Solution to MA3110 Analysis Semester 2 2005/06

Question 1

(a) Let *S* be a non-empty set of positive real numbers with the following property: There exists a positive real constant *C* such that for any positive integer *n* and any *n* distinct elements s_1, s_2, \ldots, s_n in *S*, we have $s_1 + s_2 + \ldots + s_n \leq C$.

(i) Show that for every positive integer k, the set $S_k = \{ s \in S : s \ge C/k \}$ has at most k elements.

(ii) Deduce that *S* is countable.

(b) Let (a_n) be a bounded sequence of real numbers. You may use the fact that

 $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} b_n$, where $b_n = \sup \{a_n, a_{n+1}, a_{n+2}, \dots\}$. Denote $\limsup_{n \to \infty} x_n$ by a.

(1) Prove that for every x > a, there exists $N \in \mathbb{N}$ such that $a_n < x$ for all $n \ge N$.

(2) Prove that for every y < a, there exist infinitely many *n* in **N** such that $y < a_n$

(3) Prove that conversely, if *a* is any real number satisfying both conditions in (1) and (2) above, then $a = \lim \sup x_n$.

Answer

(a) This is a countability argument.

S consists of positive real numbers for which any *n* distinct elements in *S* has their sum $\leq C$ for some constant *C*.

(i) $S_k = \{ s \in S : s \ge C/k \}$ for each positive integer.

Then S_k has at most k elements.

Suppose on the contrary that S_k has more than k elements, i.e., $|S_k| = n > k$.

Let $S_k = \{ s_1, s_2, \dots, s_n \}$. Then $s_1 + s_2 + \dots + s_n > n \times C/k > C$ since n/k > 1. But since $S_k \subseteq S$,

 $s_1 + s_2 + \ldots + s_n \le C$. This contradicts $s_1 + s_2 + \ldots + s_n > C$ and so S_k has at most k elements. (ii)

Take any s in S. Then by the Archimedean property of \mathbf{R} , there exists a positive integer N such that

N s > *C*. Therefore, *s* > *C*/*N* and so *s* ∈ *S*_{*N*} ⊆ ∪{ *S*_{*k*} : *k* ∈ **N**}. That means *S* ⊆ ∪{ *S*_{*k*} : *k* ∈ **N**}. Since each *S*_{*k*} ⊆ *S*, ∪{ *S*_{*k*} : *k* ∈ **N**} ⊆ *S*. Therefore, *S* = ∪{ *S*_{*k*} : *k* ∈ **N**}. Thus *S* is a countable union of sets each of which is finite (and so countable). It follows that *S* is countable.

(b) This is about the property of limit superior.

Given that (a_n) is a bounded sequence. Now we recall why lim sup x_n exists.

For each positive integer *n*, let b_n be the *supremum* or the *least upper bound* of the set $\{a_n, a_{n+1}, a_{n+2}, \ldots\}$. This exists because $\{a_n, a_{n+1}, a_{n+2}, \ldots\}$ is bounded since the sequence (a_n) is bounded. Plainly (b_n) is bounded also. (If $L < a_n < K$ for all *n*, then $L \le b_n \le K$ because *L* and *K* are also lower and upper bounds for $\{a_n, a_{n+1}, a_{n+2}, \ldots\}$.) Now (b_n) is a decreasing sequence. This is seen as follows. For n > m, $\{a_n, a_{n+1}, a_{n+2}, \ldots\} \subseteq \{a_m, a_{n+1}, a_{m+2}, \ldots\}$. Therefore,

 $b_n = \sup \{a_n, a_{n+1}, a_{n+2}, ...\} \le \sup \{a_m, a_{n+1}, a_{m+2}, ...\} = b_m$. Thus, since (b_n) is bounded below, by the Monotone Convergence Theorem, (b_n) is convergent. The limit of (b_n) is $\limsup_{n \to \infty} x_n$. In particular, the limit is the infimum of $\{b_1, b_2, b_3, ...\}$. Let $\lim_{n \to \infty} b_n = a$. Then $\limsup_{n \to \infty} x_n = a$. (1) Take any x > a. Then $x > \inf \{b_1, b_2, b_3, ...\}$. Thus, there exists an element k in $\{b_1, b_2, b_3, ...\}$ such that $x > k \ge \inf \{b_1, b_2, b_3, ...\} = a$ by the definition of infimum or greatest lower bound. Then there exists an integer N such that $k = b_N$. Therefore, for all $n \ge N$,

 $x > b_N = \sup \{a_N, a_{N+1}, a_{N+2}, \ldots\} \ge a_n.$

Hence for all $n \ge N$, $x > a_n$.

