Solution to MA3110 Analysis Semester 2 2005/06

Question 1

(@) LetS be anon-empty set of positive real numbers with the following property: There
exists a positive real constant C such that for any positive integer n and any n distinct
elements s;, Sz, ...,SninS,we have s;+s,+ ... +5,<C.
(1) Show that for every positive integer k, the set Sx={ s € S: s> C/k } has at most k
elements.
(ii) Deduce that S is countable.

(b) Let (a.) be a bounded sequence of real numbers. You may use the fact that
lim sup X, =]im by, where by, =sup {an ,an+1, an+2, ...}. Denote lim sup x, by a.
n—oo n—oo

(1) Prove that for every x > a, there exists N e N such that a, <x forall n>N.

(2) Prove that for every y < a, there exist infinitely many n in N such thaty < a,

(3) Prove that conversely, if a is any real number satisfying both conditions in (1) and (2)
above, then a=lim sup Xp.

n— o

Answer

(@) This is a countability argument.

S consists of positive real numbers for which any n distinct elements in S has their sum < C
for some constant C.

(1) Sk={s e S:s>C/k} foreach positive integer.

Then Sk has at most k elements.

Suppose on the contrary that Sc has more than k elements, i.e., |Sc| =n>k.

LetSk={s1,S2, ...,S}.Thens;+s,+ ... +s,>nx C/k > C since n/k > 1. Butsince Sxc
S,
S1+ S+ ... +5,<C. Thiscontradicts s; +s,+ ... + s, > C and so Sk has at most k elements.
(i)

Take any s in S. Then by the Archimedean property of R, there exists a positive integer N
such that

Ns>C. Therefore,s>C/Nandsos e Snc U{Sc: ke N}. ThatmeansSc U{Sc:k e N
}. Sinceeach Sxc S, U{Sc: ke N} S. Therefore, S=uU{Sc:ke N} ThusSisa
countable union of sets each of which is finite (and so countable). It follows that S is
countable.

(b) This is about the property of limit superior.
Given that (a,) is a bounded sequence. Now we recall why lim sup X, exists.
n—oo

For each positive integer n, let b, be the supremum or the least upper bound of the set {a,
,@n+1, @ns+2 , ... }. This exists because {an ,an+1 , a2, ...} IS bounded since the sequence (an)
is bounded. Plainly (by) is bounded also. (If L < a, <K forall n, then L <b, <K because L
and K are also lower and upper bounds for {a, ,an+1, @n+2, ...}.) Now (by) is a decreasing
sequence. This is seen as follows. Forn>m, {a,, a1, @2, ...} < {@man+1, @mez, ... }-
Therefore,

bn = sup {an ,an+1, sz, ...} <SUP {@m@n+1, Amez, ...} = D
Thus, since (by) is bounded below, by the Monotone Convergence Theorem, (by) is
convergent. The limit of (bn) is Iirnn SUP Xn. In particular, the limit is the infimum of {b, ,b.,

bs,...}. Let lim by=a Then Iirnn SUp Xn =a.



(1) Take any x> a. Then x > inf {by ,b,, bs, ...}. Thus, there exists an element k in {b; ,b>,
bs, ...} such that x > k > inf {b: ,b,, bs, ...} = a by the definition of infimum or greatest
lower bound. Then there exists an integer N such that k = by . Therefore, forall n> N,

