Solution To NUS MA3110 Mathematical Analysis II

SEMESTER 2 EXAMINATION 2011-2012

By Ng Tze Beng

Question 1

(a) Suppose f is a function differentiable on $[a, b]$ with $a<b$.

Suppose $f^{\prime}(a)=f^{\prime}(b)=0$.
By using the function $h(x)=\left\{\begin{array}{l}\frac{f(x)-f(a)}{x-a}, a<x \leq b \\ f^{\prime}(a)=0, x=a\end{array}\right.$, or otherwise, prove that there exists a point c in (a, b) such that

$$
\frac{f(c)-f(a)}{c-a}=f^{\prime}(c) .
$$

(b) Suppose g is a function twice differentiable on $(0,1)$ such that for some $K>0$, $\left|g^{\prime \prime}(x)\right| \leq K$ for all x in $(0,1)$. Prove that g is uniformly continuous on $(0,1)$. (Hint: show that g^{\prime} is bounded on $(0,1)$.)

Solution

Part (a)

Part (a) says that for a continuous function f on the interval $[a, b]$, satisfying the condition in (a), there is always a point c in the interior of $[a, b]$ such that the line joining the points $(a, f(a))$ and $(c, f(c))$ is the tangent line to the graph of f at $(c, f(c))$.

Since f is differentiable on $[a, b], f$ is continuous $[a, b]$. Therefore, h is continuous on $(a, b]$ as $h(x)=\frac{f(x)-f(a)}{x-a}$ on $(a, b]$.

Now, $\lim _{x \rightarrow a^{+}} h(x)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)=h(a)$. Hence, h is continuous on $[a, b]$.
Since f is differentiable on (a, b) and $\left.h\right|_{(a, b)}(x)=\frac{f(x)-f(a)}{x-a}$, by the Quotient Rule, h is differentiable in (a, b).

By the Extreme Value Theorem, h attains its maximum and minimum in $[a, b]$. If h attains its maximum or minimum at a point c in the interior of $[a, b]$, then since h is differentiable on $(a, b), h^{\prime}(c)=0$.

Now, for x in (a, b),

$$
\begin{equation*}
h^{\prime}(x)=\frac{f^{\prime}(x)}{x-a}-\frac{f(x)-f(a)}{(x-a)^{2}}=\frac{f^{\prime}(x)}{x-a}-\frac{h(x)}{x-a}=\frac{f^{\prime}(x)-h(x)}{x-a} . \tag{1}
\end{equation*}
$$

Thus, $h^{\prime}(c)=0 \Rightarrow f^{\prime}(c)=h(c)=\frac{f(c)-f(a)}{c-a}$.
Now, we look at the case that h does not attain its extremum in the interior of $[a, b]$.
Then its maximum and minimum must occur at the end points of $[a, b]$.
Now $h(a)=f^{\prime}(a)=0$.
If $h(b)=0$, then h must be a constant function. We can thus take any c in (a, b).
(In this case $f(x)=f(a)$ for all x in $[a, b]$.)
Thus, h must have an extremum in the interior of (a, b) giving a contradiction.
It follows that $h(b) \neq 0$.
Suppose now $h(b)<0$. Then $h(b)$ must be the absolute minimum of h since $h(a)=0$.
Consequently, $\frac{h(x)-h(b)}{x-b} \leq 0$ for $a \leq x<b$.
Note that for x in (a, b),

$$
\frac{h(x)-h(b)}{x-b}=\frac{f(x)-f(b)}{x-b} \cdot \frac{1}{b-a}-\frac{f(x)-f(a)}{x-a} \cdot \frac{1}{b-a} .
$$

Thus, since f is differentiable at $b, \lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b}$ exists and

$$
\begin{aligned}
\lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b} & =\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b} \cdot \frac{1}{b-a}-\lim _{x \rightarrow b^{-}} \frac{f(x)-f(a)}{x-a} \cdot \frac{1}{b-a} \\
& =\frac{f^{\prime}(b)}{b-a}-\frac{f(b)-f(a)}{(b-a)^{2}}=\frac{f(a)-f(b)}{(b-a)^{2}}=-\frac{h(b)}{b-a}>0 .
\end{aligned}
$$

