Solution To NUS MA3110 Mathematical Analysis II

SEMESTER 2 EXAMINATION 2011 - 2012

By Ng Tze Beng

Question 1

(a) Suppose f is a function differentiable on [a, b] with a < b. Suppose f'(a) = f'(b) = 0. By using the function $h(x) = \begin{cases} \frac{f(x) - f(a)}{x - a}, & a < x \le b \\ f'(a) = 0, & x = a \end{cases}$, or otherwise, prove that there exists a point c in (a, b) such that $\frac{f(c) - f(a)}{c - a} = f'(c)$.

(b) Suppose g is a function twice differentiable on (0, 1) such that for some K > 0,
|g"(x)| ≤ K for all x in (0, 1). Prove that g is uniformly continuous on (0, 1).
(Hint: show that g' is bounded on (0,1).)

Solution

Part (a)

Part (a) says that for a continuous function f on the interval [a, b], satisfying the condition in (a), there is always a point c in the interior of [a, b] such that the line joining the points (a, f(a)) and (c, f(c)) is the tangent line to the graph of f at (c, f(c)). Since f is differentiable on [a, b], f is continuous [a, b]. Therefore, h is continuous on

$$(a, b]$$
 as $h(x) = \frac{f(x) - f(a)}{x - a}$ on $(a, b]$.

Now, $\lim_{x \to a^+} h(x) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} = f'(a) = h(a)$. Hence, *h* is continuous on [*a*, *b*].

Since *f* is differentiable on (*a*, *b*) and $h|_{(a,b)}(x) = \frac{f(x) - f(a)}{x - a}$, by the Quotient Rule, *h* is differentiable in (*a*, *b*). By the Extreme Value Theorem, *h* attains its maximum and minimum in [*a*, *b*]. If *h* attains its maximum or minimum at a point *c* in the interior of [*a*, *b*], then since *h* is differentiable on (a, b), h'(c) = 0.

Now, for x in (a, b),

$$h'(x) = \frac{f'(x)}{x-a} - \frac{f(x) - f(a)}{(x-a)^2} = \frac{f'(x)}{x-a} - \frac{h(x)}{x-a} = \frac{f'(x) - h(x)}{x-a} \quad . \tag{1}$$

Thus, $h'(c) = 0 \Rightarrow f'(c) = h(c) = \frac{f(c) - f(a)}{c - a}$.

Now, we look at the case that h does not attain its extremum in the interior of [a, b]. Then its maximum and minimum must occur at the end points of [a, b].

Now
$$h(a) = f'(a) = 0$$
.

If h(b) = 0, then *h* must be a constant function. We can thus take any *c* in (*a*, *b*). (In this case f(x) = f(a) for all *x* in [*a*, *b*].)

Thus, h must have an extremum in the interior of (a, b) giving a contradiction.

It follows that $h(b) \neq 0$.

Suppose now h(b) < 0. Then h(b) must be the absolute minimum of h since h(a) = 0.

Consequently, $\frac{h(x) - h(b)}{x - b} \le 0$ for $a \le x < b$. (2)

Note that for x in (a, b),

$$\frac{h(x) - h(b)}{x - b} = \frac{f(x) - f(b)}{x - b} \cdot \frac{1}{b - a} - \frac{f(x) - f(a)}{x - a} \cdot \frac{1}{b - a}$$

Thus, since f is differentiable at b, $\lim_{x \to b^-} \frac{h(x) - h(b)}{x - b}$ exists and

$$\lim_{x \to b^{-}} \frac{h(x) - h(b)}{x - b} = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} \cdot \frac{1}{b - a} - \lim_{x \to b^{-}} \frac{f(x) - f(a)}{x - a} \cdot \frac{1}{b - a}$$
$$= \frac{f'(b)}{b - a} - \frac{f(b) - f(a)}{(b - a)^{2}} = \frac{f(a) - f(b)}{(b - a)^{2}} = -\frac{h(b)}{b - a} > 0 .$$

But as a consequence of (2), $\lim_{x\to b^-} \frac{h(x) - h(b)}{x - b} \le 0$.