(2) Take y < a. Then since *a* is the greatest lower bound or infimum of $\{b_1, b_2, b_3, ...\}$, *y* is a lower bound of $\{b_1, b_2, b_3, ...\}$. That is $y < b_k$ for all positive integer *k*.

So $y < b_1 = \sup \{a_1, a_2, a_3, \ldots\}$. Therefore, by the definition of supremum or least upper bound, there exists $n_1 \ge 1$ such that $y < a_{n_1} \le b_1$. Now $y < b_{n_1+1}$. And so there exists $n_2 \ge n_1 + 1 > n_1$ such that $y < a_{n_2} \le b_{n_1+1}$. In this way we inductively define a_{n_k} such that

 $y < a_{n_k} \le b_{n_{k-1}+1}$ and $n_k > n_{k-1}$. Hence the set $\{a_{n_1}, a_{n_2}, ...\}$ satisfies $y < a_{n_j}$ for all j in **N** and the set $\{n_j : j \in \mathbf{N}\}$ is an infinite subset of **N** as $n_j \ne n_k$ for $j \ne k$. Therefore, there are infinitely many n in **N** such that $y < a_n$.

(3) Suppose (1) and (2) holds for some real number *a*.

Take any $\varepsilon > 0$. Then $a + \varepsilon > a$.

Then by part (1) there exists an integer *N* such that for all $n \ge N$, $a + \varepsilon > a_n$. Therefore, $a + \varepsilon$ is an upper bound for $\{a_N, a_{N+1}, a_{N+2}, \ldots\}$. Thus $a + \varepsilon \ge \sup\{a_N, a_{N+1}, a_{N+2}, \ldots\} = b_N$. Therefore, for all $n \ge N$, $b_n \le b_N \le a + \varepsilon$. Therefore, $\lim_{n \to \infty} b_n \le a + \varepsilon$. Since ε is arbitrary, $\lim_{n \to \infty} b_n \le a$.

Now consider $a - \varepsilon < a$. By part (2) there exists infinitely many *n* in *N* such that $a - \varepsilon < a_n$. Thus for each *n* in **N**, there exists an integer $m_n \ge n$ such that that $a - \varepsilon < a_{m_n}$. Therefore, $a - \varepsilon < a_{m_n} \le \sup\{a_n, a_{n+1}, \ldots\} = b_n$.

Hence,
$$a - \varepsilon < b_m$$
 for each *m* in **N**. It follows that $a - \varepsilon \leq \lim_{n \to \infty} b_n$. Since ε is arbitrary, $a \leq \lim_{n \to \infty} b_n$.

Therefore, by the previous inequality, we have $\lim_{n \to \infty} b_n = a$ and so $\lim_{n \to \infty} \sup x_n = a$.

Question 2

(a) Let *S* be the set $\{1 + \frac{1}{n} : n \in \mathbb{N}\} \cup \{x \in \mathbb{Q} : 2 < x < 3\}$, and *F*: $\mathbb{R} \to \mathbb{R}$ the function defined by $F(x) = \begin{cases} 3x \text{ if } x \in S \\ \frac{1}{x+2} \text{ if } x \notin S \end{cases}$

(i) Find the set of all cluster points of *S*. (You do *not* need to give a proof of your answer.)

- (ii) Using the ε δ definition of a limit, show that $\lim_{x \to 0} F(x)$ exists and find its value.
- (iii) Determine if $\lim_{x\to 2} F(x)$ exists. Justify your answer.
- (b) Let A and B be non-empty sets, let c in R be a cluster point of A and b in B a cluster point of B. Let g : A → B and f : B→ R are maps such that f is continuous at b and lim g(x) = b. Use ε δ argument to prove that lim f ∘ g(x) = f(b)

Answer

(a) Recall
$$S = \{1 + \frac{1}{n} : n \in \mathbb{N}\} \cup \{x \in \mathbb{Q} : 2 < x < 3\}$$
 and

$$F(x) = \begin{cases} 3x \text{ if } x \in S \\ \frac{1}{x+2} \text{ if } x \notin S \end{cases}$$

(i). Recall the definition of a cluster point. *s* is a cluster point of *S* if any open interval containing *s* also contains infinitely many elements in *S*.

