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Question 1  

      (a)    Suppose  f  is a function differentiable on [a, b] with a < b.   

               Suppose  f ' (a) =  f ' (b) = 0. 

  By using the function 

( ) ( )
,

( )

( ) 0 ,

f x f a
a x b

h x x a

f a x a


 

 
   

 , or otherwise, prove that 

there exists a point c in (a, b) such that  

                                                 
( ) ( )

( )
f c f a

f c
c a





 . 

 
(b)    Suppose  g  is a function twice differentiable on (0, 1) such that for some K > 0,  

         | g '' (x) |   K for all x in (0, 1).   Prove that g is uniformly continuous on (0, 1).  

         (Hint: show that g '  is bounded on (0,1).) 

Solution 

Part (a) 

Part (a) says that for a continuous function f on the interval  [a, b], satisfying the 

condition in (a), there is always a point c in the interior of [a, b] such that the line joining 

the points (a, f (a)) and (c, f (c)) is the tangent line to the graph of  f  at  (c, f (c)). 

Since  f  is differentiable on [a, b],  f  is continuous [a, b].  Therefore, h is continuous on 

(a, b] as 
( ) ( )

( )
f x f a

h x
x a





 on (a, b] . 

Now, 
( ) ( )

lim ( ) lim ( ) ( )
x a x a

f x f a
h x f a h a

x a  


  


.   Hence,  h  is continuous on [a, b]. 

Since   f  is differentiable on (a, b)  and ( , )

( ) ( )
| ( )a b

f x f a
h x

x a





 , by the Quotient Rule, 

h is differentiable in (a, b). 
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By the Extreme Value Theorem, h attains its maximum and minimum in [a, b].  If  h 

attains its maximum or minimum at a point c in the interior of [a, b], then since h is 

differentiable on  (a, b) ,  h (c) = 0. 

Now, for x in  (a, b) ,   

           
2

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

f x f x f a f x h x f x h x
h x

x a x a x a x a x a

   
     

    
 .  ---------------- (1) 

Thus,  
( ) ( )

( ) 0 ( ) ( )
f c f a

h c f c h c
c a


    


 . 

Now, we look at the case that h does not attain its extremum in the interior of [a, b]. 

Then its maximum and minimum must occur at the end points of [a, b].   

Now ( ) ( ) 0.h a f a    

If  h(b) = 0, then  h must be a constant function.  We can thus take any c in (a, b). 

(In this case f (x) = f (a) for all x in [a, b].) 

Thus, h must have an extremum in the interior of (a, b) giving a contradiction. 

It follows that h(b)  0 . 

Suppose now  h(b) < 0.  Then h(b) must be the absolute minimum of  h since  h(a) = 0.   

Consequently, 
( ) ( )

0
h x h b

x b





 for  a ≤ x < b.    ------------------------ (2) 

Note that for x in (a, b), 

                
( ) ( ) ( ) ( ) 1 ( ) ( ) 1h x h b f x f b f x f a

x b x b b a x a b a

  
   

    
. 

Thus, since  f  is differentiable at b, 
( ) ( )

lim
x b

h x h b

x b




 exists and 

       
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

lim lim lim
x b x b x b

h x h b f x f b f x f a

x b x b b a x a b a    

  
   

    
 

                                   
2 2

( ) ( ) ( ) ( ) ( ) ( )
0

( ) ( )

f b f b f a f a f b h b

b a b a b a b a

  
     

   
 . 
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But as a consequence of (2), 
( ) ( )

lim 0
x b

h x h b

x b





. 

Hence, we have a contradiction. So h(b) > 0 and h(b) is the absolute maximum of  h .   

Consequently, 
( ) ( )

lim 0
x b

h x h b

x b





. 

But 
( ) ( ) ( ) ( ) 1 ( ) ( ) 1

lim lim lim
x b x b x b

h x h b f x f b f x f a

x b x b b a x a b a    

  
   

    
 

                                  
2 2

( ) ( ) ( ) ( ) ( ) ( )
0.

( ) ( )

f b f b f a f a f b h b

b a b a b a b a

  
     

   
  

So we again arrive at a contradiction. 

This means  h  must have an abolute extremum c in the interior of [a, b] and  

( ) ( )
( )

f c f a
f c

c a





. 

   

Part (b) 

Follow the hint. 

Take a point a in (0, 1).  

Since g is twice differentiable in (0,1), by the Mean Value Theorem, for x ≠ a, x (0,1), 

                          
( ) ( )

( )
g x g a

g y
x a

 



   for some y between x and a. 