Hence, we have a contradiction. So h(b) > 0 and h(b) is the absolute maximum of h.

Consequently,
$$\lim_{x \to b^{-}} \frac{h(x) - h(b)}{x - b} \ge 0$$
.
But $\lim_{x \to b^{-}} \frac{h(x) - h(b)}{x - b} = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{x - b} \cdot \frac{1}{b - a} - \lim_{x \to b^{-}} \frac{f(x) - f(a)}{x - a} \cdot \frac{1}{b - a}$
$$= \frac{f'(b)}{b - a} - \frac{f(b) - f(a)}{(b - a)^{2}} = \frac{f(a) - f(b)}{(b - a)^{2}} = -\frac{h(b)}{b - a} < 0.$$

So we again arrive at a contradiction.

This means h must have an abolute extremum c in the interior of [a, b] and

$$\frac{f(c)-f(a)}{c-a}=f'(c).$$

Part (b)

Follow the hint.

Take a point a in (0, 1).

Since g is twice differentiable in (0,1), by the Mean Value Theorem, for $x \neq a, x \in (0,1)$,

$$\frac{g'(x) - g'(a)}{x - a} = g''(y) \text{ for some } y \text{ between } x \text{ and } a.$$

Thus, g'(x) = g'(a) + (x - a)g''(y).

Therefore,
$$|g'(x)| \le |g'(a)| + |x-a||g''(y)| \le |g'(a)| + |g''(y)| \le |g'(a)| + K$$
.

Hence, g'(x) is bounded by |g'(a)| + K on (0, 1). Let |g'(a)| + K = M.

This means g is Lipschitz and so g is uniformly continuous on (0, 1).

We can deduce this as follows:

For $x \neq y, x, y$ in (0,1), by the Mean Value Theorem,

$$\frac{g(y) - g(x)}{y - x} = g'(c) \text{ for some } c \text{ between } x \text{ and } y.$$

Therefore,

$$|g(y) - g(x)| = |g'(c)||y - x| \le M |y - x|.$$

This inequality is obviously true for x = y.

Given any $\varepsilon > 0$, take $\delta = \frac{\varepsilon}{M+1}$. Then for all x and y in (0, 1),

$$|x-y| < \delta \Rightarrow |g(y)-g(x)| \le M \cdot \frac{\varepsilon}{M+1} < \varepsilon$$
.

This means that g is uniformly continuous on (0,1).

Question 2

(a) The function $h: [0, \pi] \to \mathbf{R}$ is defined by

$$h(x) = \begin{cases} \sin(x), \text{ if } x \text{ is rational,} \\ \cos(x), \text{ if } x \text{ is irrational.} \end{cases}$$

(i) Show that there exists a sequence of partitions (P_n) of $[0, \pi]$ and a choice of points C_n in each of the subintervals of P_n with $||P_n|| \to 0$, such that the Riemann sum $R(h, P_n, C_n) \to 2$ as $n \to \infty$, where

$$R(h, P_n, C_n) = \sum_{k=1}^{L} h(c_k)(x_k - x_{k-1})$$
,

$$P_n: x_0 = 0 < x_1 < x_2 < \dots < x_L = \pi \text{ and } c_k \in [x_{k-1}, x_k], k = 1, \dots, L.$$

(ii) Show that there exists a sequence of partitions (Q_n) of $[0, \pi]$ and a choice of points D_n in each of the subintervals of Q_n with $||Q_n|| \to 0$, such that the Riemann sum $R(h, Q_n, D_n) \to 0$ as $n \to \infty$.

Hence or otherwise, prove that h is not Riemann integrable.

(b) Suppose the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on an interval *I*.

- (i) Prove that then the sequence of functions $(f_n(x))$ converges uniformly on I to the zero constant function.
- (ii) Prove that for any K > 0, $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ converges uniformly on the closed disk [-K,

K], to a continuous function f. Deduce that it converges pointwise to a continuous function on **R** but the convergence is *not* uniform on **R**.

Solution

Part (a)

(i)

Take the partition

$$P_n: x_0 = 0 < x_1 < x_2 < \dots < x_n = \pi, \text{ with } x_i = \frac{i}{n}\pi$$
.