But as a consequence of (2), $\lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b} \leq 0$.
Hence, we have a contradiction. So $h(b)>0$ and $h(b)$ is the absolute maximum of h.
Consequently, $\lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b} \geq 0$.
But $\lim _{x \rightarrow b^{-}} \frac{h(x)-h(b)}{x-b}=\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b} \cdot \frac{1}{b-a}-\lim _{x \rightarrow b^{-}} \frac{f(x)-f(a)}{x-a} \cdot \frac{1}{b-a}$

$$
=\frac{f^{\prime}(b)}{b-a}-\frac{f(b)-f(a)}{(b-a)^{2}}=\frac{f(a)-f(b)}{(b-a)^{2}}=-\frac{h(b)}{b-a}<0 .
$$

So we again arrive at a contradiction.
This means h must have an abolute extremum c in the interior of $[a, b]$ and
$\frac{f(c)-f(a)}{c-a}=f^{\prime}(c)$.

Part (b)

Follow the hint.
Take a point a in (0,1).
Since g is twice differentiable in $(0,1)$, by the Mean Value Theorem, for $x \neq a, x \in(0,1)$,

$$
\frac{g^{\prime}(x)-g^{\prime}(a)}{x-a}=g^{\prime \prime}(y) \quad \text { for some } y \text { between } x \text { and } a \text {. }
$$

Thus, $g^{\prime}(x)=g^{\prime}(a)+(x-a) g^{\prime \prime}(y)$.
Therefore, $\left|g^{\prime}(x)\right| \leq\left|g^{\prime}(a)\right|+|x-a|\left|g^{\prime \prime}(y)\right| \leq\left|g^{\prime}(a)\right|+\left|g^{\prime \prime}(y)\right| \leq\left|g^{\prime}(a)\right|+K$.
Hence, $g^{\prime}(x)$ is bounded by $\left|g^{\prime}(a)\right|+K$ on $(0,1)$. Let $\left|g^{\prime}(a)\right|+K=M$.
This means g is Lipschitz and so g is uniformly continuous on $(0,1)$.
We can deduce this as follows:
For $x \neq y, x, y$ in $(0,1)$, by the Mean Value Theorem,

$$
\frac{g(y)-g(x)}{y-x}=g^{\prime}(c) \text { for some } c \text { between } x \text { and } y .
$$

Therefore,

$$
|g(y)-g(x)|=\left|g^{\prime}(c)\right||y-x| \leq M|y-x| .
$$

This inequality is obviously true for $x=y$.
Given any $\varepsilon>0$, take $\delta=\frac{\varepsilon}{M+1}$. Then for all x and y in (0,1),

$$
|x-y|<\delta \Rightarrow|g(y)-g(x)| \leq M \cdot \frac{\varepsilon}{M+1}<\varepsilon .
$$

This means that g is uniformly continuous on $(0,1)$.

Question 2

(a) The function $h:[0, \pi] \rightarrow \mathbf{R}$ is defined by

$$
h(x)=\left\{\begin{array}{l}
\sin (x), \text { if } x \text { is rational } \\
\cos (x), \text { if } x \text { is irrational }
\end{array}\right.
$$

(i) Show that there exists a sequence of partitions (P_{n}) of $[0, \pi]$ and a choice of points C_{n} in each of the subintervals of P_{n} with $\left\|P_{n}\right\| \rightarrow 0$, such that the Riemann sum $R(h$, $\left.P_{n}, C_{n}\right) \rightarrow 2$ as $n \rightarrow \infty$, where

$$
\begin{gathered}
R\left(h, P_{n}, C_{n}\right)=\sum_{k=1}^{L} h\left(c_{k}\right)\left(x_{k}-x_{k-1}\right), \\
P_{n}: x_{0}=0<x_{1}<\quad x_{2}<\ldots<x_{L}=\pi \text { and } c_{k} \in\left[x_{k-1}, x_{k}\right], k=1, \ldots, L .
\end{gathered}
$$