Thus the set of cluster points of *S* is $\{1\} \cup [2, 3]$. Obviously the points in this set are cluster points of *S*. (Any point in [2, 3] satisfies that any open interval containing it has intersection with [2, 3] as an interval which is a non trivial subinterval of [2, 3] which contains infinitely many rational points in (2, 3). Any open interval containing 1 contains infinitely many points in *S* of the form 1+1/n. Plainly $(1-\varepsilon, 1+\varepsilon) \supseteq (1-1/N, 1+1/N)$ for some integer *N* such that $1/N < \varepsilon$. Therefore, for all $n \ge N$, $1+1/n \in S$. Obviously any x > 3, has an open neighbourhood that has empty intersection with *S*. For all x < 1, *x* cannot be a cluster point of *S* for the same reason. There is only a finite number of members of *S* in [y, 2] for any y > 1. We can deduce this as follows, for any y > 1, there exists a positive integer *M* such that 1/M < y - 1 and so consequently 1+1/M < y. Thus $[y, 2] \cap S \subseteq \{1+1/n: 1 \le n \le M\} \cup \{2\}$, which is finite and so [y, 2] can have only a finite number of members of *S*. Hence (1, 2) does not contain any cluster points of *S*. (This is because for any x in (1, 2), there exists a $\delta > 0$ such that $x - \delta > 1$ and $[x - \delta, x + \delta] \subseteq (1, 2)$ and so $[x - \delta, x + \delta]$ is $[x - \delta, 2]$, consequently $(x - \delta, x + \delta)$ has only a finite number of members of *S*.) (ii) Since 3/2 is not a cluster point of *S*, there exists a $\delta > 0$ such that

 $(3/2 - \delta, 3/2 + \delta) \cap S = \{3/2\}$. We can take $\delta = 1/2 - 1/3 = 1/6$.

Claim that the limit is 1/(3/2+2)=2/5.

Give any $\varepsilon > 0$, take $\delta = \min(1/6, 5\varepsilon/2)$.

Then $0 < |x - 3/2| < \delta$ implies that $x \notin S$ since 0 < |x - 3/2| < 1/6 so that 1 + 1/3 < x < 1 + 2/3and $x \neq 3/2$ and so

$$|F(x) - 2/5| = \left|\frac{1}{x+1} - \frac{2}{5}\right| = \left|\frac{3-2x}{5(x+1)}\right| = \frac{2}{5}\left|\frac{x-\frac{3}{2}}{(x+1)}\right| < \frac{2}{5}\left|x-\frac{3}{2}\right| < \frac{2}{5} \cdot \frac{5\varepsilon}{2} = \varepsilon$$

since $0 < |x - 3/2| < 5\varepsilon/2$,

This proves that $\lim_{x \to 3/2} F(x) = \frac{2}{5}$.

(iii) No.

Let *a* be a real number. Take $\varepsilon = 1$. Then for any $\delta > 0$, let $\delta_1 = \min(1/2, \delta)$. Then consider the interval $(2 - \delta_1, 2 + \delta_1)$. Pick a rational number *x* and an irrational number *y* in this $(2, 2 + \delta_1)$. We can do this by the density of the rational numbers and also that of the irrational numbers. Then $x \in S$ and $y \notin S$. Therefore, F(x) = 3x > 6 by the definition of *F*. Similarly, F(y) = 1/(y+1) < 1/3. Now by the triangular inequality,

 $|F(x) - a| + |F(y) - a| \ge |F(x) - F(y)| = F(x) - F(y) > 6 - 1/3 > 2.$

Then at least one of |F(x) - a| or F(y) - a| must be greater than or equal to 1. Let $x_{\delta} = x$ if $|F(x) - a| \ge 1$. If |F(x) - a| < 1, then let $x_{\delta} = y$.

