Solution to MA3110 Analysis Semester 2005/06

Question 1

(a) Let S be a non-empty set of positive real numbers with the following property: There exists a positive real constant C such that for any positive integer n and any n distinct elements $s_{1}, s_{2}, \ldots, s_{n}$ in S, we have $s_{1}+s_{2}+\ldots+s_{n} \leq C$.
(i) Show that for every positive integer k, the set $S_{k}=\{s \in S: s \geq C / k\}$ has at most k elements.
(ii) Deduce that S is countable.
(b) Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. You may use the fact that $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} b_{n}$, where $b_{n}=\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}$. Denote $\limsup _{n \rightarrow \infty} x_{n}$ by a.
(1) Prove that for every $x>a$, there exists $N \in \mathbf{N}$ such that $a_{n}<x$ for all $n \geq N$.
(2) Prove that for every $y<a$, there exist infinitely many n in \mathbf{N} such that $y<a_{n}$
(3) Prove that conversely, if a is any real number satisfying both conditions in (1) and (2) above, then $a=\limsup _{n \rightarrow \infty} x_{n}$.

Answer

(a) This is a countability argument.
S consists of positive real numbers for which any n distinct elements in S has their sum $\leq C$ for some constant C.
(i) $S_{k}=\{s \in S: s \geq C / k\}$ for each positive integer.

Then S_{k} has at most k elements.
Suppose on the contrary that S_{k} has more than k elements, i.e., $\left|S_{k}\right|=n>k$.
Let $S_{k}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Then $s_{1}+s_{2}+\ldots+s_{n}>n \times C / k>C$ since $n / k>1$. But since $S_{k} \subseteq$ S,
$s_{1}+s_{2}+\ldots+s_{n} \leq C$. This contradicts $s_{1}+s_{2}+\ldots+s_{n}>C$ and so S_{k} has at most k elements.
(ii)

Take any s in S. Then by the Archimedean property of \mathbf{R}, there exists a positive integer N such that
$N s>C$. Therefore, $s>C / N$ and so $s \in S_{N} \subseteq \cup\left\{S_{k}: k \in \mathbf{N}\right\}$. That means $S \subseteq \cup\left\{S_{k}: k \in \mathbf{N}\right.$ $\}$. Since each $S_{k} \subseteq S, \cup\left\{S_{k}: k \in \mathbf{N}\right\} \subseteq S$. Therefore, $S=\cup\left\{S_{k}: k \in \mathbf{N}\right\}$. Thus S is a countable union of sets each of which is finite (and so countable). It follows that S is countable.
(b) This is about the property of limit superior.

Given that $\left(a_{n}\right)$ is a bounded sequence. Now we recall why $\limsup _{n \rightarrow \infty} x_{n}$ exists.
For each positive integer n, let b_{n} be the supremum or the least upper bound of the set $\left\{a_{n}\right.$ $\left., a_{n+1}, a_{n+2}, \ldots\right\}$. This exists because $\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}$ is bounded since the sequence (a_{n}) is bounded. Plainly $\left(b_{n}\right)$ is bounded also. (If $L<a_{n}<K$ for all n, then $L \leq b_{n} \leq K$ because L and K are also lower and upper bounds for $\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\}$.) Now (b_{n}) is a decreasing sequence. This is seen as follows. For $n>m,\left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\} \subseteq\left\{a_{m}, a_{n+1}, a_{m+2}, \ldots\right\}$. Therefore,

$$
b_{n}=\sup \left\{a_{n}, a_{n+1}, a_{n+2}, \ldots\right\} \leq \sup \left\{a_{m}, a_{n+1}, a_{m+2}, \ldots\right\}=b_{m} .
$$