X > by =sup {an ,an+1, sz, ...} > an .
Hence foralln>N, x> a,.
(2) Takey <a. Thensince a is the greatest lower bound or infimum of {b; ,b.,bs, ...}, y
is a lower bound of {b:,b,,bs,...}. Thatis y < by for all positive integer k.
So y<bi=sup{a:,a., as, ...}. Therefore, by the definition of supremum or least upper
bound, there exists n; > 1 such that y < an, <bi. Now y<bn.41. And so there exists nz > n;
+1>n; suchthaty <an, <bng1. Inthis way we inductively define a,, such that
Yy <an <bn., 41 and ne> nia . Hence the set {an,, an,, ... }satisfies y <a,, forall jin N and
the set {n; : ] € N} is an infinite subset of N as n; = ni for j = k. Therefore, there are infinitely
many n in N such thaty < a, .
(3) Suppose (1) and (2) holds for some real number a.
Takeanye>0. Thena+¢>a.
Then by part (1) there exists an integer N such that foralln >N, a + ¢>a,. Therefore, a +
& is an upper bound for {an ,an+1 , an+2, ...}. Thusa + > sup {an ,an+1, an+2, ...} = bn.
Therefore, foralln>N, by <by<a+&. Therefore, lim by <a+e  Since ¢ is arbitrary,
lim by <a.
Now consider a — € < a. By part (2) there exists infinitely many n in N such that a — € < a,.
Thus for each n in N, there exists an integer m, > n such that that a— e < ap,. Therefore,

a—¢&<am, <sup{an, anst, ...} =bn.

Hence,a—¢ < bm for each min N. It follows that ,a — & <|im bn. Since ¢ is arbitrary, ,
a <lim by.
Therefore, by the previous inequality, we have lim b, =a and so lim sup x, = a.

n— oo

Question 2
(@) LetSbetheset {1+ % :neN}UJ{xeQ: 2<x<3),and F: R — R the function defined by
0 xifxe$S
X) = 1 .
X0 ifxeS

(i) Find the set of all cluster points of S. (You do not need to give a proof of your
answer.)
(i) Using the ¢ - o definition of a limit, show that )(Iig/]2 F(x) exists and find its value.

(iii) Determine if Ixirr21 F(x) exists. Justify your answer.

(b) Let Aand B be non-empty sets, let ¢ in R be a cluster point of A and b in B a cluster
pointof B. Letg: A — B and f: B— R are maps such that f is continuous at b and
lim g(x) =b. Use ¢ - 6 argument to prove that limf o g(x) =f (b)

Answer
@) RecaIIS:{1+%:neN}U{x €Q:2<x<3) and
0 3xifxeS
X) = 1 .
) ifxeS



(i). Recall the definition of a cluster point. s is a cluster point of S if any open interval
containing s also contains infinitely many elements in S.

Thus the set of cluster points of S is {1}U[2, 3].
Obviously the points in this set are cluster points of S. ( Any point in [2, 3] satisfies that any
open interval containing it has intersection with [2, 3] as an interval which is a non trivial
subinterval of [2, 3] which contains infinitely many rational points in (2, 3). Any open
interval containing 1 contains infinitely many points in S of the form 1+ 1/n. Plainly (1-¢,
1+&) o (1-1/N, 1+1/N) for some integer N such that 1/N < ¢ . Therefore, for all n > N, 1+1/n
e S. Obviously any x > 3, has an open neighbourhood that has empty intersection with S.
For all x < 1, x cannot be a cluster point of S for the same reason. There is only a finite
number of members of S in [y, 2] for any y > 1. We can deduce this as follows, foranyy > 1,
there exists a positive integer M such that 1/M <y —1 and so consequently 1+1/M <y. Thus
[y, 2]nS < {1+1/n: 1< n<M} {2}, which is finite and so [y, 2] can have only a finite number
of members of S. Hence (1, 2) does not contain any cluster points of S . (This is because for
any x in (1, 2), there exists a 6 > 0 such that x—6 > 1 and [x-9, x+38] < (1,2) and so [x—5, X+3]
c [x=9, 2] , consequently (x—0, X+d) has only a finite number of members of S .)
(if) Since 3/2 is not a cluster point of S, there exists a 6 > 0 such that

(3/2 -5, 3/2+3) N S = {3/2}. We can take 6 = 1/2 — 1/3=1/6.

Claim that the limit is 1/(3/2+2)= 2/5.