Thus, ( ) ( ) ( ) ( )g x g a x a g y     .    

Therefore,  ( ) ( ) ( ) ( ) ( ) ( )g x g a x a g y g a g y g a K            . 

Hence, ( )g x  is bounded by ( )g a K   on (0, 1).   Let ( )g a K M   . 

This means g is Lipschitz and so g is uniformly continuous on (0, 1). 

We can deduce this as follows: 

For  x ≠ y, x , y in (0,1), by the Mean Value Theorem,  
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( ) ( )

( )
g y g x

g c
y x





 for some c between x and y. 

Therefore, 

                   ( ) ( ) ( )g y g x g c y x M y x     . 

This inequality is obviously true for x = y.  

Given any  > 0, take 
1M


 


.   Then for all x and y in (0, 1), 

                    ( ) ( )
1

x y g y g x M
M


      


  . 

This means that g is uniformly continuous on (0,1). 

Question 2  

(a)   The function h : [0, ]  R is defined by 

                         
sin( ),  if  is rational,

( )
cos( ),  if  is irrational.

x x
h x

x x


 


  

(i) Show that there exists a sequence of  partitions ( Pn  ) of [0, ] and a choice of points 

Cn in each of the subintervals of Pn with  ||Pn ||  0, such that the Riemann sum R(h, 

Pn , Cn)  2 as n , where 

                                     1

1

( , , ) ( )( )
L

n n k k k

k

R h P C h c x x 



    ,                 

 Pn :  x0 = 0 < x1 <       x2 <   < xL=  and ck  [xk-1 , xk],  k =1, , L. 

(ii) Show that there exists a sequence of  partitions ( Qn  ) of [0, ] and a choice of points 

Dn in each of the subintervals of Qn with ||Qn ||  0, such that the Riemann sum R(h, 

Qn , Dn)  0 as n  .      

            Hence or otherwise, prove that h is not Riemann integrable. 

(b)    Suppose the series 
1

( )n

n

f x




   converges uniformly on an interval I.   
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(i)   Prove that then the sequence of functions  ( )nf x converges uniformly on  I  to the 

zero constant function. 

(ii)  Prove that for any K >0, 
2

1

sin
n

x

n





 
 
 

  converges uniformly on the closed disk [K, 

K], to a continuous function   f.  Deduce that it converges pointwise to a continuous 

function on R but the convergence is not uniform on R. 

 

Solution 

Part (a) 

(i) 

Take the partition 

                   Pn :  x0 = 0 < x1 <       x2 <   < xn= with i

i
x

n
  . 

Then nP
n


   and so 0nP  .  

For each subinterval, [ xi-1, xi ] , by the density of the rational numbers,  there exists a 

rational number 1[ , ]i i ic x x  .   Let 1 2( , , , )n nC c c c  .  Then the Riemann sum, 

                  1 1

1 1

( , , ) ( )( ) sin( )( )
n n

n n i i i i i i

i i

R h P C h c x x c x x 

 

     ,  

is also a Riemann sum for sin(x) on [0, π ].  Therefore, by the Riemann Sum 

Convergence Theorem, since sin(x) is Riemann integrable on [0, π ], 

                        
0 0

( , , ) sin( ) cos( ) 2n nR h P C x dx x


    . 

(ii)  Let  Qn = Pn .  By the density of the irrational number, there exists an irrational 

number 1[ , ]i i id x x  .   Let 1 2( , , , )n nD d d d .  The Riemann sum, 

       1 1

1 1

( , , ) ( )( ) cos( )( )
n n

n n i i i i i i

i i

R h Q D h d x x d x x 

 

     , 

is also a Riemann sum for cos(x) on [0, π ].  Therefore, as in part(i), by the Riemann Sum 

Convergence Theorem, since cos(x) is Riemann integrable on [0, π ], 

                        
0 0

( , , ) cos( ) sin( ) 0n nR h Q D x dx x


     . 

Thus, the function h cannot be Riemann integrable, because if it were, all Riemann sum 

must converge to the same limit but we have ( , , ) 2n nR h P C   and ( , , ) 0n nR h Q D  . 
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Part (b) 

(i)   

If 
1

( )n

n

f x




   converges uniformly on an interval I , then the series is uniformly Cauchy 

on I.    Hence, given any  > 0, there exists an integer N such that for all n ≥ N and for all 

p ≥ 1,  
1

( )
n p

k

k n

f x 


 

   for all x in I. 

Taking p = 1, we have then that 
1( )nn N f x     for all x in I. 

This means ( ) 0nf x   uniformly on I. 