Then $||P_n|| = \frac{\pi}{n}$ and so $||P_n|| \to 0$.

For each subinterval, $[x_{i-1}, x_i]$, by the density of the rational numbers, there exists a rational number $c_i \in [x_{i-1}, x_i]$. Let $C_n = (c_1, c_2, \dots, c_n)$. Then the Riemann sum,

$$R(h, P_n, C_n) = \sum_{i=1}^n h(c_i)(x_i - x_{i-1}) = \sum_{i=1}^n \sin(c_i)(x_i - x_{i-1})$$

is also a Riemann sum for sin(x) on $[0, \pi]$. Therefore, by the Riemann Sum

Convergence Theorem, since sin(x) is Riemann integrable on $[0, \pi]$,

$$R(h, P_n, C_n) \to \int_0^{\pi} \sin(x) dx = \left[-\cos(x)\right]_0^{\pi} = 2.$$

(ii) Let $Q_n = P_n$. By the density of the irrational number, there exists an irrational number $d_i \in [x_{i-1}, x_i]$. Let $D_n = (d_1, d_2, \dots, d_n)$. The Riemann sum,

$$R(h,Q_n,D_n) = \sum_{i=1}^n h(d_i)(x_i - x_{i-1}) = \sum_{i=1}^n \cos(d_i)(x_i - x_{i-1}),$$

is also a Riemann sum for cos(x) on $[0, \pi]$. Therefore, as in part(i), by the Riemann Sum

Convergence Theorem, since cos(x) is Riemann integrable on $[0, \pi]$,

$$R(h,Q_n,D_n) \to \int_0^{\pi} \cos(x) dx = [\sin(x)]_0^{\pi} = 0$$
.

Thus, the function *h* cannot be Riemann integrable, because if it were, all Riemann sum must converge to the same limit but we have $R(h, P_n, C_n) \rightarrow 2$ and $R(h, Q_n, D_n) \rightarrow 0$.

Part (b)

(i)

If $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on an interval *I*, then the series is uniformly Cauchy on *I*. Hence, given any $\varepsilon > 0$, there exists an integer *N* such that for all $n \ge N$ and for all $p \ge 1$, $\left|\sum_{k=n+1}^{n+p} f_k(x)\right| < \varepsilon$ for all *x* in *I*. Taking p = 1, we have then that $n \ge N \Longrightarrow |f_{n+1}(x)| < \varepsilon$ for all *x* in *I*.

Taking p = 1, we have then that $n \ge N \Rightarrow |J_{n+1}(x)| < \varepsilon$ for This means $f_n(x) \to 0$ uniformly on *I*.

(ii)

Observe that $\left| \sin\left(\frac{x}{n^2}\right) \right| \le \frac{|x|}{n^2} \le \frac{K}{n^2}$ for all $|x| \le K$. Since $\sum_{n=1}^{\infty} \frac{K}{n^2}$ is convergent, by the Weierstrass M-Test, $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ is uniformly convergent on [-K, K].

Since the *n*-th partial sum of this series is continuous and the convergence is uniform, the series converges to a continuous function f on on [-K, K].

For any *x* in **R**, we can always take any real number K > |x|. (You might like to invoke the Archimedean property of the real numbers.) We have just shown that $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ converges and converges to a function *f* continuous on [-K, K]. This means that the series $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ converges at every *x* in **R** to a function *f* on **R**. Moreover, the restriction of *f* to (-K, K) is continuous and so *f* is continuous at *x*. It follows that the function *f* is continuous on **R**. The convergence of the series $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$ cannot be uniform in **R**. If it were, then by part (i) $\sin\left(\frac{x}{n^2}\right)$ must converge uniformly to the zero constant function on **R**. For any positive integer *n*, let $x_n = \frac{\pi}{2}n^2$, then $\sin\left(\frac{x_n}{n^2}\right) = 1$. Take $\varepsilon = \frac{1}{2}$. Then for any integer *N* and for any integer $n \ge N$, $\left|\sin\left(\frac{x_n}{n^2}\right)\right| = 1 > \frac{1}{2} = \varepsilon$. This means $\sin\left(\frac{x}{n^2}\right)$ does

not converge uniformly to 0 on **R**.