(ii) Show that there exists a sequence of partitions (Q_{n}) of $[0, \pi]$ and a choice of points D_{n} in each of the subintervals of Q_{n} with $\left\|Q_{n}\right\| \rightarrow 0$, such that the Riemann sum $R(h$, $\left.\mathrm{Q}_{n}, D_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Hence or otherwise, prove that h is not Riemann integrable.
(b) Suppose the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on an interval I.
(i) Prove that then the sequence of functions $\left(f_{n}(x)\right)$ converges uniformly on I to the zero constant function.
(ii) Prove that for any $K>0, \sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ converges uniformly on the closed disk $[-K$, $K]$, to a continuous function f. Deduce that it converges pointwise to a continuous function on \mathbf{R} but the convergence is not uniform on \mathbf{R}.

Solution

Part (a)

(i)

Take the partition

$$
P_{n}: x_{0}=0<x_{1}<\quad x_{2}<\ldots<x_{n}=\pi \text {, with } x_{i}=\frac{i}{n} \pi .
$$

Then $\left\|P_{n}\right\|=\frac{\pi}{n}$ and so $\left\|P_{n}\right\| \rightarrow 0$.
For each subinterval, $\left[x_{i-1}, x_{i}\right]$, by the density of the rational numbers, there exists a rational number $c_{i} \in\left[x_{i-1}, x_{i}\right]$. Let $C_{n}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)$. Then the Riemann sum,

$$
R\left(h, P_{n}, C_{n}\right)=\sum_{i=1}^{n} h\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} \sin \left(c_{i}\right)\left(x_{i}-x_{i-1}\right),
$$

is also a Riemann sum for $\sin (x)$ on $[0, \pi]$. Therefore, by the Riemann Sum
Convergence Theorem, since $\sin (x)$ is Riemann integrable on $[0, \pi]$,

$$
R\left(h, P_{n}, C_{n}\right) \rightarrow \int_{0}^{\pi} \sin (x) d x=[-\cos (x)]_{0}^{\pi}=2 .
$$

(ii) Let $Q_{n}=P_{n}$. By the density of the irrational number, there exists an irrational number $d_{i} \in\left[x_{i-1}, x_{i}\right]$. Let $D_{n}=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$. The Riemann sum,

$$
R\left(h, Q_{n}, D_{n}\right)=\sum_{i=1}^{n} h\left(d_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} \cos \left(d_{i}\right)\left(x_{i}-x_{i-1}\right),
$$

is also a Riemann sum for $\cos (x)$ on $[0, \pi]$. Therefore, as in part(i), by the Riemann Sum
Convergence Theorem, since $\cos (x)$ is Riemann integrable on $[0, \pi]$,

$$
R\left(h, Q_{n}, D_{n}\right) \rightarrow \int_{0}^{\pi} \cos (x) d x=[\sin (x)]_{0}^{\pi}=0 .
$$

Thus, the function h cannot be Riemann integrable, because if it were, all Riemann sum must converge to the same limit but we have $R\left(h, P_{n}, C_{n}\right) \rightarrow 2$ and $R\left(h, Q_{n}, D_{n}\right) \rightarrow 0$.