Give any ¢ > 0, take & = min(1/6, 5¢/2).
Then 0< |x —3/2| < & implies that x ¢ S since 0 < |x —3/2| < 1/6 so that 1+1/3<x< 1+ 2/3
and x # 3/2 and so
X=%
x+1)

_2
-5

_|1 2| 3=2x
IF-215]= |3y - 5] - B(x+ 1)

since 0 <|x—-3/2| < 5¢/2, )
This proves that lim F(x) = ¢
(iii) No.
Let a be areal number. Take € =1. Then forany >0, let d: = min (1/2, 3). Then
consider the interval (2 — 6,, 2 + 8,). Pick a rational number x and an irrational number y in
this (2, 2 + 6,). We can do this by the density of the rational numbers and also that of the
irrational numbers. Then x € Sandy ¢ S. Therefore, F(x) = 3x > 6 by the definition of F.
Similarly, F(y) = 1/(y+1) < 1/3. Now by the triangular inequality,

IF() —a|+|F(y) -al =[F(X)-F(y)|=FX)-F()>6-1/3>2.
Then at least one of |F(x) —a|or F(y) - a| must be greater than or equal to 1. Let x; = x if
[F(x)—a|>1. If [F(x)—a|< 1,thenletxs=y.

2|, 3| _2 5&_
<5X‘2‘<5' =€

Thus for any & > 0, we can always find an element x5 in (2 — 8;, 2 + 8;) such that |[F(xs) —a |
> 1. This means IX|n21 F(x) + a for any a. Therefore, IXirQ F(x) does not exist.

Alternatively, take a sequence (a. ) of rational numbers in (2,3) which converges to 2 and also
a sequence (b, ) of irrational numbers in (2,3) also converging to 2. (We can do this by the
density of the rational numbers and that of the irrational numbers. For eacn nin N, there is a
rational number a, and an irrational number b, such that 2 < a, , b, < 2+ 1/n. Obviously, by
the Comparison Theorem, both (a, ) and (b, ) converge to 2.) Now since a is rational and
between 2 and 3, a, is in S. Therefore, the sequence ( F(a. )) = (3a, ) and converges to
3x2=6. Now b, is irrational and so b, ¢ S. Thus F (b,) =1/(b, +1). Since (b, ) converges
to 2, (F (bn)) converges to 1/(2+1) = 1/3. Therefore, |im F(an) #lim F(bn) while

lim an =|im b, = 2 and so we conclude that lim F(x) does not exist.

3



(b) This is just the chain rule for limit. Recall that A and B are non-empty sets, c in R is a
cluster point of A and b in B is a cluster point of B. g: A— B and f: B— R are maps such
that f is continuous at b and ljm g(x) = b.

f is continuous at b means given ¢ > 0, there exists a 6: > 0 such that

forallyinB, |y—b| <d: impliesthat|f(y)—f(b)| <& ------------m-mmm-- Q)
Now limg(x) =b means that for the same &, > 0 given by (1), there exists & > 0 such that
forall xin A, 0<|x—c|<d implies that | g(x) — b| <&, --------------=------- (2).

Therefore, putting (1) and (2) together, given ¢ > 0, there exists 6 > 0 (given by (2)) such that
forall xin A, 0<|x—c|<d implies that | g(x) — b| < &, which in turn implies by (1)
that
Ifog(x)—f ()l = If (9(x)) —f(b)l <e. This means [jmf og(x) = (b).

Question 3.

(@) Let f :[a, b] — R be continuous such that for every x in [a, b], there exists ay in [a, b]
such that | f (y) | < 1/3 | f (x)|. Prove that f(c) =0 for some c in [a, b].

(b) Suppose g :[0, +e0) — R is continuous on [0, +c0), and that there exist positive
constants a and K such that |g(x) — g(y)| < K|x —y| for all xand y in [a, +c). Prove that
g is uniformly continuous on [0, +o).

Answer.

(@) This will involve Bolzano Weierstrass Theorem and a charaterization of continuity by
sequences.