Thus for any $\delta > 0$, we can always find an element x_{δ} in $(2 - \delta_1, 2 + \delta_1)$ such that $|F(x_{\delta}) - a| \ge 1$. This means $\lim_{x \to 2} F(x) \neq a$ for any *a*. Therefore, $\lim_{x \to 2} F(x)$ does not exist.

Alternatively, take a sequence (a_n) of rational numbers in (2,3) which converges to 2 and also a sequence (b_n) of irrational numbers in (2,3) also converging to 2. (We can do this by the density of the rational numbers and that of the irrational numbers. For each n in **N**, there is a rational number a_n and an irrational number b_n such that $2 < a_n$, $b_n < 2 + 1/n$. Obviously, by the Comparison Theorem, both (a_n) and (b_n) converge to 2.) Now since a_n is rational and between 2 and 3, a_n is in S. Therefore, the sequence $(F(a_n)) = (3a_n)$ and converges to $3 \times 2=6$. Now b_n is irrational and so $b_n \notin S$. Thus $F(b_n) = 1/(b_n + 1)$. Since (b_n) converges to 2, $(F(b_n))$ converges to 1/(2+1) = 1/3. Therefore, $\lim_{n\to\infty} F(a_n) \neq \lim_{n\to\infty} F(b_n)$ while $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 2$ and so we conclude that $\lim_{n\to\infty} F(x)$ does not exist. (b) This is just the chain rule for limit. Recall that *A* and *B* are non-empty sets, *c* in **R** is a cluster point of *A* and *b* in *B* is a cluster point of *B*. $g : A \to B$ and $f : B \to \mathbf{R}$ are maps such that *f* is continuous at *b* and $\lim_{x \to c} g(x) = b$.

f is continuous at *b* means given $\varepsilon > 0$, there exists a $\delta_1 > 0$ such that

for all y in B, $|y-b| < \delta_1$ implies that $|f(y) - f(b)| < \varepsilon$ ----- (1) Now $\lim_{x \to \infty} g(x) = b$ means that for the same $\delta_1 > 0$ given by (1), there exists $\delta > 0$ such that

for all *x* in *A*, $0 < |x - c| < \delta$ implies that $|g(x) - b| < \delta_1$ ------(2).

Therefore, putting (1) and (2) together, given $\varepsilon > 0$, there exists $\delta > 0$ (given by (2)) such that for all *x* in *A*, $0 < |x - c| < \delta$ implies that $|g(x) - b| < \delta_1$ which in turn implies by (1)

that

 $|f \circ g(x) - f(b)| = |f(g(x)) - f(b)| < \varepsilon$. This means $\lim_{x \to c} f \circ g(x) = f(b)$.

Question 3.

- (a) Let $f : [a, b] \to \mathbf{R}$ be continuous such that for every x in [a, b], there exists a y in [a, b] such that $|f(y)| \le 1/3 |f(x)|$. Prove that f(c) = 0 for some c in [a, b].
- (b) Suppose g:[0, +∞) → R is continuous on [0, +∞), and that there exist positive constants a and K such that |g(x) g(y)| ≤ K|x y| for all x and y in [a, +∞). Prove that g is uniformly continuous on [0, +∞).

Answer.

(a) This will involve Bolzano Weierstrass Theorem and a charaterization of continuity by sequences.

Recall $f : [a, b] \to \mathbf{R}$ is continuous such that for every x in [a, b], there exists a y in [a, b] such that $|f(y)| \le 1/3 |f(x)|$. We shall show that f(c) = 0 for some c in [a, b]. We shall construct a sequence in [a, b]. Use Bolzano Weierstrass Theorem to obtain a convergent subsequence. The limit of this sequence is the required element c with f(c) = 0.