Part (b)

(i)

If $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on an interval I, then the series is uniformly Cauchy on I. Hence, given any $\varepsilon>0$, there exists an integer N such that for all $n \geq N$ and for all $p \geq 1,\left|\sum_{k=n+1}^{n+p} f_{k}(x)\right|<\varepsilon$ for all x in I.
Taking $p=1$, we have then that $n \geq N \Rightarrow\left|f_{n+1}(x)\right|<\varepsilon$ for all x in I.
This means $f_{n}(x) \rightarrow 0$ uniformly on I.
(ii)

Observe that $\left|\sin \left(\frac{x}{n^{2}}\right)\right| \leq \frac{|x|}{n^{2}} \leq \frac{K}{n^{2}}$ for all $|x| \leq K$.
Since $\sum_{n=1}^{\infty} \frac{K}{n^{2}}$ is convergent, by the Weierstrass M-Test, $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ is uniformly convergent on $[-K, K]$.

Since the n-th partial sum of this series is continuous and the convergence is uniform, the series converges to a continuous function f on on $[-K, K]$.

For any x in \mathbf{R}, we can always take any real number $K>|x|$. (You might like to invoke the Archimedean property of the real numbers.) We have just shown that $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ converges and converges to a function f continuous on $[-K, K]$. This means that the series $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ converges at every x in \mathbf{R} to a function f on \mathbf{R}. Moreover, the restriction of f to $(-K, K)$ is continuous and so f is continuous at x. It follows that the function f is continuous on \mathbf{R}.
The convergence of the series $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ cannot be uniform in \mathbf{R}.
If it were, then by part (i) $\sin \left(\frac{x}{n^{2}}\right)$ must converge uniformly to the zero constant function on \mathbf{R}.
For any positive integer n, let $x_{n}=\frac{\pi}{2} n^{2}$, then $\sin \left(\frac{x_{n}}{n^{2}}\right)=1$. Take $\varepsilon=1 / 2$. Then for any integer N and for any integer $n \geq N,\left|\sin \left(\frac{x_{n}}{n^{2}}\right)\right|=1>\frac{1}{2}=\varepsilon$. This means $\sin \left(\frac{x}{n^{2}}\right)$ does not converge uniformly to 0 on \mathbf{R}.

Question 3

(i) Prove that for $x>0, \sin (x)<x$. By using this inequality and the Cauchy Mean Value Theorem, or otherwise, prove that for $x>0$,

$$
x-\frac{x^{3}}{3!}<\sin (x)<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} .
$$

(ii) Using the inequality in part (i) or otherwise, prove that the series,

$$
\sum_{n=1}^{\infty}\left(\sin \left(\frac{x}{\sqrt{n}}\right)-\frac{x}{\sqrt{n}}\right)
$$

converges uniformly on $[0, a]$, for any $a>0$ to a continuous function $f:[0, a] \rightarrow$ R. Hence, deduce that $\sum_{n=1}^{\infty}\left(\sin \left(\frac{x}{\sqrt{n}}\right)-\frac{x}{\sqrt{n}}\right)$ converges pointwise to a continuous function f on $[0, \infty)$.
(iii) Prove that the series $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}} \cos \left(\frac{x}{\sqrt{n}}\right)-\frac{1}{\sqrt{n}}\right)$ converges uniformly to a function g on $[0, a]$, for any $a>0$. Deduce that $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}} \cos \left(\frac{x}{\sqrt{n}}\right)-\frac{1}{\sqrt{n}}\right)$ converges pointwise to a continuous function g on $[0, \infty)$.
(iv) Prove that the function f in part (ii) is differentiable on $(0, \infty)$ and that $f^{\prime}=g$ on $(0, \infty)$ where g is given in part (iii).

Solution

Part (i)