Question 3

(i) Prove that for x > 0, sin(x) < x. By using this inequality and the Cauchy Mean Value Theorem, or otherwise, prove that for x > 0,

$$x - \frac{x^3}{3!} < \sin(x) < x - \frac{x^3}{3!} + \frac{x^5}{5!}$$
.

(ii) Using the inequality in part (i) or otherwise, prove that the series,

$$\sum_{n=1}^{\infty} \left(\sin\left(\frac{x}{\sqrt{n}}\right) - \frac{x}{\sqrt{n}} \right),$$

converges uniformly on [0, *a*], for any a > 0 to a continuous function $f : [0, a] \rightarrow \mathbf{R}$. Hence, deduce that $\sum_{n=1}^{\infty} \left(\sin\left(\frac{x}{\sqrt{n}}\right) - \frac{x}{\sqrt{n}} \right)$ converges pointwise to a continuous function f on $[0, \infty)$.

(iii) Prove that the series
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}} \right)$$
 converges uniformly to a function g
on $[0, a]$ for any $a > 0$. Deduce that $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}} \right)$ converges

on [0, *a*], for any *a* > 0. Deduce that $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}} \right) \text{ converges}$

pointwise to a continuous function g on $[0, \infty)$.

(iv) Prove that the function f in part (ii) is differentiable on (0, ∞) and that f' = g on (0, ∞) where g is given in part (iii).

Solution

Part (i)

There are many ways to prove this. An inspection of the graph of $\sin(x)$ or a knowledge of the values of $\sin(x)$ will clearly reveal that for all $x \ge \pi/2$, $x \ge \pi/2 > 1 \ge \sin(x)$. While on the interval $\left(0, \frac{\pi}{2}\right)$, the graph of $\sin(x)$ is concave down. The tangent line at 0 is the function *x* and so the graph of $\sin(x)$ for $0 < x < \pi/2$ lies below the tangent line at x = 0, i.e., $x > \sin(x)$ for $0 < x < \pi/2$. You can prove this statement by using the derivative of $\sin(x)$, i.e., $\cos(x)$, is strictly less than 1 for *x* in $(0, \pi/2]$. For instance, for *x* in $(0, \pi/2]$, by the Mean Value Theorem, there exists c between 0 and x such that

$$\frac{\sin(x)}{x} = \cos(c) < \cos(0) = 1 \text{ and } \text{so } x > \sin(x). \text{ Thus, } x > \sin(x) \text{ for all } x > 0.$$

Here is another proof.

Let $g(x) = x - \sin(x)$. Then g is differentiable and $g'(x) = 1 - \cos(x)$.

Therefore, g'(x) > 0 for all $x \neq 2n\pi$. Therefore, g is strictly increasing on each interval

 $[2n\pi, 2(n+1)\pi]$. Hence, g is strictly increasing on **R**. Thus for x > 0, $g(x) = x - \sin(x) > 0$

g(0) = 0, i.e., x > sin(x).

Hence.

Now, for x > 0, consider the quotient $\frac{x - \sin(x)}{x^3 / 3!}$. By the Cauchy Mean Value Theorem,

there exists c such that 0 < c < x and

$$\frac{x-\sin(x)}{x^3/3!} = \frac{x-\sin(x)-0}{x^3/3!-0} = \frac{1-\cos(c)}{c^2/2}.$$

Applying the Cauchy Mean Value Theorem again, there exists b such that 0 < b < c and

$$\frac{x - \sin(x)}{x^3 / 3!} = \frac{x - \sin(x) - 0}{x^3 / 3! - 0} = \frac{1 - \cos(c)}{c^2 / 2} = \frac{\sin(b)}{b} < 1. \quad (1)$$
$$x - \sin(x) < \frac{x^3}{3!} \text{ for } x > 0.$$