Thus, since $\left(b_{n}\right)$ is bounded below, by the Monotone Convergence Theorem, $\left(b_{n}\right)$ is convergent. The limit of $\left(b_{n}\right)$ is $\limsup _{n \rightarrow \infty} x_{n}$. In particular, the limit is the infimum of $\left\{b_{1}, b_{2}\right.$, $\left.b_{3}, \ldots\right\}$. Let $\lim _{n \rightarrow \infty} b_{n}=a$. Then $\limsup _{n \rightarrow \infty} x_{n}=a$.
(1) Take any $x>a$. Then $x>\inf \left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$. Thus, there exists an element k in $\left\{b_{1}, b_{2}\right.$, $\left.b_{3}, \ldots\right\}$ such that $x>k \geq \inf \left\{b_{1}, b_{2}, b_{3}, \ldots\right\}=a$ by the definition of infimum or greatest lower bound. Then there exists an integer N such that $k=b_{N}$. Therefore, for all $n \geq N$, $x>b_{N}=\sup \left\{a_{N}, a_{N+1}, a_{N+2}, \ldots\right\} \geq a_{n}$.
Hence for all $n \geq N, x>a_{n}$.
(2) Take $y<a$. Then since a is the greatest lower bound or infimum of $\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}, y$ is a lower bound of $\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$. That is $y<b_{k}$ for all positive integer k.
So $y<b_{1}=\sup \left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$. Therefore, by the definition of supremum or least upper bound, there exists $n_{1} \geq 1$ such that $y<a_{n_{1}} \leq b_{1}$. Now $y<b_{n_{1}+1}$. And so there exists $n_{2} \geq n_{1}$ $+1>n_{1}$ such that $y<a_{n_{2}} \leq b_{n_{1}+1}$. In this way we inductively define $a_{n_{k}}$ such that $y<a_{n_{k}} \leq b_{n_{k-1}+1}$ and $n_{k}>n_{k-1}$. Hence the set $\left\{a_{n_{1}}, a_{n_{2}}, \ldots\right\}$ satisfies $y<a_{n_{j}}$ for all j in \mathbf{N} and the set $\left\{n_{j}: j \in \mathbf{N}\right\}$ is an infinite subset of \mathbf{N} as $n_{j} \neq n_{k}$ for $j \neq k$. Therefore, there are infinitely many n in \mathbf{N} such that $y<a_{n}$.
(3) Suppose (1) and (2) holds for some real number a.

Take any $\varepsilon>0$. Then $a+\varepsilon>a$.
Then by part (1) there exists an integer N such that for all $n \geq N, a+\varepsilon>a_{n}$. Therefore, $a+$ ε is an upper bound for $\left\{a_{N}, a_{N+1}, a_{N+2}, \ldots\right\}$. Thus $a+\varepsilon \geq \sup \left\{a_{N}, a_{N+1}, a_{N+2}, \ldots\right\}=b_{N}$.
Therefore, for all $n \geq N, b_{n} \leq b_{N} \leq a+\varepsilon$. Therefore, $\lim _{n \rightarrow \infty} b_{n} \leq a+\varepsilon$. Since ε is arbitrary, $\lim _{n \rightarrow \infty} b_{n} \leq a$.
Now consider $a-\varepsilon<a$. By part (2) there exists infinitely many n in N such that $a-\varepsilon<a_{n}$.
Thus for each n in \mathbf{N}, there exists an integer $m_{n} \geq n$ such that that $a-\varepsilon<a_{m_{n}}$. Therefore,

$$
a-\varepsilon<a_{m_{n}} \leq \sup \left\{a_{n}, a_{n+1}, \ldots\right\}=b_{n} .
$$

Hence, $a-\varepsilon<b_{m}$ for each m in \mathbf{N}. It follows that , $a-\varepsilon \leq \lim _{n \rightarrow \infty} b_{n}$. Since ε is arbitrary, , $a \leq \lim _{n \rightarrow \infty} b_{n}$.
Therefore, by the previous inequality, we have $\lim _{n \rightarrow \infty} b_{n}=a$ and so $\limsup _{n \rightarrow \infty} x_{n}=a$.

Question 2

(a) Let S be the set $\left\{1+\frac{1}{n}: n \in \mathbf{N}\right\} \cup\{x \in \mathbf{Q}: 2<x<3$), and F : $\mathbf{R} \rightarrow \mathbf{R}$ the function defined by

$$
F(x)=\left\{\begin{array}{c}
3 x \text { if } x \in S \\
\frac{1}{x+2} \text { if } x \notin S
\end{array}\right.
$$

(i) Find the set of all cluster points of S. (You do not need to give a proof of your answer.)
(ii) Using the $\varepsilon-\delta$ definition of a limit, show that $\lim _{x \rightarrow 3 / 2} F(x)$ exists and find its value.
(iii) Determine if $\lim _{x \rightarrow 2} F(x)$ exists. Justify your answer.
(b) Let A and B be non-empty sets, let c in \mathbf{R} be a cluster point of A and b in B a cluster point of B. Let $\mathrm{g}: A \rightarrow B$ and $f: B \rightarrow \mathbf{R}$ are maps such that f is continuous at b and $\lim _{x \rightarrow c} g(x)=b$. Use $\varepsilon-\delta$ argument to prove that $\lim _{x \rightarrow c} f \circ g(x)=f(b)$

