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Question 1

(a) Suppose f is a function differentiable on [a, b] with a <b.
Suppose f'(a)= f'(b)=0.

f(x)-f(a)
. . ———~—* a<x<b :
By using the function h(x) = X—a , or otherwise, prove that
f'(a)=0,x=a

there exists a point c in (a, b) such that
f(C)_ f(a) — f!(C) .
c—a

(b) Suppose g isa function twice differentiable on (0, 1) such that for some K > 0,
lg" (xX)| < Kforall xin (0, 1). Prove that g is uniformly continuous on (0, 1).
(Hint: show that g * is bounded on (0,1).)

Solution

Part (a)

Part (a) says that for a continuous function f on the interval [a, b], satisfying the

condition in (a), there is always a point c in the interior of [a, b] such that the line joining

the points (a, f (a)) and (c, f (c)) is the tangent line to the graph of f at (c, f (c)).

Since f is differentiable on [a, b], f is continuous [a, b]. Therefore, h is continuous on

(a, b] as h(x):%;(a) on (a, b] .

Now, lim h(x) = lim w = f'(a)=h(a). Hence, h is continuous on [a, b].

x—at x—a*

Since f is differentiable on (a, b) and h|,,, (x):w

, by the Quotient Rule,

h is differentiable in (a, b).



By the Extreme Value Theorem, h attains its maximum and minimum in [a, b]. If h
attains its maximum or minimum at a point c in the interior of [a, b], then since h is
differentiable on (a, b), h’(c) =0.

Now, for x in (a, b),

h(x) = f'(x) _fO)-f(@) _ f'(x) h(x) _ F'(x)—h(x)
x—a  (x—a)’ X—a X-a Xx—a

Thus, h'(c)=0= f'(c)=h(c) :w .

Now, we look at the case that h does not attain its extremum in the interior of [a, b].
Then its maximum and minimum must occur at the end points of [a, b].

Now h(a) = f'(a) =0.

If h(b) =0, then h must be a constant function. We can thus take any c in (a, b).
(In this case f (x) = f (a) for all xin [a, b].)

Thus, h must have an extremum in the interior of (a, b) giving a contradiction.

It follows that h(b) == 0.

Suppose now h(b) < 0. Then h(b) must be the absolute minimum of h since h(a) = 0.

Consequently, <0 for a<x<b., ----emmmmeeee- - (2)

h(x) —h(b)
Xx-b

Note that for x in (a, b),

hp)-htb) _ f(x)-f() 1 f(x)-f(a) 1

x—b x-b  b-a x—a b-a
Thus, since f is differentiable at b, "TW exists and

lim h(x)—h(b):Iirn f()-f(b) 1 lim f(x)-f(a) 1
x»b~  X—b x»b~  X—Db b—a x»b~ x-a b-a

_t®) fO-f@_f@-fo)_ hbd)

" b-a (b-a)? (b—a)? b—a




But as a consequence of (2), Iinb1 %E(b) <0.

Hence, we have a contradiction. So h(b) > 0 and h(b) is the absolute maximum of h.

h()=h(b) o

Consequently, lim
Xx—b~ X — b

But lim h(x)—h(b):Iim f(x)-f(b) 1 lim f()-f(@) 1
x->b~  X-—Db x->b~  X-—Db b-a xb x-a b-a

_f)_fO)-f@_f@-fO)__ hbd) _,

" b-a (b-a)’ (b—a)? b-a

So we again arrive at a contradiction.

This means h must have an abolute extremum c in the interior of [a, b] and

f(c)-f(a) .,
“ela O

Part (b)
Follow the hint.
Take a pointain (0, 1).

Since g is twice differentiable in (0,1), by the Mean Value Theorem, for x # a, x €(0,1),

g'(x)-9g'(a) _
X—a

g"(y) for somey between x and a.

Thus, g'(x)=g'(a)+(x—-a)g"(y).