Similarly, applying the Cauchy Mean Value Theorem, there exists c such that 0 < c < x and

$$\frac{\sin(x) - x + \frac{x^3}{3!}}{\frac{x^5}{5!}} = \frac{\cos(c) - 1 + \frac{c^2}{2}}{\frac{c^4}{4!}} .$$

Applying again the Cauchy Mean Value Theorem, there exists b such that 0 < b < c and

$$\frac{\sin(x) - x + \frac{x^3}{3!}}{\frac{x^5}{5!}} = \frac{\cos(c) - 1 + \frac{c^2}{2}}{\frac{c^4}{4!}} = \frac{-\sin(b) + b}{\frac{b^3}{3!}}$$

By (1), $\frac{-\sin(b)+b}{b^3/3!} < 1$. And so $\frac{\sin(x)-x+x^3/3!}{x^5/5!} < 1$.

Hence, $\sin(x) - x + \frac{x^3}{3!} < \frac{x^5}{5!}$, i.e., $\sin(x) < x - \frac{x^3}{3!} + \frac{x^5}{5!}$. So we have for x > 0,

$$x - \frac{x^3}{3!} < \sin(x) < x - \frac{x^3}{3!} + \frac{x^5}{5!}.$$

Part (ii)

By the inequality in part (i), for x > 0,

Since $\sum_{n=1}^{\infty} \frac{a^3}{n\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{a^5}{n^2\sqrt{n}}$ are convergent series as they are a constant times a so-

called convergent *p*-series (you can apply an integral test for the convergence), by the Weierstrass M Test, the series on the left and right of (2), i.e.,

$$-\sum_{n=1}^{\infty} \frac{1}{3!} \cdot \frac{x^3}{n\sqrt{n}} \text{ and } \sum_{n=1}^{\infty} \left(-\frac{1}{3!} \cdot \frac{x^3}{n\sqrt{n}} + \frac{1}{5!} \cdot \frac{x^5}{n^2\sqrt{n}} \right) \text{ converge uniformly on } [0, a], a > 0$$

0. Hence, both series are uniformly Cauchy on [0, *a*].

Thus, given $\varepsilon > 0$, there exists *M* such that for all *x* in [0, *a*],

$$n > m \ge M \Longrightarrow \left| \sum_{k=m}^{n} -\frac{1}{3!} \cdot \frac{x^{3}}{k\sqrt{k}} \right| < \varepsilon$$
 (3)

and there exists L such that for all x in [0, a],

$$n > m \ge L \Longrightarrow \left| \sum_{k=m}^{n} \left(-\frac{1}{3!} \cdot \frac{x^3}{k\sqrt{k}} + \frac{1}{5!} \cdot \frac{x^5}{k^2\sqrt{k}} \right) \right| < \varepsilon.$$
(4)

Let $N = \max(L, M)$. Then from (2), for $n > m \ge N$ and for all x in [0, a],

$$\sum_{k=m}^{n} -\frac{1}{3!} \cdot \frac{x^3}{k\sqrt{k}} < \sum_{k=m}^{n} \left(\sin\left(\frac{x}{\sqrt{k}}\right) - \frac{x}{\sqrt{k}} \right) < \sum_{k=m}^{n} \left(-\frac{1}{3!} \cdot \frac{x^3}{k\sqrt{k}} + \frac{1}{5!} \cdot \frac{x^5}{k^2\sqrt{k}} \right).$$

Hence, it follows from (3) and (4) that for $n > m \ge N$ and for all x in [0, a],

$$\left|\sum_{k=m}^{n} \left(\sin\left(\frac{x}{\sqrt{k}}\right) - \frac{x}{\sqrt{k}} \right) \right| \le \max\left(\left|\sum_{k=m}^{n} \frac{1}{3!} \cdot \frac{x^3}{k\sqrt{k}}\right|, \left|\sum_{k=m}^{n} \left(-\frac{1}{3!} \cdot \frac{x^3}{k\sqrt{k}} + \frac{1}{5!} \cdot \frac{x^5}{k^2\sqrt{k}}\right) \right| \right) < \varepsilon$$

This means the series $\sum_{n=1}^{\infty} \left(\sin\left(\frac{x}{\sqrt{n}}\right) - \frac{x}{\sqrt{n}} \right)$ is uniformly Cauchy on [0, *a*] and so the

series converges uniformly on [0, a]. Since the *n*-th partial sums of the series are continuous function, the series converges to a continuous function on [0, a].