There are many ways to prove this. An inspection of the graph of $\sin (x)$ or a knowledge of the values of $\sin (x)$ will clearly reveal that for all $x \geq \pi / 2, x \geq \pi / 2>1 \geq \sin (x)$. While on the interval $\left(0, \frac{\pi}{2}\right)$, the graph of $\sin (x)$ is concave down. The tangent line at 0 is the function x and so the graph of $\sin (x)$ for $0<x<\pi / 2$ lies below the tangent line at $x=0$, i.e., $x>\sin (x)$ for $0<x<\pi / 2$. You can prove this statement by using the derivative of $\sin (x)$, i.e., $\cos (x)$, is strictly less than 1 for x in $(0, \pi / 2]$. For instance, for x in $(0, \pi / 2]$, by
the Mean Value Theorem, there exists c between 0 and x such that
$\frac{\sin (x)}{x}=\cos (c)<\cos (0)=1$ and so $x>\sin (x)$. Thus, $x>\sin (x)$ for all $x>0$.
Here is another proof.
Let $\mathrm{g}(x)=x-\sin (x)$. Then g is differentiable and $g^{\prime}(x)=1-\cos (x)$.
Therefore, $g^{\prime}(x)>0$ for all $x \neq 2 n \pi$. Therefore, g is strictly increasing on each interval $[2 n \pi, 2(n+1) \pi]$. Hence, g is strictly increasing on \mathbf{R}. Thus for $x>0, \mathrm{~g}(x)=x-\sin (x)>$ $\mathrm{g}(0)=0$, i.e., $x>\sin (x)$.

Now, for $x>0$, consider the quotient $\frac{x-\sin (x)}{x^{3} / 3!}$. By the Cauchy Mean Value Theorem, there exists c such that $0<c<x$ and

$$
\frac{x-\sin (x)}{x^{3} / 3!}=\frac{x-\sin (x)-0}{x^{3} / 3!-0}=\frac{1-\cos (c)}{c^{2} / 2} .
$$

Applying the Cauchy Mean Value Theorem again, there exists b such that $0<b<c$ and

$$
\begin{equation*}
\frac{x-\sin (x)}{x^{3} / 3!}=\frac{x-\sin (x)-0}{x^{3} / 3!-0}=\frac{1-\cos (c)}{c^{2} / 2}=\frac{\sin (b)}{b}<1 . \tag{1}
\end{equation*}
$$

Hence, $x-\sin (x)<\frac{x^{3}}{3!}$ for $x>0$.

Similarly, applying the Cauchy Mean Value Theorem, there exists c such that $0<c<x$ and

$$
\frac{\sin (x)-x+x^{3} / 3!}{x^{5} / 5!}=\frac{\cos (c)-1+c^{2} / 2}{c^{4} / 4!} .
$$

Applying again the Cauchy Mean Value Theorem, there exists b such that $0<b<c$ and

$$
\frac{\sin (x)-x+x^{3} / 3!}{x^{5} / 5!}=\frac{\cos (c)-1+c^{2} / 2}{c^{4} / 4!}=\frac{-\sin (b)+b}{b^{3} / 3!} .
$$

By (1), $\frac{-\sin (b)+b}{b^{3} / 3!}<1 . \quad$ And so $\frac{\sin (x)-x+x^{3} / 3!}{x^{5} / 5!}<1$.
Hence, $\sin (x)-x+x^{3} / 3!<x^{5} / 5$!, i.e., $\sin (x)<x-x^{3} / 3!+x^{5} / 5$!.
So we have for $x>0$,

$$
x-\frac{x^{3}}{3!}<\sin (x)<x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} .
$$

Part (ii)

By the inequality in part (i), for $x>0$,

$$
\begin{equation*}
-\frac{1}{3!} \cdot \frac{x^{3}}{n \sqrt{n}}<\sin \left(\frac{x}{\sqrt{n}}\right)-\frac{x}{\sqrt{n}}<-\frac{1}{3!} \cdot \frac{x^{3}}{n \sqrt{n}}+\frac{1}{5!} \cdot \frac{x^{5}}{n^{2} \sqrt{n}} \tag{2}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \frac{a^{3}}{n \sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{a^{5}}{n^{2} \sqrt{n}}$ are convergent series as they are a constant times a socalled convergent p-series (you can apply an integral test for the convergence), by the Weierstrass M Test, the series on the left and right of (2), i.e., $-\sum_{n=1}^{\infty} \frac{1}{3!} \cdot \frac{x^{3}}{n \sqrt{n}}$ and $\sum_{n=1}^{\infty}\left(-\frac{1}{3!} \cdot \frac{x^{3}}{n \sqrt{n}}+\frac{1}{5!} \cdot \frac{x^{5}}{n^{2} \sqrt{n}}\right)$ converge uniformly on $[0, a], a>$