Recall f :[a, b] — R is continuous such that for every x in [a, b], there existsay in [a, b]
such that | f (y) | < 1/3 | f (x) |. We shall show that f (c) = 0 for some c in [a, b].

We shall construct a sequence in [a, b]. Use Bolzano Weierstrass Theorem to obtain a
convergent subsequence. The limit of this sequence is the required element ¢ with f (c) = 0.

Start with X in [a, b]. Then by the property of f there exists an element which we called x;
in [a, b] such that | f (x1) | < 1/3 | f (Xo) |. Again using the property of f there exists an
element x, in [a, b] such that | f (x2) | < 1/3 | f (x1)|< 1/3% | f (Xo)|. Repeating this process we
get a sequence (X, ) in [a, b] such that | f (x,) | < 1/3"| f (Xo)|. Then by the Bolzano
Weierstrass Theorem (x, ) has a convergent subsequence (xn,) which converges to an
element cin [a, b]. (This is the same thing as saying that the closed and bounded interval [a,
b] is sequentially compact. ) Therefore, since f is continuous at c, for any sequence (a. ) that
converges to c, the sequence (f (a, )) converges to f(c). Therefore, the sequence (f (Xy,))
convergesto f(c). Butsince | f (X,) | < 1/3"| T (Xo)],

lim |f (xn,)| <lim 1/3™If (xo| = 0
Therefore, IkLrE |f (Xn,)| = 0 and so by the Squeeze Theorem m f (Xn,) =0. It follows that f
(c)=0.

(b) This is about uniform continuity and Lipschitz condition.

Recall that g :[0, +20) — R is continuous on [0, +c0) and that there exist positive constants
a and K such that |g(x) — g(y)| < K|x —y| for all xand y in [a, +2). We shall show that g is
uniformly continuous.



Now since [0, a] is a closed and bounded interval and so is compact and since g is
continuous on [0, a], g is uniformly continuous on [0, a]. Therefore, for any € > 0, there
exists 8; > 0 such that
forall xandyin [0, a], x—y| <d:=[9(X) —g(y)| <&/2 ---------m-mmmmmmmmm- 1)
Also note that taking &, = €/(2K), by the above property of the function g
forall xandyin [a, +o), [x—Yy| <3, = [9(X) — g(y)| £ K[x - y|< K &/(2K) = &/2
---------------------- 2
Thus given any ¢ > 0, let 5 = min(ds, &,). Forany xandy in [0,+), if
|Xx —y| <8, we proceed as follows.
(1) If max(x, y)<a, then by (1), since |[x —y| <& = min(d1, 32)<d1, |g(X) —g(y)| <el2<e or
(i) If min(x, y)> a, then by (2), since |x —y| <& = min(81, 82)<5,, |g(X) —g(y)|<el2<¢e or
(iii) Either (i) x<a<y whenx<yor (iij)y<a<xwheny<x.
For case (i) since |x — a] <|x — y| < 81, we have by (1) |g(x) — g(a)| < &/2 and also
since |a —y| <|x —y| < &2, by (2) |g(a) — g(y)| < e/2. Therefore, by the triangular inequality,
l9() — a(y) <lg(x) — g(a)[+]g(a) — g(y)| < &/2 + &2 = &.
Similarly for case (ii) when y <a < x, we can show that |g(x) — g(y)| < .
Hence, by (i) (ii) and (iii) above given € > 0, there exists & > 0 such that
forall xandy in [0, +o0), [Xx—Yy| <d=|9(X) — g(y)| <e.
Thus, g is uniformly continuous on [0, +),

Question 4.
() Let f :(0, +0) — R be differentiable (0, +o0) and lim f'(x)=0. Prove that.
. f
Xlew % = O
(b) Let g: R —> R is a continuous function such that the derivatives g', ... , g exist and
are continuous on R. Suppose that g'(Xo) = ... = g®*®(x)=0 and g**¥(xo)=1 for some Xo

in R. Does g have a relative maximum, or a relative minimum, or neither at X, ? Justify
your answer.

