^{2}+x\right)+2 x\right)\right)\left(2-(1+4 x) \sin \left(2 x^{2}+x\right)\right)$
$\left.=-5 \cos ^{4}\left(\cos \left(2 x^{2}+x\right)+2 x\right) \sin \left(\cos \left(2 x^{2}+x\right)+2 x\right)\right)\left(2-(1+4 x) \sin \left(2 x^{2}+x\right)\right)$
(ii) $\frac{d}{d x} \tan \left(\sin (x)+\cos ^{2}(x)\right)=\sec ^{2}\left(\sin (x)+\cos ^{2}(x)\right)(\cos (x)-\sin (2 x))$