(ii) 

Observe that  
2 2 2

| |
sin

x x K

n n n

 
  

 
  for all |x| ≤ K. 

Since 
2

1n

K

n





  is convergent, by the Weierstrass M-Test,  
2

1

sin
n

x

n





 
 
 

  is uniformly 

convergent on [K, K]. 

Since the n-th partial sum of this series is continuous and the convergence is uniform, the 

series converges to a continuous function  f  on  on [K, K]. 

For any x in R, we can always take any real number K > |x|.  (You might like to invoke 

the Archimedean property of the real numbers.)  We have just shown that 
2

1

sin
n

x

n





 
 
 

  

converges and converges to a function  f  continuous on [K, K].  This means that the 

series 
2

1

sin
n

x

n





 
 
 

  converges at every x in R to a function  f  on R.  Moreover, the 

restriction of  f  to (K, K) is continuous and so  f  is continuous at x.   It follows that the 

function f  is continuous on R. 

The convergence of the series 
2

1

sin
n

x

n





 
 
 

  cannot be uniform in R. 

If it were, then by part (i) 
2

sin
x

n

 
 
 

 must converge uniformly to the zero constant 

function on R.  

For any positive integer n, let 2

2
nx n


  , then 

2
sin 1nx

n

 
 

 
.   Take  = ½.  Then for any 

integer N and for any integer n ≥ N, 
2

1
sin 1

2

nx

n


 
   

 
.   This means 

2
sin

x

n

 
 
 

 does 

not converge uniformly to 0 on R.  

 

Question 3  
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(i)   Prove that for x > 0, sin(x) < x.   By using this inequality and the Cauchy Mean 

Value Theorem, or otherwise, prove that for x > 0, 

   

3 3 5

sin( )
3! 3! 5!

x x x
x x x      .                                       

(ii)  Using the inequality in part (i) or otherwise, prove that the series,  

                                     
1

sin
n

x x

n n





  
  

  
 ,  

converges uniformly on [0,  a], for any a > 0 to a continuous function   f  : [0, a]  

R.  Hence, deduce that  
1

sin
n

x x

n n





  
  

  
  converges pointwise to a continuous 

function  f  on [0, ). 

(iii)   Prove that the series
1

1 1
cos

n

x

n n n





  
  

  
  converges uniformly to a function  g  

on [0,  a], for any a > 0.  Deduce that    
1

1 1
cos

n

x

n n n





  
  

  
  converges 

pointwise to a continuous function g on [0, ). 

(iv)   Prove that the function  f  in part (ii) is differentiable on (0, ) and that   f '  = g on 

(0, ) where g is given in part (iii). 

 

Solution 

Part (i)  

There are many ways to prove this.   An inspection of the graph of sin(x) or a knowledge 

of the values of sin(x) will clearly reveal that for all x  ≥ π/2,  x  ≥ π/2 > 1 ≥ sin(x). While 

on the interval 0,
2

 
 
 

, the graph of sin(x) is concave down.  The tangent line at 0 is the 

function x and so the graph of sin(x) for 0 < x < π/2 lies below the tangent line at x = 0, 

i.e., x > sin(x)  for 0 < x < π/2.  You can prove this statement by using the derivative of 

sin(x), i.e., cos(x), is strictly less than 1 for x in (0, π/2].  For instance, for x in (0, π/2], by 
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the Mean Value Theorem, there exists c between 0 and x such that   

sin( )
cos( ) cos(0) 1

x
c

x
    and so x > sin(x).  Thus,  x > sin(x) for all x > 0.   

Here is another proof. 

Let g(x) = x – sin(x).  Then g is differentiable and ( ) 1 cos( )g x x   . 

Therefore,  ( ) 0g x   for all x ≠ 2nπ.  Therefore, g is strictly increasing on each interval  

[2 ,2( 1) ]n n   . Hence, g is strictly increasing on R.   Thus for x > 0, g(x) = x – sin(x) > 

g(0) = 0, i.e.,  x > sin(x). 

Now, for x > 0, consider the quotient 
3

sin( )

/ 3!

x x

x


 .  By the Cauchy Mean Value Theorem, 

there exists c such that 0 < c < x and  

                 
3 3 2

sin( ) sin( ) 0 1 cos( )

/ 3! / 3! 0 / 2

x x x x c

x x c

   
 


. 

Applying the Cauchy Mean Value Theorem again, there exists b such that 0 < b < c and 

             
3 3 2

sin( ) sin( ) 0 1 cos( ) sin( )
1

/ 3! / 3! 0 / 2

x x x x c b

x x c b

   
   


.     -----------------  (1) 

Hence, 
3

sin( )
3!

x
x x   for x  > 0. 