Answer

(a) Recall $S=\left\{1+\frac{1}{n}: n \in \mathbf{N}\right\} \cup\{x \in \mathbf{Q}: 2<x<3)$ and

$$
F(x)=\left\{\begin{array}{c}
3 x \text { if } x \in S \\
\frac{1}{x+2} \text { if } x \notin S
\end{array}\right.
$$

(i). Recall the definition of a cluster point. s is a cluster point of S if any open interval containing s also contains infinitely many elements in S.

Thus the set of cluster points of S is $\{1\} \cup[2,3]$.
Obviously the points in this set are cluster points of S. (Any point in [2, 3] satisfies that any open interval containing it has intersection with $[2,3]$ as an interval which is a non trivial subinterval of $[2,3]$ which contains infinitely many rational points in $(2,3)$. Any open interval containing 1 contains infinitely many points in S of the form $1+1 / n$. Plainly ($1-\varepsilon$, $1+\varepsilon) \supseteq(1-1 / N, 1+1 / N)$ for some integer N such that $1 / N<\varepsilon$. Therefore, for all $n \geq N, 1+1 / n$ $\in S$. Obviously any $x>3$, has an open neighbourhood that has empty intersection with S. For all $x<1, x$ cannot be a cluster point of S for the same reason. There is only a finite number of members of S in $[y, 2]$ for any $y>1$. We can deduce this as follows, for any $y>1$, there exists a positive integer M such that $1 / M<y-1$ and so consequently $1+1 / M<y$. Thus $[y, 2] \cap S \subseteq\{1+1 / n: 1 \leq n \leq M\} \cup\{2\}$, which is finite and so [$y, 2]$ can have only a finite number of members of S. Hence $(1,2)$ does not contain any cluster points of S. (This is because for any x in $(1,2)$, there exists a $\delta>0$ such that $x-\delta>1$ and $[x-\delta, x+\delta] \subseteq(1,2)$ and so $[x-\delta, x+\delta]$ $\subseteq[x-\delta, 2]$, consequently ($x-\delta, x+\delta$) has only a finite number of members of S.)
(ii) Since $3 / 2$ is not a cluster point of S, there exists a $\delta>0$ such that $(3 / 2-\delta, 3 / 2+\delta) \cap S=\{3 / 2\}$. We can take $\delta=1 / 2-1 / 3=1 / 6$.
Claim that the limit is $1 /(3 / 2+2)=2 / 5$.
Give any $\varepsilon>0$, take $\delta=\min (1 / 6,5 \varepsilon / 2)$.
Then $0<|x-3 / 2|<\delta$ implies that $x \notin S$ since $0<|x-3 / 2|<1 / 6$ so that $1+1 / 3<x<1+2 / 3$ and $x \neq 3 / 2$ and so

$$
|F(x)-2 / 5|=\left|\frac{1}{x+1}-\frac{2}{5}\right|=\left|\frac{3-2 x}{5(x+1)}\right|=\frac{2}{5}\left|\frac{x-\frac{3}{2}}{(x+1)}\right|<\frac{2}{5}\left|x-\frac{3}{2}\right|<\frac{2}{5} \cdot \frac{5 \varepsilon}{2}=\varepsilon
$$

since $0<|x-3 / 2|<5 \varepsilon / 2$,
This proves that $\lim _{x \rightarrow 3 / 2} F(x)=\frac{2}{5}$.
(iii) No.

Let a be a real number. Take $\varepsilon=1$. Then for any $\delta>0$, let $\delta_{1}=\min (1 / 2, \delta)$. Then consider the interval ($2-\delta_{1}, 2+\delta_{1}$). Pick a rational number x and an irrational number y in this ($2,2+\delta_{1}$). We can do this by the density of the rational numbers and also that of the irrational numbers. Then $x \in S$ and $y \notin S$. Therefore, $F(x)=3 x>6$ by the definition of F. Similarly, $F(y)=1 /(y+1)<1 / 3$. Now by the triangular inequality,

$$
|F(x)-a|+|F(y)-a| \geq|F(x)-F(y)|=F(x)-F(y)>6-1 / 3>2 .
$$

Then at least one of $|F(x)-a|$ or $F(y)-a \mid$ must be greater than or equal to 1 . Let $x_{\delta}=x$ if $|F(x)-a| \geq 1$. If $|F(x)-a|<1$, then let $x_{\delta}=y$.