Therefore,

g'(a)|+|x—a

g'(x)|< 9"(y)|<[g'(@)|+|g"(y) <|g'(@)] + K .

Hence, g'(x) is bounded by

g'(a)|+K on (0, 1). Let

g'@)|+K=M.

This means g is Lipschitz and so g is uniformly continuous on (0, 1).
We can deduce this as follows:

For x #Y, x,yin (0,1), by the Mean Value Theorem,



9(y)-9(x)

=g'(c) for some c between x and y.
y—X

Therefore,

la(y)—g(X)|=|g'©)||y—X <My -x].

This inequality is obviously true for x = .

Givenany ¢ >0, take 6 =

. Then forall xandy in (0, 1),
M +1

&
—yl<s - <M.
[x—y|<8=]g(y)—g(x)|< 1

<& .

This means that g is uniformly continuous on (0,1).

Question 2

(@) The function h : [0, ©f] — R is defined by

sin(x), if x is rational,
h(x) = e
cos(x), if x is irrational.

(1)  Show that there exists a sequence of partitions ( Pn ) of [0, ] and a choice of points

Cn in each of the subintervals of P, with ||Pn || = 0, such that the Riemann sum R(h,
Pn, Cn) > 2 as n— o, where

R(h,P,,C.) = ZL:h(Ck)(xk — X 1)

Ph: X=0<x1< X<...<xx=rnandck € [xk1, X, k=1, ..., L.

(i)  Show that there exists a sequence of partitions ( Qn ) of [0, ] and a choice of points

Dn in each of the subintervals of Qn with ||Qn || — 0, such that the Riemann sum R(h,
Qn,Dn) > 0asn— w.

Hence or otherwise, prove that h is not Riemann integrable.

(b) Suppose the series Z f.(X) converges uniformly on an interval |I.

n=1



(i) Prove that then the sequence of functions ( f, (x))converges uniformly on | to the
zero constant function.

(if) Prove that for any K >0, ZSin(n—ij converges uniformly on the closed disk [-K,

n=1
K], to a continuous function f. Deduce that it converges pointwise to a continuous
function on R but the convergence is not uniform on R.
Solution
Part (a)
(i)

Take the partition

. [
PniXo=0<x1< Xe<...<Xp=m, with X,=—7x .
n

Then ||pn||=% and so ||P,| - 0.

For each subinterval, [ xi.1, Xi ] , by the density of the rational numbers, there exists a
rational number ¢, e[x, ,,x]. Let C, =(c,¢C,,---,C,) . Then the Riemann sum,

R(NP,,C,) = D h(e)(x %) = Dsine ) (% ~x,.).

is also a Riemann sum for sin(x) on [0, w ]. Therefore, by the Riemann Sum

Convergence Theorem, since sin(x) is Riemann integrable on [0, 7 ],
R(h,P,,C,)— IO sin(x)dx =[—cos(x)] =2.

(if) Let Qn = Pn. By the density of the irrational number, there exists an irrational
number d. €[x. ,,x] . Let D, =(d,,d,,---,d.). The Riemann sum,

R(Q,.D,) = 3 N(A)0 ~ %) = Ycos(d )% —x,.).

is also a Riemann sum for cos(x) on [0, @ ]. Therefore, as in part(i), by the Riemann Sum

Convergence Theorem, since cos(x) is Riemann integrable on [0, @ ],
R(h,Q,.D,) — jo cos(x)dx = [sm(x)]0 -0 .

Thus, the function h cannot be Riemann integrable, because if it were, all Riemann sum

must converge to the same limit but we have R(h,P,,C ) —2 and R(h,Q,,D,) —0.



Part (b)
(i)

If Z f.(x) converges uniformly on an interval I , then the series is uniformly Cauchy
n=1

onl. Hence, given any € > 0, there exists an integer N such that for all n> N and for all

n+p

2 f(x)

k=n+1

Taking p = 1, we have then that n> N :|f

p>1, <¢ forall xinl.