Similarly, applying the Cauchy Mean Value Theorem, there exists c such that 0 < c < x 

and 

                        
3 2

5 4

sin( ) 3! cos( ) 1 2

/ 5! 4!

x x x c c

x c

   
  . 

Applying again the Cauchy Mean Value Theorem, there exists b such that 0 < b < c and 

                
3 2

5 4 3

sin( ) 3! cos( ) 1 2 sin( )

/ 5! 4! 3!

x x x c c b b

x c b

     
   . 

By (1),   
3

sin( )
1

3!

b b

b

 
  .    And so 

3

5

sin( ) 3!
1

/ 5!

x x x

x

 
 .   

Hence, 3 5sin( ) 3! / 5!x x x x   , i.e., 3 5sin( ) 3! / 5!x x x x   .   

So we have for x > 0, 

                   

3 3 5

sin( )
3! 3! 5!

x x x
x x x     . 
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Part (ii)       

By the inequality in part (i), for x > 0, 

               

3 3 5

2

1 1 1
sin

3! 3! 5!

x x x x x

n n n n n n n n

 
         

 
  -------------- (2) 

Since 

3

1n

a

n n





  and 

5

2
1n

a

n n





  are convergent series as they are a constant times a so-

called convergent p-series (you can apply an integral test for the convergence), by the 

Weierstrass M Test, the series on the left and right of (2), i.e., 

3 3 5

2
1 1

1 1 1
 and  

3! 3! 5!n n

x x x

n n n n n n

 

 

 
      

 
   converge uniformly on [0, a], a > 

0.    Hence, both series are uniformly Cauchy on [0, a]. 

Thus, given  > 0, there exists M such that for all x in [0, a], 

                  
31

 <
3!

n

k m

x
n m M

k k




        ----------------------- (3) 

and there exists L such that for all x in [0, a], 

                  
3 5

2

1 1
 <

3! 5!

n

k m

x x
n m L

k k k k




 
       

 
 .  ----------------------- (4) 

Let N = max(L, M).  Then from (2), for n > m ≥ N and for all x in [0, a], 

              

3 3 5

2

1 1 1
sin

3! 3! 5!

n n n

k m k m k m

x x x x x

k k k k k k k k  

   
           

    
   . 

Hence, it follows from (3) and (4) that for n > m ≥ N and for all x in [0, a], 

3 3 5

2

1 1 1
sin max ,

3! 3! 5!

n n n

k m k m k m

x x x x x

k k k k k k k k


  

    
                  

   . 

This means the series 
1

sin
n

x x

n n





  
  

  
 is uniformly Cauchy on [0, a] and so the 

series converges uniformly on [0, a].  Since the n-th partial sums of the series are 

continuous function, the series converges to a continuous function on [0, a]. 

Take any x > 0.  Take any a > x.   By the above argument, not only the series converges 

at x , it converges to a function f  continuous at x.  Hence f is continuous on [0, ∞ ). 

(iii) 
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For any x such that 0 ≤ x ≤ a , a > 0, 

        
2 2

21 1 1 2
cos cos 1 sin

2 2 2

x x x x a

n n n n n n n n n n n

     
          

     
. 

Since 
2

1 2n

a

n n





  is convergent, by the Weierstrass M test, the series, 

                     
1

1 1
cos

n

x

n n n





  
  

  
 , 

converges uniformly on [0, a].  Since the n-th partial sum of this series is continuous, the 

series converges to a function g continuous on [0, a] for any a > 0.  Therefore, g is 

continuous on [0, ∞). 

(iv) 

Note that the series in part (iii) is obtained from the series in part (ii) by term by term 

differentiation.  That is to say, the series 
1

sin
n

x x

n n





  
  

  
  converges to  f  on [0, 

a] and its derived series 
1

1 1
cos

n

x

n n n





  
  

  
  converges uniformly to g on [0, a].  

Hence,  f  is differentiable on (0, a) and ( ) ( )f x g x   on (0, a).  Since this is true for any 

a > 0,  f  is differentiable on (0, ∞) and f g   on (0, ∞).  

(For a reference to this fact see Theorem 8 of Chapter 8, Ng  Tze  Beng, Mathematical 

Analysis, An Introduction.   

https://my-calculus-

web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20

differentiation.pdf   ) 

Question 4  

   (a)  (i)   By considering an appropriate geometric series or otherwise, show that the n-th 

partial sum of the series  

1

1

( 1)n

nx
n e






   is uniformly bounded on the interval [0, ). 

https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf
https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf
https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf
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        (ii)  Using part (i) or otherwise, prove that the series, 

                         

1

2 2
1

( 1)n nx

n

e

n x

 






  ,    

converges uniformly on the interval [0, ).    