Thus for any $\delta>0$, we can always find an element x_{δ} in $\left(2-\delta_{1}, 2+\delta_{1}\right)$ such that $\left|F\left(x_{\delta}\right)-a\right|$ ≥ 1. This means $\lim _{x \rightarrow 2} F(x) \neq a$ for any a. Therefore, $\lim _{x \rightarrow 2} F(x)$ does not exist.
Alternatively, take a sequence (a_{n}) of rational numbers in $(2,3)$ which converges to 2 and also a sequence $\left(b_{n}\right)$ of irrational numbers in $(2,3)$ also converging to 2 . (We can do this by the density of the rational numbers and that of the irrational numbers. For eacn n in \mathbf{N}, there is a rational number a_{n} and an irrational number b_{n} such that $2<a_{n}, b_{n}<2+1 / n$. Obviously, by the Comparison Theorem, both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge to 2 .) Now since a_{n} is rational and between 2 and $3, a_{n}$ is in S. Therefore, the sequence $\left(F\left(a_{n}\right)\right)=\left(3 a_{n}\right)$ and converges to $3 \times 2=6$. Now b_{n} is irrational and so $b_{n} \notin S$. Thus $F\left(b_{n}\right)=1 /\left(b_{n}+1\right)$. Since $\left(b_{n}\right)$ converges to 2, $\left(F\left(b_{n}\right)\right)$ converges to $1 /(2+1)=1 / 3$. Therefore, $\lim _{n \rightarrow \infty} F\left(a_{n}\right) \neq \lim _{n \rightarrow \infty} F\left(b_{n}\right)$ while $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=2$ and so we conclude that $\lim _{x \rightarrow 2} F(x)$ does not exist.
(b) This is just the chain rule for limit. Recall that A and B are non-empty sets, c in \mathbf{R} is a cluster point of A and b in B is a cluster point of B. g:A $\rightarrow B$ and $f: B \rightarrow \mathbf{R}$ are maps such that f is continuous at b and $\lim _{x \rightarrow c} g(x)=b$.
f is continuous at b means given $\varepsilon>0$, there exists a $\delta_{1}>0$ such that
for all y in $B,|y-b|<\delta_{1}$ implies that $|f(y)-f(b)|<\varepsilon$
Now $\lim _{x \rightarrow c} g(x)=b$ means that for the same $\delta_{1}>0$ given by (1), there exists $\delta>0$ such that for all x in $A, 0<|x-c|<\delta$ implies that $|\mathrm{g}(x)-b|<\delta_{1}$
Therefore, putting (1) and (2) together, given $\varepsilon>0$, there exists $\delta>0$ (given by (2)) such that for all x in $A, 0<|x-c|<\delta$ implies that $|\mathrm{g}(x)-b|<\delta_{1}$ which in turn implies by (1) that

$$
|f \circ g(x)-f(b)|=|f(g(x))-f(b)|<\varepsilon . \text { This means } \lim _{x \rightarrow c} f \circ g(x)=f(b) .
$$

Question 3.

(a) Let $f:[a, b] \rightarrow \mathbf{R}$ be continuous such that for every x in $[a, b]$, there exists a y in $[a, b]$ such that $|f(y)| \leq 1 / 3|f(x)|$. Prove that $f(c)=0$ for some c in $[a, b]$.
(b) Suppose $g:[0,+\infty) \rightarrow \mathbf{R}$ is continuous on $[0,+\infty)$, and that there exist positive constants a and K such that $|g(x)-g(y)| \leq K|x-y|$ for all x and y in $[a,+\infty)$. Prove that g is uniformly continuous on $[0,+\infty)$.

Answer.

(a) This will involve Bolzano Weierstrass Theorem and a charaterization of continuity by sequences.
Recall $f:[a, b] \rightarrow \mathbf{R}$ is continuous such that for every x in $[a, b]$, there exists a y in $[a, b]$ such that $|f(y)| \leq 1 / 3|f(x)|$. We shall show that $f(c)=0$ for some c in $[a, b]$. We shall construct a sequence in $[a, b]$. Use Bolzano Weierstrass Theorem to obtain a convergent subsequence. The limit of this sequence is the required element c with $f(c)=0$.