Start with x_0 in [a, b]. Then by the property of f there exists an element which we called x_1 in [a, b] such that $|f(x_1)| \le 1/3 |f(x_0)|$. Again using the property of f there exists an element x_2 in [a, b] such that $|f(x_2)| \le 1/3 |f(x_1)| \le 1/3^2 |f(x_0)|$. Repeating this process we get a sequence (x_n) in [a, b] such that $|f(x_n)| \le 1/3^n |f(x_0)|$. Then by the Bolzano Weierstrass Theorem (x_n) has a convergent subsequence (x_{n_k}) which converges to an element c in [a, b]. (This is the same thing as saying that the closed and bounded interval [a, b] is sequentially compact.) Therefore, since f is continuous at c, for any sequence (a_n) that converges to c, the sequence $(f(a_n))$ converges to f(c). Therefore, the sequence $(f(x_{n_k}))$ converges to f(c). But since $|f(x_n)| \le 1/3^n |f(x_0)|$,

$$\lim_{k \to \infty} |f(x_{n_k})| \le \lim_{k \to \infty} \frac{1}{3^{n_k}} |f(x_0)| = 0$$

Therefore, $\lim_{k \to \infty} |f(x_{n_k})| = 0$ and so by the Squeeze Theorem $\lim_{k \to \infty} f(x_{n_k}) = 0$. It follows that f(c) = 0.

(b) This is about uniform continuity and Lipschitz condition.

Recall that $g:[0, +\infty) \to \mathbf{R}$ is continuous on $[0, +\infty)$ and that there exist positive constants *a* and *K* such that $|g(x) - g(y)| \le K|x - y|$ for all *x* and *y* in $[a, +\infty)$. We shall show that *g* is uniformly continuous.

Now since [0, a] is a closed and bounded interval and so is compact and since g is continuous on [0, a], g is uniformly continuous on [0, a]. Therefore, for any $\varepsilon > 0$, there exists $\delta_1 > 0$ such that

for all x and y in [0, a], $|x - y| < \delta_1 \Rightarrow |g(x) - g(y)| < \varepsilon/2$ ------ (1) Also note that taking $\delta_2 = \varepsilon/(2K)$, by the above property of the function g for all x and y in $[a, +\infty)$, $|x - y| < \delta_2 \Rightarrow |g(x) - g(y)| \le K|x - y| < K \varepsilon/(2K) = \varepsilon/2$

------ (2)

Thus given any $\varepsilon > 0$, let $\delta = \min(\delta_1, \delta_2)$. For any *x* and *y* in $[0, +\infty)$, if $|x - y| < \delta$, we proceed as follows.

(i) If $\max(x, y) \le a$, then by (1), since $|x - y| < \delta = \min(\delta_1, \delta_2) \le \delta_1$, $|g(x) - g(y)| < \varepsilon/2 < \varepsilon$ or (ii) If $\min(x, y) \ge a$, then by (2), since $|x - y| < \delta = \min(\delta_1, \delta_2) \le \delta_2$, $|g(x) - g(y)| < \varepsilon/2 < \varepsilon$ or (iii) Either (i) x < a < y when x < y or (ii) y < a < x when y < x.

For case (i) since $|x - a| < |x - y| < \delta_1$, we have by (1) $|g(x) - g(a)| < \varepsilon/2$ and also since $|a - y| < |x - y| < \delta_2$, by (2) $|g(a) - g(y)| < \varepsilon/2$. Therefore, by the triangular inequality, $|g(x) - g(y)| \le |g(x) - g(a)| + |g(a) - g(y)| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

Similarly for case (ii) when y < a < x, we can show that $|g(x) - g(y)| < \varepsilon$.

Hence, by (i) (ii) and (iii) above given $\varepsilon > 0$, there exists $\delta > 0$ such that

for all x and y in $[0, +\infty)$, $|x - y| < \delta \Rightarrow |g(x) - g(y)| < \varepsilon$.

Thus, g is uniformly continuous on $[0, +\infty)$,

Question 4.

(a) Let $f :(0, +\infty) \to \mathbf{R}$ be differentiable $(0, +\infty)$ and $\lim_{x \to +\infty} f'(x) = 0$. Prove that $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

(b) Let $g: \mathbf{R} \to \mathbf{R}$ is a continuous function such that the derivatives $g', \ldots, g^{(999)}$ exist and are continuous on **R**. Suppose that $g'(x_0) = \ldots = g^{(998)}(x_0) = 0$ and $g^{(999)}(x_0) = 1$ for some x_0 in **R**. Does *g* have a relative maximum, or a relative minimum, or neither at x_0 ? *Justify your answer*.