0 . Hence, both series are uniformly Cauchy on $[0, a]$.
Thus, given $\varepsilon>0$, there exists M such that for all x in $[0, a]$,

$$
\begin{equation*}
n>m \geq M \Rightarrow\left|\sum_{k=m}^{n}-\frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}\right|<\varepsilon \tag{3}
\end{equation*}
$$

and there exists L such that for all x in $[0, a]$,

$$
\begin{equation*}
n>m \geq L \Rightarrow\left|\sum_{k=m}^{n}\left(-\frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}+\frac{1}{5!} \cdot \frac{x^{5}}{k^{2} \sqrt{k}}\right)\right|<\varepsilon . \tag{4}
\end{equation*}
$$

Let $N=\max (L, M)$. Then from (2), for $n>m \geq N$ and for all x in $[0, a]$,

$$
\sum_{k=m}^{n}-\frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}<\sum_{k=m}^{n}\left(\sin \left(\frac{x}{\sqrt{k}}\right)-\frac{x}{\sqrt{k}}\right)<\sum_{k=m}^{n}\left(-\frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}+\frac{1}{5!} \cdot \frac{x^{5}}{k^{2} \sqrt{k}}\right)
$$

Hence, it follows from (3) and (4) that for $n>m \geq N$ and for all x in $[0, a]$,

$$
\left|\sum_{k=m}^{n}\left(\sin \left(\frac{x}{\sqrt{k}}\right)-\frac{x}{\sqrt{k}}\right)\right| \leq \max \left(\left|\sum_{k=m}^{n} \frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}\right|,\left|\sum_{k=m}^{n}\left(-\frac{1}{3!} \cdot \frac{x^{3}}{k \sqrt{k}}+\frac{1}{5!} \cdot \frac{x^{5}}{k^{2} \sqrt{k}}\right)\right|\right)<\varepsilon .
$$

This means the series $\sum_{n=1}^{\infty}\left(\sin \left(\frac{x}{\sqrt{n}}\right)-\frac{x}{\sqrt{n}}\right)$ is uniformly Cauchy on $[0, a]$ and so the series converges uniformly on $[0, a]$. Since the n-th partial sums of the series are continuous function, the series converges to a continuous function on $[0, a]$.

Take any $x>0$. Take any $a>x$. By the above argument, not only the series converges at x, it converges to a function f continuous at x. Hence f is continuous on $[0, \infty)$.
(iii)

For any x such that $0 \leq x \leq a, a>0$,

$$
\left|\frac{1}{\sqrt{n}} \cos \left(\frac{x}{\sqrt{n}}\right)-\frac{1}{\sqrt{n}}\right|=\frac{1}{\sqrt{n}}\left|\cos \left(\frac{x}{\sqrt{n}}\right)-1\right|=\frac{2}{\sqrt{n}} \sin ^{2}\left(\frac{x}{2 \sqrt{n}}\right) \leq \frac{x^{2}}{2 n \sqrt{n}} \leq \frac{a^{2}}{2 n \sqrt{n}} .
$$

Since $\sum_{n=1}^{\infty} \frac{a^{2}}{2 n \sqrt{n}}$ is convergent, by the Weierstrass M test, the series,

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}} \cos \left(\frac{x}{\sqrt{n}}\right)-\frac{1}{\sqrt{n}}\right)
$$

converges uniformly on $[0, a]$. Since the n-th partial sum of this series is continuous, the series converges to a function g continuous on $[0, a]$ for any $a>0$. Therefore, g is continuous on $[0, \infty)$.