  (b)   (i)  Show that the series 

4

0

( )
(4 )!

n

n

x
f x

n





  converges for all x in R.   

         (ii)  Show that  f (x) satisfies the differential equation 

                                f (x) +  f '(x) + f '' (x)  +  f ''' (x)=  e x , 

                for any x in R. 

Solution 

Part (a) 

(i) 

The n-th partial sum of the series, 

 

1 1

1 1 0

1
1 ( 1)

( 1) 1 ( )
( ) ( )

1 1

n
k x nn n n nx

x k x x k x

kx x x
k k k

e ee e e e
e e e

 
   


  

 
  

       
 

   .  

For x ≥ 0, 
1

1  and  1x

x
e

e
    and so 

                 

1

1

1 1
1 ( 1) 1

( 1) 2
1

1 1 2

n
kn nx nx

kx x x
k

e e

e e e





  


   
 

 . 

If we let 
1( 1)

( )
k

k kx
f x

e


  ,  then the n-th partial sums  

1

( ) ( )
n

n k

k

s x f x


  satisfies 

                
1

1 1

( 1)
( ) ( ) 1

kn n

n k kx
k k

s x f x
e



 


      for all x ≥ 0.  

Hence, ( )ns x  is uniformly bounded by 1 on [0, ∞). 

(ii) 

Let 
2 2

1
( )ng x

n x



 .   Observe that 

2 2

1 1
( )ng x

nn x
 


  for all x in R and 
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1 2 2 2 2

1 1
( ) ( )

( 1)
n ng x g x

n x n x
   

  
 for all x in R and for all integer n ≥ 1. 

Thus,  ( )ng x  is a decreasing sequence of functions on [0, ∞) such that ( ) 0ng x   

uniformly on [0, ∞). 

 

Therefore, since we have shown in part (i) that the partial sums ( )ns x  is uniformly 

bounded on [0, ∞), by the Dirichlet’s Test,  
1

2 2
1 1

( 1)
( ) ( )

n nx

n n

n n

e
f x g x

n x

  

 





   converges 

uniformly on [0, ∞). 

 

Part (b) 

(i) 

For x ≠ 0,   
44 4 4

0
(4 4)! (4 )! (4 4)(4 3)(4 2)(4 1)

n n xx x

n n n n n n



 
    

  as n   ∞ . 

Therefore, by the Ratio Test, the series 

4

0

( )
(4 )!

n

n

x
f x

n





  converges for all x ≠ 0.  

It plainly converges at x = 0.   Hence the series converges for all x in R. 

(ii) 

Similarly, as in part (i), we can deduce that  

                

4 1 4 2 4 3

1 1 1

,  and  
(4 1)! (4 2)! (4 3)!

n n n

n n n

x x x

n n n

    

    
    

converge for all x in R. 

Hence, since the function  f (x)  has the power series representation 

4

0

( )
(4 )!

n

n

x
f x

n





 ,  

by part (i),  

  

4 1 4 2 4 3

1 1 1

( ) , ( )  and  ( )
(4 1)! (4 2)! (4 3)!

n n n

n n n

x x x
f x f x f x

n n n

    

  

    
  

   . 

Then we claim that  

                          
0

( ) ( ) ( ) ( )
!

n

n

x
f x f x f x f x

n





      . 

We prove this as follows: 

Let 
0

( )
!

kn

n

k

x
t x

k

 .  Then ( ) x

nt x e  for all x in R.   Therefore, 4 ( ) x

nt x e  for all x in 

R.    
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Let 

4

0

( )
(4 )!

kn

n

k

x
u x

k

 ,  

4 1

1

( )
(4 1)!

kn

n

k

x
v x

k








  , 

4 2

1

( )
(4 2)!

kn

n

k

x
w x

k








  and 

4 3

1

( )
(4 3)!

kn

n

k

x
x

k








 .  

Then for all x in R, 

( ) ( )nu x f x , ( ) ( )nv x f x , ( ) ( )nw x f x  and ( ) ( )n x f x . 

Note that  
4 ( ) ( ) ( ) ( ) ( )n n n n nt x u x v x w x x      for  n ≥ 1. 

Taking limits, 

    4lim ( ) lim ( ) lim ( ) lim ( ) lim ( )x

n n n n n
n n n n n

e t x u x v x w x x
    

      

         ( ) ( ) ( ) ( )f x f x f x f x      . 


