MA1102R Calculus

Test

Code M

1. Evaluate the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{8 x^{5}+7 x^{6}+1000 x+1}{-23 x^{4}+28 x^{6}+4}$.(b) $\lim _{x \rightarrow 0} \frac{8 x^{3}}{\sqrt{24 x^{3}+36}-6}$. (c) $\lim _{x \rightarrow 0} \frac{\sin \left(x \sin (x)+3 x^{2} \cos (x)\right)}{7 x^{2}}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{36 x^{2}-49}}{5-x}$
(e) $\lim _{x \rightarrow 0}\left(x+3 x^{2}\right) \cos \left(\frac{1}{x^{3}}\right)$

Ans.
(a) $\lim _{x \rightarrow \infty} \frac{8 x^{5}+7 x^{6}+1000 x+1}{-23 x^{4}+28 x^{6}+4}=\lim _{x \rightarrow \infty} \frac{\frac{17}{x^{6}}+7+\frac{1000}{x^{5}} \frac{1}{x^{6}}}{\frac{-23}{x^{2}}+28+\frac{4}{x^{6}}}=\frac{\lim _{x \rightarrow \infty} \frac{17}{x^{6}}+7+\frac{1000}{x^{5}} \frac{1}{x^{6}}}{\lim _{x \rightarrow \infty} \frac{-23}{x^{2}}+28+\frac{4}{x^{6}}}=\frac{7}{28}=\frac{1}{4}$
(b) $\lim _{x \rightarrow 0} \frac{8 x^{3}}{\sqrt{24 x^{3}+36}-6}=\lim _{x \rightarrow 0} \frac{8 x^{3}\left(\sqrt{24 x^{3}+36}+6\right)}{\left(\sqrt{24 x^{3}+36}-6\right)\left(\sqrt{24 x^{3}+36}+6\right)}=\lim _{x \rightarrow 0} \frac{8 x^{3}\left(\sqrt{24 x^{3}+36}+6\right)}{24 x^{3}}$ $=\lim _{x \rightarrow 0} \frac{\sqrt{24 x^{3}+36}+6}{3}=\frac{12}{3}=4$
(c)
$\lim _{x \rightarrow 0} \frac{\sin \left(x \sin (x)+3 x^{2} \cos (x)\right)}{7 x^{2}}=\lim _{x \rightarrow 0} \frac{\sin \left(x \sin (x)+3 x^{2} \cos (x)\right)}{x \sin (x)+3 x^{2} \cos (x)} \cdot \frac{\left(x \sin (x)+3 x^{2} \cos (x)\right)}{7 x^{2}}$
$\lim _{x \rightarrow 0} \frac{\sin \left(x \sin (x)+3 x^{2} \cos (x)\right)}{x \sin (x)+3 x^{2} \cos (x)} \cdot\left(\frac{1}{7} \cdot \frac{\sin (x)}{x}+\frac{3}{7} \cos (x)\right)=1 \cdot\left(\frac{1}{7} \cdot 1+\frac{3}{7}\right)=\frac{4}{7}$
(d) $\lim _{x \rightarrow \infty} \frac{\sqrt{36 x^{2}-49}}{5-x}=\lim _{x \rightarrow \infty} \frac{\sqrt{36 x^{2}-49} / \sqrt{x^{2}}}{(5-x) /|x|}=\lim _{x \rightarrow \infty} \frac{\sqrt{36-\frac{49}{x^{2}}}}{\frac{5}{x}-1}=\frac{\lim _{x \rightarrow \infty} \sqrt{36-\frac{49}{x^{2}}}}{\lim _{x \rightarrow \infty}\left(\frac{5}{x}-1\right)}-6$
(e) $\lim _{x \rightarrow 0}\left(x+3 x^{2}\right) \cos \left(\frac{1}{x^{3}}\right)=0$ by Squeeze Theorem since