(x)| <& forallxin .

n+1

This means f (x) — 0 uniformly on I.

ol

Since 252 is convergent, by the Weierstrass M-Test, Zsin(iJ is uniformly
n

2

(i)
Observe that < m <

<= forall x| <K.

3N| x

n=1 n=1

convergent on [-K, K].

Since the n-th partial sum of this series is continuous and the convergence is uniform, the
series converges to a continuous function f on on [-K, K].

For any x in R, we can always take any real number K > |x|. (You might like to invoke

the Archimedean property of the real numbers.) We have just shown that Zsin(n—xzj

n=1

converges and converges to a function f continuous on [-K, K]. This means that the

. 2, . X . .

series Zsm(—zj converges at every x in R to a function f on R. Moreover, the

= n
n=1

restriction of f to (K, K) is continuous and so f is continuous at x. It follows that the
function f is continuous on R.

O i X . :
The convergence of the series ZSln(—zj cannot be uniform in R.
n-1 n

: N (X :
If it were, then by part (i) sin (—Zj must converge uniformly to the zero constant
n
function on R.
For any positive integer n, let x, = %nz , then sin(x—g) =1. Take £=%. Then for any
n

(X
sm(—gj
n

1

integer N and for any integer n > N, =1> > =¢&. This means sin (n—xz) does

not converge uniformly to O on R.

Question 3



(i) Prove that for x > 0, sin(x) < x. By using this inequality and the Cauchy Mean
Value Theorem, or otherwise, prove that for x > 0,

3 3 5
X

X X
X——<Sin(X) < X——+— .
3! 31 5l

(if) Using the inequality in part (i) or otherwise, prove that the series,

i[sin(LJ _Lj,
U W) A
converges uniformly on [0, a], for any a > 0 to a continuous function f : [0, a] —»

N X o :
R. Hence, deduce that Z[sm(—j——j converges pointwise to a continuous

S0 Wn) n

function f on [0, «).

(1 1 . .
(iii) Prove that the series Z(—cos(ij —T] converges uniformly to a function g
n

Jn o (n

on [0, a], for any a > 0. Deduce that Z[icos(ij—i] converges

Svn W) Vn

pointwise to a continuous function g on [0, ).

n=1

(iv) Prove that the function f in part (ii) is differentiable on (0, ) and that f' =gon

(0, ) where g is given in part (iii).

Solution
Part (i)
There are many ways to prove this. An inspection of the graph of sin(x) or a knowledge

of the values of sin(x) will clearly reveal that for all x >w/2, x >m/2 > 1 > sin(x). While

on the interval (0%) the graph of sin(x) is concave down. The tangent line at O is the

function x and so the graph of sin(x) for 0 < x < /2 lies below the tangent line at X = 0,
i.e.,, x>sin(x) for 0 <x<m/2. You can prove this statement by using the derivative of

sin(x), i.e., cos(x), is strictly less than 1 for x in (0, z/2]. For instance, for x in (0, #/2], by



the Mean Value Theorem, there exists ¢ between 0 and x such that

sin(x)

=cos(c) < cos(0) =1 and so x > sin(x). Thus, x> sin(x) for all x> 0.

Here is another proof.

Let g(x) = x —sin(x). Then g is differentiable and g'(x) =1—cos(x).

Therefore, g'(x) >0 for all x # 2nn. Therefore, g is strictly increasing on each interval
[2nz,2(n+1)x] . Hence, g is strictly increasing on R.  Thus for x > 0, g(x) = x — sin(x) >
g(0) =0, i.e., x>sin(x).