Answer.
(@) This is about how one can handle the infinity question and a simple application of the
Mean Value Theorem.

Start with what we are given lim_f'(x) = 0.
Then given € > 0, there exists a positive integer N such that x > N implies that | f '(x) | < &/2

------------------------------ (1)
Now focus on the interval [N, +).
For any x > N, since f is differentiable, by the Mean Value Theorem, there exists a ¢ such
thatx>c>Nandf .
(X) =T (N)
“x-N_ =1 ©

This means f (x) —f(N) =f'(c) (x—N).
Dividing by x, we get (TX) ~f'(a-R)+ fT ................. )

Next, chose a positive integer M such that
s [T
= X < 2



(We can find M since lim_ @ =0.)

Now take K = max(N, M). Then x> K implies that

‘f(TX)‘ = ‘f /(c)(l_%)jtf(#‘ by (2) since x> N

<|t'@a - +‘f@‘ <If'(c) +‘f(¥ since |(1 - )| <1

‘f(#‘ by (1) sincec>N
e by (3) since x > K = max(N, M)>M.

(b) This is a simple application of the Taylor Polynomial expansion with remainder.
Recall that g: R — R is a continuous function such that the derivatives ¢', ..., g®® exist
and are continuous on R. It is given that g'(Xo) = ... = g®®(x0)=0 and g®*¥(xo)=1.
Then the Lagrange form of the Taylor expansion about x, up to degree 998 gives for any X in
R,
(999)

9(x) = g(xo) + QTQ(!C)(X —X0)? -remmeenneees (1)
for some c strictly between x and Xo .
Note that g©* is continuous and so is continuous at X, . Thus, since g©®*9(xo)=1, there exists a
& > 0 such that |x — Xo| < & implies that g (x) > 0. ( Take ¢ = 1/2 and so by continuity there
exists a § > 0 such that |x — Xo| < & implies that 1/2 = g©9(xo)-1/2< g®*9(x) < g©®*9(x)+1/2.)

Hence for any x in (Xo — 8, Xo + 8), g®*°(x) > 0. Therefore for any x igg(g)§o — 8, Xo + 9), in the
Taylor expansion (1), the Lagrange remainder term has the factor g 999(,C)
obtained is between x ar}993§°' Thus, by (1) for x> X0 in (Xo — J, Xo + J),
g(x) = g(Xo) + g 999(|C) (X —X0)%° > g(Xo) since (Xx—X0)*° >0
and that also by (1) for x < Xo in (Xo — d, Xo + 9),
g*(c) 999 : 999
9() = g(Xo) + “gggr (X—X0)™ < g(Xo) since (X—xo)™ <0

Thus g cannot have a relative maximum nor relative minimum at Xo.

> 0 since the c so

Question 5.

_ ) _J =X, ifxisrational,

(a) Let h:[0, 1] — R be defined by h(x) = { ox . if x is irrational
Determine if his integrable on [0, 1]. Justify your answer.

(b) Suppose that f :[a, b] — R is increasing and differentiable on [a, b] and its derivative f'
is Riemann integrable on [a, b], and suppose that g:[a, b] — R is continuous on [a, b].
Prove that thg)re exists c in [a, b] such that .

C
fa f (x)g(x)dx = f(a) fa g(x)dx+ f(b) fc g(x)dx.
(Hint: Use integration by parts. )

Answer.

—x , if x is rational,
2x , if x is irrational
Then h is discontinuous at every irrational points in [0, 1].

(a) Recall h:[0, 1] — R is defined by h(x) = {

6



Let x be an irrational point in [0, 1]. Then 0 <x < 1. Then there exists a positive integer N
such that 0 < 1/N < x. Therefore, by the density of the rational numbers, for each n> N
there exists a rational number a, suchthat0<x—1/n<a,<Xx,i.e.|a.,-X|=x-a,<1/n.
Therefore, by the Comparison Theorem, since 1/n tends to 0 as n tends to infinity the
sequence (an )n=n tends to x.