$$
-|x||1+3 x| \leq\left(x+3 x^{2}\right) \cos \left(\frac{1}{x^{3}}\right) \leq|x||1+3 x| \text { for } x \neq 0
$$

and $\lim _{x \rightarrow 0}|x||1+3 x|=0$.
2. (a) State Rolle's Theorem.
(b) Let $f(x)=x^{3}-6 x^{2}+9 x-1$
(i) Show that $f(x)=0$ has a solution in the closed interval $[0,1]$.
(ii) Show that $f(x)=0$ has exactly one solution in $[0,1]$.
(iii) Find the absolute maximum and absolute minimum values of the function f on the interval $[0,4]$.
(iv) Hence determine the image of $[0,4]$ under f, i.e., the set $f([0,4])$.
(a) Rolle's Theorem

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function defined on $[a, b]$ such that (i) f is continuous on $[a$, b], (ii) f is differentiable on (a, b) and (iii) $f(a)=f(b)$.
Then there exists a point c in (a, b) such that $f^{\prime}(c)=0$.
(b) (i) Note that since f is a polynomial function, f is continuous on [0, 1]. Now $f(1)=1-6+9-1=3$ and $f(0)=-1$. Thus $f(0)<0<f(1)$ and so by the Intermediate Value Theorem, there is a point c in $[0,1]$ such that $f(c)=0$.
(ii) Now $f^{\prime}(x)=3 x^{2}-12 x+9=3\left(x^{2}-4 x+3\right)=3(x-1)(x-3)$.

Therefore, $f^{\prime}(x)>0$ for all x in (0,1). (Why?) Hence f is increasing on $[0,1]$ and so f is injective on $[0,1]$. Since by (i) it has one root in [0, 1], it has exactly one root by injectivity.
Alternatively: Suppose $f(x)=0$ has two or more solutions in $[0,1]$. Let c and d be two such solutions in $[0,1]$. Assume without lost of generality that $c<d$. Then $f(c)=f(d)=$ 0 . Since f is a polynomial function, f is continuous on $[c, d]$ and differentiable on (c, d). Therefore, the condition for Rolle's Theorem is satisfied. Hence there exists a point e in (c, d) such that $f^{\prime}(e)=0$. That is, there exists a point e in $(0,1)$ such that $f^{\prime}(e)=0$. But by
(1) $f^{\prime}(x) \neq 0$ for all x in $(0,1)$ and so $f^{\prime}(e) \neq 0$ and this contradicts $f^{\prime}(e)=0$. Hence $f(x)=0$ cannot have two or more solutions in [0, 1]. Therefore, since it has one solution in [0, 1] by part (i), it has exactly one solution.
(iii) The function f is continuous on $[0,4]$ and the critical points of f in $(0,4)$ are 1 and 3 .

Now $f(0)=-1, f(1)=3, f(3)=-1, f(4)=3$.
Therefore, the absolute minimum value on $[0,4]$ is -1 and the absolute maximum value on $[0,4]$ is 3 .
(iv) By (iii) since $-1 \leq f(x) \leq 3$ for all x in $[0,4]$ and so $f([0,4]) \subseteq[-1,3]$.

By the Intermediate value Theorem, for any value y such that $f(0)=-1 \leq y \leq 3=f(4)$, there exists k in $[0,4]$ such that $f(k)=y$. Hence $[-1,3] \subseteq f([0,4])$. Therefore, $f([0,4])=$ $[-1,3]$.