X —sin(x)
x*/3

Now, for x > 0, consider the quotient . By the Cauchy Mean Value Theorem,

there exists ¢ such that 0 < ¢ < x and

X—sin(x) x-sin(x)—0 1-cos(c)
x® /3! x*/31-0 /2
Applying the Cauchy Mean Value Theorem again, there exists b such that 0 <b < c and

X—sin(x) x-sin(x)-0 1-cos(c) sin(b) 1 (1)
x* /3! x*/31-0 c’/2 b '

3
Hence, x —sin(x) < % forx >0.

Similarly, applying the Cauchy Mean Value Theorem, there exists ¢ such that 0 < ¢ < x
and

sin(x) —x+x%/3! _ cos(c)—1+¢?/2
x® /5! c*/4! '

Applying again the Cauchy Mean Value Theorem, there exists b such that 0 < b < ¢ and

sin(x) — x + x%/3! _cos(c) -1+ c’/2  —sin(b)+b

x° /5! c*/4! b®/3!
—sin(b) +b sin(x) — x+ x*/3!
By (1), ﬁ<l. And so ( )x5/5| / <1.

Hence, sin(x) —x+x%/31< x*/5!, i.e., sin(x) < x—x*/3!+ x> /5!,
So we have for x >0,
x> X x°
X——<SIN(X) < X——+—,
3! 3! 5l



Part (ii)
By the inequality in part (i), for x > 0,

1 x 1 xX 1 X

el nf<s'”(fj‘ﬁ<‘a'm+a'm -------------- @)

Since Z and Z > \/— are convergent series as they are a constant times a so-

called convergent p-series (you can apply an integral test for the convergence), by the
Weierstrass M Test, the series on the left and right of (2), i.e.,

=1 1 X°
Z converge uniformly on [0, a], a >

—13I n\/_ o1 3' n»\/_ 51 n?Jn

0. Hence, both series are uniformly Cauchy on [0, a].

Thus, given € > 0, there exists M such that for all x in [0, a],

n>mx>M = L X e (3
k=m 3'
and there exists L such that for all x in [O, aj,
1 x* 1 X
n>m>L= —— =t || <&. e 4
an;( 31 ky'k 5! kzﬁj‘ @

Let N = max(L, M). Thenfrom(2),forn>m2Nandforallxin [0, a],
o1 n X X 1 o x* 1 X
sin —-— |< —— =
an; 3l kJ_ Z( (\/Ej \/Ej kzr;[ 3! kJk 5! kZ\/EJ'

Hence, it follows from (3) and (4) that for n >m > N and for all x in [0, a],
o[ 0X X n 1 ¥ 1 X

SIN| —= |——= || < Max -t <
kz( (JFJ JEJ‘ ( kz( 3l kvk 5! kZ\/EjD

1
kzr:z 3! kk|'
(. [ X X
This means the series Z[sm (ﬁ] - ﬁj is uniformly Cauchy on [0, a] and so the

n=1

X3

series converges uniformly on [0, a]. Since the n-th partial sums of the series are
continuous function, the series converges to a continuous function on [0, a].
Take any x > 0. Take any a > x. By the above argument, not only the series converges

at x , it converges to a function f continuous at x. Hence f is continuous on [0, o ).

(iii)



For any x such that 0 <x<a,a>0,

cos(%j—l‘ = %sin2 (Zjﬁj < 2:\2/5 < ZriZ/ﬁ :

1

h

LCO{L}L

W) v
e a2

Since Z—\/_ is convergent, by the Weierstrass M test, the series,
= n

(1 X 1

55

converges uniformly on [0, a]. Since the n-th partial sum of this series is continuous, the
series converges to a function g continuous on [0, a] for any a > 0. Therefore, g is
continuous on [0, ©©).

(iv)

Note that the series in part (iii) is obtained from the series in part (ii) by term by term

(L[ X X
differentiation. That is to say, the series Z(Sm(ﬁj _ﬁj converges to f on [0,

n=1

a] and its derived series Z(icos(ij —i} converges uniformly to g on [0, a].