Start with x_{0} in $[a, b]$. Then by the property of f there exists an element which we called x_{1} in $[a, b]$ such that $\left|f\left(x_{1}\right)\right| \leq 1 / 3\left|f\left(x_{0}\right)\right|$. Again using the property of f there exists an element x_{2} in $[a, b]$ such that $\left|f\left(x_{2}\right)\right| \leq 1 / 3\left|f\left(x_{1}\right)\right| \leq 1 / 3^{2}\left|f\left(x_{0}\right)\right|$. Repeating this process we get a sequence $\left(x_{n}\right)$ in $[a, b]$ such that $\left|f\left(x_{n}\right)\right| \leq 1 / 3^{n}\left|f\left(x_{0}\right)\right|$. Then by the Bolzano Weierstrass Theorem (x_{n}) has a convergent subsequence $\left(x_{n_{k}}\right)$ which converges to an element c in $[a, b]$. (This is the same thing as saying that the closed and bounded interval [a, $b]$ is sequentially compact.) Therefore, since f is continuous at c, for any sequence (a_{n}) that converges to c, the sequence $\left(f\left(a_{n}\right)\right)$ converges to $f(c)$. Therefore, the sequence $\left(f\left(x_{n_{k}}\right)\right)$ converges to $f(c)$. But since $\left|f\left(x_{n}\right)\right| \leq 1 / 3^{n}\left|f\left(x_{0}\right)\right|$,

$$
\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right| \leq \lim _{k \rightarrow \infty} 1 / 3^{n_{k}} \mid f\left(x_{0} \mid=0\right.
$$

Therefore, $\lim _{k \rightarrow \infty}\left|f\left(x_{n_{k}}\right)\right|=0$ and so by the Squeeze Theorem $\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=0$. It follows that f (c) $=0$.
(b) This is about uniform continuity and Lipschitz condition.

Recall that $g:[0,+\infty) \rightarrow \mathbf{R}$ is continuous on $[0,+\infty)$ and that there exist positive constants a and K such that $|g(x)-g(y)| \leq K|x-y|$ for all x and y in $[a,+\infty)$. We shall show that g is uniformly continuous.

Now since $[0, a]$ is a closed and bounded interval and so is compact and since g is continuous on $[0, a], g$ is uniformly continuous on $[0, a]$. Therefore, for any $\varepsilon>0$, there exists $\delta_{1}>0$ such that
for all x and y in $[0, a],|x-y|<\delta_{1} \Rightarrow|g(x)-g(y)|<\varepsilon / 2$
Also note that taking $\delta_{2}=\varepsilon /(2 K)$, by the above property of the function g
for all x and y in $[a,+\infty),|x-y|<\delta_{2} \Rightarrow|g(x)-g(y)| \leq K|x-y|<K \varepsilon /(2 K)=\varepsilon / 2$
Thus given any $\varepsilon>0$, let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. For any x and y in $[0,+\infty)$, if $|x-y|<\delta$, we proceed as follows.
(i) If $\max (x, y) \leq a$, then by (1), since $|x-y|<\delta=\min \left(\delta_{1}, \delta_{2}\right) \leq \delta_{1},|g(x)-g(y)|<\varepsilon / 2<\varepsilon$ or
(ii) If $\min (x, y) \geq a$, then by (2), since $|x-y|<\delta=\min \left(\delta_{1}, \delta_{2}\right) \leq \delta_{2},|g(x)-g(y)|<\varepsilon / 2<\varepsilon$ or
(iii) Either (i) $x<a<y$ when $x<y$ or (ii) $y<a<x$ when $y<x$.

For case (i) since $|x-a|<|x-y|<\delta_{1}$, we have by (1) $|g(x)-g(a)|<\varepsilon / 2$ and also
since $|a-y|<|x-y|<\delta_{2}$, by (2) $|g(a)-g(y)|<\varepsilon / 2$. Therefore, by the triangular inequality, $|g(x)-g(y)| \leq|g(x)-g(a)|+|g(a)-g(y)|<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
Similarly for case (ii) when $y<a<x$, we can show that $|g(x)-g(y)|<\varepsilon$.
Hence, by (i) (ii) and (iii) above given $\varepsilon>0$, there exists $\delta>0$ such that
for all x and y in $[0,+\infty),|x-y|<\delta \Rightarrow|g(x)-g(y)|<\varepsilon$.
Thus, g is uniformly continuous on $[0,+\infty)$,

Question 4.