(iv)

Note that the series in part (iii) is obtained from the series in part (ii) by term by term differentiation. That is to say, the series $\sum_{n=1}^{\infty}\left(\sin \left(\frac{x}{\sqrt{n}}\right)-\frac{x}{\sqrt{n}}\right)$ converges to f on $[0$, $a]$ and its derived series $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}} \cos \left(\frac{x}{\sqrt{n}}\right)-\frac{1}{\sqrt{n}}\right)$ converges uniformly to g on $[0, a]$. Hence, f is differentiable on $(0, a)$ and $f^{\prime}(x)=g(x)$ on $(0, a)$. Since this is true for any $a>0, f$ is differentiable on $(0, \infty)$ and $f^{\prime}=g$ on $(0, \infty)$.
(For a reference to this fact see Theorem 8 of Chapter 8, Ng Tze Beng, Mathematical Analysis, An Introduction.
https://my-calculus-
web.firebaseapp.com/MA3110/Chapter\ 8\ Uniform\ Convergence\ and\ differentiation.pdf)

Question 4

(a) (i) By considering an appropriate geometric series or otherwise, show that the n-th partial sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{e^{n x}}$ is uniformly bounded on the interval $[0, \infty)$.
(ii) Using part (i) or otherwise, prove that the series,

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} e^{-n x}}{\sqrt{n^{2}+x^{2}}}
$$

converges uniformly on the interval $[0, \infty)$.
(b) (i) Show that the series $f(x)=\sum_{n=0}^{\infty} \frac{x^{4 n}}{(4 n)!}$ converges for all x in \mathbf{R}.
(ii) Show that $f(x)$ satisfies the differential equation

$$
f(x)+f^{\prime}(x)+f^{\prime \prime}(x)+f^{\prime \prime \prime}(x)=e^{x},
$$

for any x in \mathbf{R}.

Solution

Part (a)

(i)

The n-th partial sum of the series,

$$
\sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{k x}}=-\sum_{k=1}^{n}\left(-e^{-x}\right)^{k}=e^{-x} \sum_{k=0}^{n-1}\left(-e^{-x}\right)^{k}=e^{-x} \cdot \frac{1-\left(-e^{-x}\right)^{n}}{1+e^{-x}}=\frac{1-(-1)^{n} \frac{1}{e^{n x}}}{1+e^{x}}
$$

For $x \geq 0, e^{x} \geq 1$ and $\frac{1}{e^{x}} \leq 1$ and so

$$
\left|\sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{k x}}\right|=\left|\frac{1-(-1)^{n} \frac{1}{e^{n x}}}{1+e^{x}}\right| \leq \frac{1+\frac{1}{e^{n x}}}{1+e^{x}} \leq \frac{2}{2}=1
$$

If we let $f_{k}(x)=\frac{(-1)^{k+1}}{e^{k x}}$, then the n-th partial sums $s_{n}(x)=\sum_{k=1}^{n} f_{k}(x)$ satisfies

$$
\left|s_{n}(x)\right|=\left|\sum_{k=1}^{n} f_{k}(x)\right|=\left|\sum_{k=1}^{n} \frac{(-1)^{k+1}}{e^{k x}}\right| \leq 1 \text { for all } x \geq 0
$$

Hence, $s_{n}(x)$ is uniformly bounded by 1 on $[0, \infty)$.
(ii)

Let $g_{n}(x)=\frac{1}{\sqrt{n^{2}+x^{2}}}$. Observe that $\left|g_{n}(x)\right|=\left|\frac{1}{\sqrt{n^{2}+x^{2}}}\right| \leq \frac{1}{n}$ for all x in \mathbf{R} and
$g_{n+1}(x)=\frac{1}{\sqrt{(n+1)^{2}+x^{2}}} \leq \frac{1}{\sqrt{n^{2}+x^{2}}}=g_{n}(x)$ for all x in \mathbf{R} and for all integer $n \geq 1$.