N W)

Hence, f is differentiable on (0, a) and f'(x) = g(x) on (0, a). Since this is true for any

n=1

a>0, f is differentiable on (0, ) and f'=g on (0, ).
(For a reference to this fact see Theorem 8 of Chapter 8, Ng Tze Beng, Mathematical
Analysis, An Introduction.

https://my-calculus-

web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20

differentiation.pdf )

Question 4
(@) (i) By considering an appropriate geometric series or otherwise, show that the n-th
0 _1 n+1
partial sum of the series = is uniformly bounded on the interval [0, ).
n=1

10


https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf
https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf
https://my-calculus-web.firebaseapp.com/MA3110/Chapter%208%20Uniform%20Convergence%20and%20differentiation.pdf

(if) Using part (i) or otherwise, prove that the series,

0 (_1)n+1e—nx
n=l v n2 + X2 ’
converges uniformly on the interval [0, ).

© 4n

(b) (i) Show that the series f(X)= Z(: )

(if) Show that f (x) satisfies the differential equation

converges for all x in R.

F)+ F'O)+F" () + £ (X)=e*,

for any x in R.
Solution
Part (a)
(i)
The n-th partial sum of the series,
SV B & U
Z( ) - Seey e Seery e ey T

Forx>0, e*>1 and ixgl and so
e

1 1

k+1 1—(—1)nW 1+?

Z( = il P
1+e” 1+e* 2
( 1)k+l
If we let f,(x)= o , then the n-th partial sums s,(x) = Zf (x) satisfies
k=1

n ( 1)k+1
15,00 =D_ f (x)| = Z R <1 forall x>0.

k= k=1

Hence, s,(x) is uniformly bounded by 1 on [0, o).
(ii)

1
+x?

sl forall xin R and
n

Let g,(x) = . Observe that |gn(x)|:‘ -
n

n? + x2

11



1 < 1
\/(n +12+x° YN’ + X

g,..(X)= =g,(x) forall xin R and for all integer n > 1.

Thus, (g,(x)) is a decreasing sequence of functions on [0, o) such that g,(x) -0
uniformly on [0, ©©).

Therefore, since we have shown in part (i) that the partial sums s, (x) is uniformly

)n+l —nx

bounded on [0, ), by the Dirichlet’s Test, Z f.(X)g,(x) = Z(— converges
mt Vn%+x2

uniformly on [0, ).

Part (b)
i
( ) | 4an+4 | X4
Forx#0, / = —0 asn— .
|(4n +4)1/ (4n)!| " (4n+4)(4n+3)(4n+2)(4n+1)
X4n
Therefore, by the Ratio Test, the series f(X) = Z L an)! converges for all X # 0.

It plainly converges at x = 0. Hence the series converges forall x in R.
(ii)
Similarly, as in part (i), we can deduce that

4n-1 0 4n-2

o X X = xe
§(4n—1)! ’§(4n—2)l ;(4n 3)!
converge for all x in R.
0 X4n
Hence, since the function f (x) has the power series representation f (X) = Z A
by part (i),
0 X4n—1 0 X4n—2 o0 X4n—3
f'(X)=) ———,f"X) =Y — and f"(X) =) —.
() §(4n—1)! () nzzl“(4n—2)! () Z‘(4n—3)!
Then we claim that
fFX)+ T'(X)+ T"(X)+ £"(x) :ZX—I
n=0 n:

We prove this as follows:

X - -
Let tn(X) = ZF Then t (x) »> e* forall xin R. Therefore, t,, (x) —>e* forall xin
k=0 -
R.

12



Let Uy (X) = Z(4k)l Va(X) = Z(4|< Ty 0= Z(4k 21 &

filx)= Z(4k 3!

Then forall X in R,
u,(x) > f(x), v.(x) > f'(x), w,(x) > £"(x) and £,(x) > f"(x).

Note that t, (X) =u (X)+V, (X)+w (X)+(,(x) for n>1.

Taking limits,
e =limt, (x) =limu (x) +limv_(x)+limw_(x)+lim ¢ (x)

=f(x)+ f'(x)+ f"(x)+ f"(x).

13