(a) Let $f:(0,+\infty) \rightarrow \mathbf{R}$ be differentiable $(0,+\infty)$ and $\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$. Prove that. $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=0$.
(b) Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function such that the derivatives $\mathrm{g}^{\prime}, \ldots, \mathrm{g}^{(999)}$ exist and are continuous on \mathbf{R}. Suppose that $g^{\prime}\left(x_{0}\right)=\ldots=g^{(998)}\left(x_{0}\right)=0$ and $g^{(999)}\left(x_{0}\right)=1$ for some x_{0} in \mathbf{R}. Does g have a relative maximum, or a relative minimum, or neither at x_{0} ? Justify your answer.

Answer.

(a) This is about how one can handle the infinity question and a simple application of the Mean Value Theorem.

Start with what we are given $\lim _{x \rightarrow+\infty} f^{\prime}(x)=0$.
Then given $\varepsilon>0$, there exists a positive integer N such that $x>N$ implies that $\left|f^{\prime}(x)\right|<\varepsilon / 2$
Now focus on the interval $[N,+\infty)$.
For any $x>N$, since f is differentiable, by the Mean Value Theorem, there exists a c such that $x>c>N$ and

$$
\begin{equation*}
\frac{f(x)-f(N)}{x-N}=f^{\prime}(c) \tag{2}
\end{equation*}
$$

This means $f(x)-f(N)=f^{\prime}(c)(x-N)$.
Dividing by x, we get $\frac{f(x)}{x}=f^{\prime}(c)\left(1-\frac{N}{x}\right)+\frac{f(N)}{x}$
Next, chose a positive integer M such that

$$
\begin{equation*}
x>M \Rightarrow\left|\frac{f(N)}{x}\right|<\frac{\varepsilon}{2} \tag{3}
\end{equation*}
$$

(We can find M since $\lim _{x \rightarrow+\infty} \frac{f(N)}{x}=0$.)
Now take $K=\max (N, M)$. Then $x>K$ implies that

$$
\begin{aligned}
& \qquad \begin{aligned}
\left|\frac{f(x)}{x}\right| & =\left|f^{\prime}(c)\left(1-\frac{N}{x}\right)+\frac{f(N)}{x}\right| \text { by (2) since } x>N \\
\leq & \left|f^{\prime}(c)\left(1-\frac{N}{x}\right)\right|+\left|\frac{f(N)}{x}\right| \leq\left|f^{\prime}(c)\right|+\left|\frac{f(N)}{x}\right| \text { since }\left|\left(1-\frac{N}{x}\right)\right|<1 \\
& <\frac{\varepsilon}{2}+\left|\frac{f(N)}{x}\right| \text { by (1) since } c>N \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \text { by (3) since } x>K=\max (N, M) \geq M .
\end{aligned} \\
& \text { This means } \lim _{x \rightarrow+\infty} \frac{f(x)}{x}=0 .
\end{aligned}
$$

(b) This is a simple application of the Taylor Polynomial expansion with remainder.

Recall that $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function such that the derivatives $\mathrm{g}^{\prime}, \ldots, \mathrm{g}^{(999)}$ exist and are continuous on \mathbf{R}. It is given that $g^{\prime}\left(x_{0}\right)=\ldots=g^{(998)}\left(x_{0}\right)=0$ and $g^{(999)}\left(x_{0}\right)=1$.
Then the Lagrange form of the Taylor expansion about x_{0} up to degree 998 gives for any x in R ,

$$
\begin{equation*}
g(x)=g\left(x_{0}\right)+\frac{g^{(999)}(c)}{999!}\left(x-x_{0}\right)^{999} \tag{1}
\end{equation*}
$$

for some c strictly between x and x_{0}.
Note that $g^{(999)}$ is continuous and so is continuous at x_{0}. Thus, since $g^{(999)}\left(x_{0}\right)=1$, there exists a $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies that $\mathrm{g}^{(999)}(x)>0$. (Take $\varepsilon=1 / 2$ and so by continuity there exists a $\delta>0$ such that $\left|x-x_{0}\right|<\delta$ implies that $1 / 2=\mathrm{g}^{(999)}\left(x_{0}\right)-1 / 2<\mathrm{g}^{(999)}(x)<\mathrm{g}^{(999)}\left(x_{0}\right)+1 / 2$.)