Now, h(a, ) = — a, because a, is rational. Therefore, the sequence ( h(an))mn = (= an nen
converges to — x. Also, by the density of the irrational numbers for each n > N there exists
an irrational number b, such that0 <x—1/n<b,<x, 1.e.|by-X| =x-by,<1/n. Similarly
we deduce that (bn )n=n tends to x. But since each by, is irrational ((h(bn ))nsn = ( 2a5 )nen and so
the sequence ( h(bn ))n=n converges to 2x. It follows that because 2x # —x, (‘h(an ))n=n and (
h(bn ))s=n do not converge to the same limit while both (a, )n-n and (b )a=n cOnverge to the
same limit x. Consequently, h is not continuous at x. Therefore, h is discontinuous at every
irrational point in [0,1]. Therefore, by Lebesgue Theorem h is not Riemann integrable on
[0,1] as the set of irrational points in [0, 1] has non zero measure.

Alternatively, we can use the upper and lower Darboux sums.
Let A: Xo=0<X; <Xz ... <X, =1 be a partition for [0, 1].
Then the upper Darboux sum with respect to A is

n n

Uu) = g MiAX; = g Mi(Xi — Xi=1),

where M; =sup{h(X) : X € [Xi-1, Xi]} = 2Xi
Similarly, the lower Darboux sum with respect to A is

L(A) = Z MiAXj = Z mi(Xi — Xi-1),
where m; =inf{h(x) : xe[xI 1, x]} = —Xj

n
Therefore, U(A) - L(A) = 3 2 Xi(Xi = Xi1) = % 20 =1+ (6 =i2)°]
.3 2 _3 _
Z[x =5
Therefore, for any partltlon A, U(A) — L(A) > 3/2. Hence h is not Riemann integrable.

(b) This is sometimes called the Third Mean Value Theorem for Integral.

Suppose f :[a, b] — R is increasing and differentiable on [a, b] and its derivative f'is
Riemann integrable on [a, b], and suppose that g:[a, b] — R is continuous on [a, b]. Then
there exists c in [a, b] such that

J f 00g00dx= 1@ J; goodx-+ 1 (b) | goxydx
Follow the hint.
Let G(x) = j: g(t)dt. Then since g is continuous, G(x) is an anti-derivative of g(x) by the
Fundamental Theorem of Calculus. Then using integration by parts,
J2 £ 00gdx = [f G015 - [, GX) F'(x)dx
R ) e T B P R RLC e ——— (1)
since G(a) = 0.
Now, since G(x) is continuous on [a, b], by the Extreme Value Theorem, there exists d and e
in [a, b] such that for all x in [a, b],
G(d) <G(X) <G(e). e 2
Note that since f is increasing and differentiable on [a, b], f'(x) > 0 for all x in [a, b].
Therefore, multiplying (2) by f'(x) we get for all x in [a, b],
G(d) f'(x) < G(x) f'(x) < G(e)f '(x).

7



Thus, taking integrals, ) ) )

G(d) |, ') <f, G f'dx<G(e) [, ' (x)dx
Hence by the Intermediate VValue Theorem, there exists ¢ between d and e and hence in [a, b]
such that

{2600 ' ()dx=G(e) [ F100dx  —emmeeme 3)
Now since f'is Riemann integrable on [a, b], by Darboux Theorem,
{7 f100dx= f(b)— f(a).
It follows then from (3) that
IR RS ST GA () IR AC)) J— 4

Thus substituting (4) in (1) we obtain,

J2 £ 009)dx = F (0)G(B) - [, G(X) F'(x)c = f (B)G(b) ~ G(e)(  (b) — f (2)

=f(B)GH)-GE) +f@GE)

=1 ()| ], g00dx— [ godx |+ @) [ g

=f(b) |, gx)dx+ f (@) | gox
This completes the proof.