3(a) Let $g(x)=\left\{\begin{array}{c}2 x^{3}+3 x^{2}-12 x+3, \quad 0 \leq x \leq 3 \\ 9 x^{2}+6 x-51, \quad 3<x \leq 4\end{array}\right.$
(i) Show that g is continuous at $x=3$.
(ii) Consider the function g with $[0,3]$ as its domain, i.e., $\left.g\right|_{[0,3]}:[0,3] \rightarrow \mathbf{R}$. Find the intervals on which $\left.g\right|_{[0,3]}:[0,3] \rightarrow \mathbf{R}$ is (1) increasing and (2) decreasing.
(iii) Is g differentiable at $x=3$? Justify your answer.
(b) Differentiate the following function
(i) $\cos ^{2}(\cos (2 x))$
(ii) $\sqrt{x+\sqrt{x^{2}+1+\sin (x)}}$

Answer:
(a)
(i) First $\lim _{x \rightarrow 3^{-}} g(x)=\lim _{x \rightarrow 3^{-}} 2 x^{3}+3 x^{2}-12 x+3=48$ and $\lim _{x \rightarrow 3^{+}} g(x)=\lim _{x \rightarrow 3^{+}} 9 x^{2}+6 x-51=48$, so $\lim _{x \rightarrow 3} g(x)=48$. Thus since $g(3)=48, \lim _{x \rightarrow 3} g(x)=g(3)$. Therefore, g is continuous at $x=3$.
(ii) $g^{\prime}(x)=\left\{\begin{array}{c}6 x^{2}+6 x-12, \quad 0<x<3 \\ 18 x+6, \quad 3<x<4\end{array}=\left\{\begin{array}{c}6(x-1)(x+2), \quad 0<x<3 \\ 6(3 x+1), \quad 3<x<4\end{array}\right.\right.$

Note that $\left.g\right|_{[0,3]}:[0,3] \rightarrow \mathbf{R}$ is continuous since it is a polynomial function. $\mathrm{g}^{\prime}(x)<0$ for $0<x<1$ and $\mathrm{g}^{\prime}(x)>0$ for $1<x<3$. (Why? Look at the expression in (1)) Therefore, $\left.g\right|_{[0,3]}:[0,3] \rightarrow \mathbf{R}$ is decreasing on $[0,1]$ and increasing on $[1,3]$.
(iii) Note that by (i) g is continuous at $x=3$.
$\lim _{x \rightarrow 3^{-}} g^{\prime}(x)=\lim _{x \rightarrow 3^{-}} 6 x^{2}+6 x-12=60$ and $\lim _{x \rightarrow 3^{+}} g^{\prime}(x)=\lim _{x \rightarrow 3^{+}} 18 x+6=60$. Since both limits are finite and are the same g is differentiable at $x=3$.
Alternatively:

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{g(3+h)-g(3)}{h} & =\lim _{x \rightarrow 0^{-}} \frac{2(3+h)^{3}+3(3+h)^{2}-12(3+h)+3-48}{h} \\
& =\lim _{x \rightarrow 0^{-}} \frac{54 h+18 h^{2}+2 h^{3}+18 h+3 h^{2}-12 h}{h}=60
\end{aligned}
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{g(3+h)-g(3)}{h}=\lim _{x \rightarrow 0^{-}} \frac{9(3+h)^{2}+6(3+h)-51-48}{h}=\lim _{x \rightarrow 0^{-}} \frac{54 h+9 h^{2}+6 h}{h}=60
$$

Therefore, since the above left and right limits are the same, g is differentiable at $x=3$.
(b)
(i) $\frac{d}{d x} \cos ^{2}(\cos (2 x))=2 \cos (\cos (2 x))(-\sin (\cos (2 x)))(-2 \sin (2 x))$

$$
\begin{aligned}
& =4 \cos (\cos (2 x)) \sin (\cos (2 x)) \sin (2 x) \\
& =2 \sin (2 \cos (2 x)) \sin (2 x)
\end{aligned}
$$

(ii) $\frac{d}{d x} \sqrt{x+\sqrt{x^{2}+1+\sin (x)}}=\frac{1}{2 \sqrt{x+\sqrt{x^{2}+1+\sin (x)}}}\left(1+\frac{1}{2 \sqrt{x^{2}+1+\sin (x)}}(2 x+\cos (x))\right)$