Hence for any x in $\left(x_{0}-\delta, x_{0}+\delta\right), \mathrm{g}^{(999)}(x)>0$. Therefore for any x in $\left(x_{0}-\delta, x_{0}+\delta\right)$, in the Taylor expansion (1), the Lagrange remainder term has the factor $\frac{g^{(999)}(c)}{999!}>0$ since the c so obtained is between x and x_{0}. Thus, by (1) for $x>x_{0}$ in $\left(x_{0}-\delta, x_{0}+\delta\right)$,

$$
g(x)=g\left(x_{0}\right)+\frac{g^{(999)}(c)}{999!}\left(x-x_{0}\right)^{999}>g\left(x_{0}\right) \text { since }\left(x-x_{0}\right)^{999}>0
$$

and that also by (1) for $x<x_{0}$ in ($x_{0}-\delta, x_{0}+\delta$),

$$
g(x)=g\left(x_{0}\right)+\frac{g^{(999)}(c)}{999!}\left(x-x_{0}\right)^{999}<g\left(x_{0}\right) \text { since }\left(x-x_{0}\right)^{999}<0
$$

Thus g cannot have a relative maximum nor relative minimum at x_{0}.

Question 5.

(a) Let $h:[0,1] \rightarrow \mathbf{R}$ be defined by $h(x)=\left\{\begin{array}{l}-x, \text { if } x \text { is rational, } \\ 2 x, \text { if } x \text { is irrational }\end{array}\right.$

Determine if h is integrable on $[0,1]$. Justify your answer.
(b) Suppose that $f:[a, b] \rightarrow \mathbf{R}$ is increasing and differentiable on $[a, b]$ and its derivative f^{\prime} is Riemann integrable on $[a, b]$, and suppose that $g:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$. Prove that there exists c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(a) \int_{a}^{c} g(x) d x+f(b) \int_{c}^{b} g(x) d x .
$$

(Hint: Use integration by parts.)

Answer.

(a) Recall $h:[0,1] \rightarrow \mathbf{R}$ is defined by $h(x)=\left\{\begin{array}{c}-x, \text { if } x \text { is rational, } \\ 2 x, \text { if } x \text { is irrational }\end{array}\right.$. Then h is discontinuous at every irrational points in [0, 1].

Let x be an irrational point in $[0,1]$. Then $0<x<1$. Then there exists a positive integer N such that $0<1 / N<x$. Therefore, by the density of the rational numbers, for each $n \geq N$ there exists a rational number a_{n} such that $0<x-1 / n<a_{n}<x$, i.e. $\left|a_{n}-x\right|=x-a_{n}<1 / n$. Therefore, by the Comparison Theorem, since $1 / n$ tends to 0 as n tends to infinity the sequence $\left(a_{n}\right)_{n \geq \infty}$ tends to x.
Now, $h\left(a_{n}\right)=-a_{n}$ because a_{n} is rational. Therefore, the sequence $\left(h\left(a_{n}\right)\right)_{n \geq N}=\left(-a_{n}\right)_{n \geq N}$ converges to $-x$. Also, by the density of the irrational numbers for each $n \geq N$ there exists an irrational number b_{n} such that $0<x-1 / n<b_{n}<x$, i.e. $\left|b_{n}-x\right|=x-b_{n}<1 / n$. Similarly we deduce that $\left(b_{n}\right)_{n \geq N}$ tends to x. But since each b_{n} is irrational $\left(h\left(b_{n}\right)\right)_{n \geq N}=\left(2 a_{n}\right)_{n \geq N}$ and so the sequence $\left(h\left(b_{n}\right)\right)_{n \geq N}$ converges to $2 x$. It follows that because $2 x \neq-x$, $\left(h\left(a_{n}\right)\right)_{n \geq N}$ and ($\left.h\left(b_{n}\right)\right)_{n \geq N}$ do not converge to the same limit while both $\left(a_{n}\right)_{n \geq N}$ and $\left(b_{n}\right)_{n \geq N}$ converge to the same limit x. Consequently, h is not continuous at x. Therefore, h is discontinuous at every irrational point in [0,1]. Therefore, by Lebesgue Theorem h is not Riemann integrable on $[0,1]$ as the set of irrational points in $[0,1]$ has non zero measure.