Take any x > 0. Take any a > x. By the above argument, not only the series converges at x, it converges to a function f continuous at x. Hence f is continuous on $[0, \infty)$.

For any *x* such that $0 \le x \le a$, a > 0,

$$\left|\frac{1}{\sqrt{n}}\cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}}\right| = \frac{1}{\sqrt{n}}\left|\cos\left(\frac{x}{\sqrt{n}}\right) - 1\right| = \frac{2}{\sqrt{n}}\sin^2\left(\frac{x}{2\sqrt{n}}\right) \le \frac{x^2}{2n\sqrt{n}} \le \frac{a^2}{2n\sqrt{n}}$$

Since $\sum_{n=1}^{\infty} \frac{a^2}{2n\sqrt{n}}$ is convergent, by the Weierstrass M test, the series,

$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}} \right),$$

converges uniformly on [0, a]. Since the *n*-th partial sum of this series is continuous, the series converges to a function *g* continuous on [0, a] for any a > 0. Therefore, *g* is continuous on $[0, \infty)$.

(iv)

Note that the series in part (iii) is obtained from the series in part (ii) by term by term

differentiation. That is to say, the series $\sum_{n=1}^{\infty} \left(\sin\left(\frac{x}{\sqrt{n}}\right) - \frac{x}{\sqrt{n}} \right)$ converges to f on [0, 1]

a] and its derived series $\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} \cos\left(\frac{x}{\sqrt{n}}\right) - \frac{1}{\sqrt{n}} \right)$ converges uniformly to g on [0, *a*].

Hence, f is differentiable on (0, a) and f'(x) = g(x) on (0, a). Since this is true for any a > 0, f is differentiable on $(0, \infty)$ and f' = g on $(0, \infty)$.

(For a reference to this fact see Theorem 8 of Chapter 8, Ng Tze Beng, Mathematical Analysis, An Introduction.

https://my-calculus-

web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20 differentiation.pdf)

Question 4

(a) (i) By considering an appropriate geometric series or otherwise, show that the *n*-th partial sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{e^{nx}}$ is uniformly bounded on the interval $[0, \infty)$.

(ii) Using part (i) or otherwise, prove that the series,

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} e^{-nx}}{\sqrt{n^2 + x^2}} ,$$

converges uniformly on the interval $[0, \infty)$.

(b) (i) Show that the series
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{4n}}{(4n)!}$$
 converges for all x in **R**.

(ii) Show that f(x) satisfies the differential equation

$$f(x) + f'(x) + f''(x) + f'''(x) = e^x$$
,

for any x in **R**.

Solution

Part (a)

(i)

The *n*-th partial sum of the series,

$$\begin{split} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{kx}} &= -\sum_{k=1}^{n} (-e^{-x})^{k} = e^{-x} \sum_{k=0}^{n-1} (-e^{-x})^{k} = e^{-x} \cdot \frac{1 - (-e^{-x})^{n}}{1 + e^{-x}} = \frac{1 - (-1)^{n} \frac{1}{e^{nx}}}{1 + e^{x}} \\ \text{For } x \ge 0, \ e^{x} \ge 1 \ \text{and} \ \frac{1}{e^{x}} \le 1 \ \text{and so} \\ & \left| \sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{kx}} \right| = \left| \frac{1 - (-1)^{n} \frac{1}{e^{nx}}}{1 + e^{x}} \right| \le \frac{1 + \frac{1}{e^{nx}}}{1 + e^{x}} \le \frac{2}{2} = 1 \\ \text{If we let} \ f_{k}(x) = \frac{(-1)^{k+1}}{e^{kx}} \ \text{, then the } n \text{-th partial sums} \ s_{n}(x) = \sum_{k=1}^{n} f_{k}(x) \text{ satisfies} \\ & \left| s_{n}(x) \right| = \left| \sum_{k=1}^{n} f_{k}(x) \right| = \left| \sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{kx}} \right| \le 1 \ \text{ for all } x \ge 0. \end{split}$$

Hence, $s_n(x)$ is uniformly bounded by 1 on $[0, \infty)$.