Thus, $\left(g_{n}(x)\right)$ is a decreasing sequence of functions on $[0, \infty)$ such that $g_{n}(x) \rightarrow 0$ uniformly on $[0, \infty)$.

Therefore, since we have shown in part (i) that the partial sums $s_{n}(x)$ is uniformly bounded on $[0, \infty)$, by the Dirichlet's Test, $\sum_{n=1}^{\infty} f_{n}(x) g_{n}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} e^{-n x}}{\sqrt{n^{2}+x^{2}}}$ converges uniformly on $[0, \infty)$.

Part (b)

(i)

For $x \neq 0, \quad\left|\frac{x^{4 n+4}}{(4 n+4)!} / \frac{x^{4 n}}{(4 n)!}\right|=\frac{x^{4}}{(4 n+4)(4 n+3)(4 n+2)(4 n+1)} \rightarrow 0$ as $n \rightarrow \infty$.
Therefore, by the Ratio Test, the series $f(x)=\sum_{n=0}^{\infty} \frac{x^{4 n}}{(4 n)!}$ converges for all $x \neq 0$. It plainly converges at $x=0$. Hence the series converges for all x in \mathbf{R}.
(ii)

Similarly, as in part (i), we can deduce that

$$
\sum_{n=1}^{\infty} \frac{x^{4 n-1}}{(4 n-1)!}, \sum_{n=1}^{\infty} \frac{x^{4 n-2}}{(4 n-2)!} \text { and } \sum_{n=1}^{\infty} \frac{x^{4 n-3}}{(4 n-3)!}
$$

converge for all x in \mathbf{R}.
Hence, since the function $f(x)$ has the power series representation $f(x)=\sum_{n=0}^{\infty} \frac{x^{4 n}}{(4 n)!}$, by part (i),

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{x^{4 n-1}}{(4 n-1)!}, f^{\prime \prime}(x)=\sum_{n=1}^{\infty} \frac{x^{4 n-2}}{(4 n-2)!} \text { and } f^{\prime \prime \prime}(x)=\sum_{n=1}^{\infty} \frac{x^{4 n-3}}{(4 n-3)!} .
$$

Then we claim that

$$
f(x)+f^{\prime}(x)+f^{\prime \prime}(x)+f^{\prime \prime \prime}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

We prove this as follows:
Let $t_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$. Then $t_{n}(x) \rightarrow e^{x}$ for all x in \mathbf{R}. Therefore, $t_{4 n}(x) \rightarrow e^{x}$ for all x in R.

Let $u_{n}(x)=\sum_{k=0}^{n} \frac{x^{4 k}}{(4 k)!}, v_{n}(x)=\sum_{k=1}^{n} \frac{x^{4 k-1}}{(4 k-1)!}, w_{n}(x)=\sum_{k=1}^{n} \frac{x^{4 k-2}}{(4 k-2)!}$ and $\ell_{n}(x)=\sum_{k=1}^{n} \frac{x^{4 k-3}}{(4 k-3)!}$.
Then for all x in \mathbf{R},
$u_{n}(x) \rightarrow f(x), v_{n}(x) \rightarrow f^{\prime}(x), w_{n}(x) \rightarrow f^{\prime \prime}(x)$ and $\ell_{n}(x) \rightarrow f^{\prime \prime \prime}(x)$.
Note that $t_{4 n}(x)=u_{n}(x)+v_{n}(x)+w_{n}(x)+\ell_{n}(x)$ for $n \geq 1$.
Taking limits,

$$
\begin{aligned}
e^{x} & =\lim _{n \rightarrow \infty} t_{4 n}(x)=\lim _{n \rightarrow \infty} u_{n}(x)+\lim _{n \rightarrow \infty} v_{n}(x)+\lim _{n \rightarrow \infty} w_{n}(x)+\lim _{n \rightarrow \infty} \ell_{n}(x) \\
& =f(x)+f^{\prime}(x)+f^{\prime \prime}(x)+f^{\prime \prime \prime}(x) .
\end{aligned}
$$