Alternatively, we can use the upper and lower Darboux sums.
Let Δ : $x_{0}=0<x_{1}<x_{2} \ldots<x_{n}=1$ be a partition for [0, 1].
Then the upper Darboux sum with respect to Δ is

$$
U(\Delta)=\sum_{i=1}^{n} M_{i} \Delta x_{i}=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right),
$$

where $M_{i}=\sup \left\{h(x): x \in\left[x_{i-1}, x_{i}\right]\right\}=2 x_{i}$
Similarly, the lower Darboux sum with respect to Δ is

$$
L(\Delta)=\sum_{i=1}^{n} m_{i} \Delta x_{i}=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right),
$$

where $m_{i}=\inf \left\{h(x): x \in\left[x_{i-1}, x_{i}\right]\right\}=-x_{i}$.
Therefore, $U(\Delta)-L(\Delta)=3 \sum_{i=1}^{n} x_{i}\left(x_{i}-x_{i-1}\right)=\frac{3}{2} \sum_{i=1}^{n}\left[x_{i}^{2}-x_{i-1}^{2}+\left(x_{i}-x_{i-1}\right)^{2}\right]$

$$
>\frac{3}{2} \sum_{i=1}^{n}\left[x_{i}^{2}-x_{i-1}^{2}\right]=\frac{3}{2} .
$$

Therefore, for any partition $\Delta, U(\Delta)-L(\Delta)>3 / 2$. Hence h is not Riemann integrable.
(b) This is sometimes called the Third Mean Value Theorem for Integral.

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is increasing and differentiable on $[a, b]$ and its derivative f^{\prime} is Riemann integrable on $[a, b]$, and suppose that $g:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$. Then there exists c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(a) \int_{a}^{c} g(x) d x+f(b) \int_{c}^{b} g(x) d x
$$

Follow the hint.
Let $G(x)=\int_{a}^{x} g(t) d t$. Then since g is continuous, $G(x)$ is an anti-derivative of $g(x)$ by the Fundamental Theorem of Calculus. Then using integration by parts,

$$
\begin{align*}
\int_{a}^{b} f(x) g(x) d x & =[f(x) G(x)]_{a}^{b}-\int_{c}^{b} G(x) f^{\prime}(x) d x \\
& =f(b) G(b)-\int_{c}^{b} G(x) f^{\prime}(x) d x \tag{1}
\end{align*}
$$

Now, since $G(x)$ is continuous on $[a, b]$, by the Extreme Value Theorem, there exists d and e in $[a, b]$ such that for all x in $[a, b]$,

$$
\begin{equation*}
G(d) \leq G(x) \leq G(e) . \tag{2}
\end{equation*}
$$

Note that since f is increasing and differentiable on $[a, b], f^{\prime}(x) \geq 0$ for all x in $[a, b]$. Therefore, multiplying (2) by $f^{\prime}(x)$ we get for all x in $[a, b]$,

$$
G(d) f^{\prime}(x) \leq G(x) f^{\prime}(x) \leq G(e) f^{\prime}(x) .
$$

Thus, taking integrals,

$$
G(d) \int_{a}^{b} f^{\prime}(x) \leq \int_{a}^{b} G(x) f^{\prime}(x) d x \leq G(e) \int_{c}^{b} f^{\prime}(x) d x
$$

Hence by the Intermediate Value Theorem, there exists c between d and e and hence in $[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} G(x) f^{\prime}(x) d x=G(c) \int_{c}^{b} f^{\prime}(x) d x \tag{3}
\end{equation*}
$$

Now since f^{\prime} is Riemann integrable on $[a, b]$, by Darboux Theorem,

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

It follows then from (3) that

$$
\begin{equation*}
\int_{a}^{b} G(x) f^{\prime}(x) d x=G(c)(f(b)-f(a)) \tag{4}
\end{equation*}
$$

Thus substituting (4) in (1) we obtain,

$$
\begin{aligned}
& \int_{a}^{b} f(x) g(x) d x=f(b) G(b)-\int_{c}^{b} G(x) f^{\prime}(x) d x=f(b) G(b)-G(c)(f(b)-f(a)) \\
& =f(b)(G(b)-G(c))+f(a) G(c) \\
& =f(b)\left[\int_{a}^{b} g(x) d x-\int_{a}^{c} g(x) d x\right]+f(a) \int_{a}^{c} g(x) d x \\
& =f(b) \int_{c}^{b} g(x) d x+f(a) \int_{a}^{c} g(x) d x
\end{aligned}
$$

This completes the proof.