Let
$$g_n(x) = \frac{1}{\sqrt{n^2 + x^2}}$$
. Observe that $|g_n(x)| = \left|\frac{1}{\sqrt{n^2 + x^2}}\right| \le \frac{1}{n}$ for all x in **R** and

$$g_{n+1}(x) = \frac{1}{\sqrt{(n+1)^2 + x^2}} \le \frac{1}{\sqrt{n^2 + x^2}} = g_n(x)$$
 for all x in **R** and for all integer $n \ge 1$.

Thus, $(g_n(x))$ is a decreasing sequence of functions on $[0, \infty)$ such that $g_n(x) \to 0$ uniformly on $[0, \infty)$.

Therefore, since we have shown in part (i) that the partial sums $s_n(x)$ is uniformly bounded on $[0, \infty)$, by the Dirichlet's Test, $\sum_{n=1}^{\infty} f_n(x)g_n(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}e^{-nx}}{\sqrt{n^2 + x^2}}$ converges uniformly on $[0, \infty)$.

Part (b)

(i)

For
$$x \neq 0$$
, $\left| \frac{x^{4n+4}}{(4n+4)!} \right| / \frac{x^{4n}}{(4n)!} \right| = \frac{x^4}{(4n+4)(4n+3)(4n+2)(4n+1)} \to 0 \text{ as } n \to \infty$

Therefore, by the Ratio Test, the series $f(x) = \sum_{n=0}^{\infty} \frac{x^{4n}}{(4n)!}$ converges for all $x \neq 0$. It plainly converges at x = 0. Hence the series converges for all x in **R**.

Similarly, as in part (i), we can deduce that

$$\sum_{n=1}^{\infty} \frac{x^{4n-1}}{(4n-1)!}, \sum_{n=1}^{\infty} \frac{x^{4n-2}}{(4n-2)!} \text{ and } \sum_{n=1}^{\infty} \frac{x^{4n-3}}{(4n-3)!}$$

converge for all x in **R**.

Hence, since the function f(x) has the power series representation $f(x) = \sum_{n=0}^{\infty} \frac{x^{4n}}{(4n)!}$, by part (i),

$$f'(x) = \sum_{n=1}^{\infty} \frac{x^{4n-1}}{(4n-1)!}, \ f''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-2}}{(4n-2)!} \text{ and } f'''(x) = \sum_{n=1}^{\infty} \frac{x^{4n-3}}{(4n-3)!}.$$

Then we claim that

$$f(x) + f'(x) + f''(x) + f'''(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

We prove this as follows:

Let $t_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Then $t_n(x) \to e^x$ for all x in **R**. Therefore, $t_{4n}(x) \to e^x$ for all x in **R**.

Let
$$u_n(x) = \sum_{k=0}^n \frac{x^{4k}}{(4k)!}$$
, $v_n(x) = \sum_{k=1}^n \frac{x^{4k-1}}{(4k-1)!}$, $w_n(x) = \sum_{k=1}^n \frac{x^{4k-2}}{(4k-2)!}$ and
 $\ell_n(x) = \sum_{k=1}^n \frac{x^{4k-3}}{(4k-3)!}$.
Then for all x in \mathbf{R} ,
 $u_n(x) \to f(x)$, $v_n(x) \to f'(x)$, $w_n(x) \to f''(x)$ and $\ell_n(x) \to f'''(x)$.

Note that $t_{4n}(x) = u_n(x) + v_n(x) + w_n(x) + \ell_n(x)$ for $n \ge 1$. Taking limits, $e^x = \lim_{n \to \infty} t_{4n}(x) = \lim_{n \to \infty} u_n(x) + \lim_{n \to \infty} v_n(x) + \lim_{n \to \infty} w_n(x) + \lim_{n \to \infty} \ell_n(x)$

$$= f(x) + f'(x) + f''(x) + f'''(x).$$