Answer.

(a) This is about how one can handle the infinity question and a simple application of the Mean Value Theorem.

Start with what we are given $\lim_{x \to +\infty} f'(x) = 0$. Then given $\varepsilon > 0$, there exists a positive integer *N* such that x > N implies that $|f'(x)| < \varepsilon/2$

Now focus on the interval $[N, +\infty)$. For any x > N, since f is differentiable, by the Mean Value Theorem, there exists a c such that x > c > N and

 $\frac{f(x) - f(N)}{x - N} = f'(c)$ This means f(x) - f(N) = f'(c) (x - N). Dividing by x, we get $\frac{f(x)}{x} = f'(c)(1 - \frac{N}{x}) + \frac{f(N)}{x}$ ------ (2)

Next, chose a positive integer *M* such that $x > M \Rightarrow \left| \frac{f(N)}{x} \right| < \frac{\varepsilon}{2}$ ------(3) (We can find *M* since $\lim_{x \to +\infty} \frac{f(N)}{x} = 0.$) Now take $K = \max(N, M)$. Then x > K implies that $\left|\frac{f(x)}{x}\right| = \left|f'(c)(1 - \frac{N}{x}) + \frac{f(N)}{x}\right|$ by (2) since x > N $\leq \left|f'(c)(1 - \frac{N}{x})\right| + \left|\frac{f(N)}{x}\right| \leq |f'(c)| + \left|\frac{f(N)}{x}\right|$ since $\left|(1 - \frac{N}{x})\right| < 1$ $< \frac{\varepsilon}{2} + \left| \frac{f(N)}{x} \right|$ by (1) since c > N $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ by (3) since $x > K = \max(N, M) \ge M.$ This means $\lim_{x \to \infty} \frac{f(x)}{x} = 0.$

(b) This is a simple application of the Taylor Polynomial expansion with remainder. Recall that g: $\mathbf{R} \rightarrow \mathbf{R}$ is a continuous function such that the derivatives g', ..., g⁽⁹⁹⁹⁾ exist and are continuous on **R**. It is given that $g'(x_0) = ... = g^{(998)}(x_0) = 0$ and $g^{(999)}(x_0) = 1$. Then the Lagrange form of the Taylor expansion about x_0 up to degree 998 gives for any x in R,

$$g(x) = g(x_0) + \frac{g^{(999)}(c)}{999!} (x - x_0)^{999} \quad \dots \qquad (1)$$

for some *c* strictly between *x* and x_0 .

Note that $g^{(999)}$ is continuous and so is continuous at x_0 . Thus, since $g^{(999)}(x_0)=1$, there exists a $\delta > 0$ such that $|x - x_0| < \delta$ implies that $g^{(999)}(x) > 0$. (Take $\varepsilon = 1/2$ and so by continuity there exists a $\delta > 0$ such that $|x - x_0| < \delta$ implies that $1/2 = g^{(999)}(x_0) - 1/2 < g^{(999)}(x) < g^{(999)}(x_0) + 1/2$.)

Hence for any x in $(x_0 - \delta, x_0 + \delta)$, $g^{(999)}(x) > 0$. Therefore for any x in $(x_0 - \delta, x_0 + \delta)$, in the Taylor expansion (1), the Lagrange remainder term has the factor $\frac{g^{(999)}(c)}{999!} > 0$ since the c so obtained is between x and x_0 . Thus, by (1) for $x > x_0$ in $(x_0 - \delta, x_0 + \delta)$,

$$g(x) = g(x_0) + \frac{g^{(33)}(c)}{999!}(x - x_0)^{999} > g(x_0)$$
 since $(x - x_0)^{999} > 0$

and that also by (1) for $x < x_0$ in $(x_0 - \delta, x_0 + \delta)$, $g(x) = g(x_0) + \frac{g^{(999)}(c)}{999!} (x - x_0)^{999} < g(x_0)$ since $(x - x_0)^{999} < 0$

Thus g cannot have a relative maximum nor relative minimum at x_0 .

Question 5.

(a) Let $h:[0, 1] \to \mathbf{R}$ be defined by $h(x) = \begin{cases} -x, \text{ if } x \text{ is rational,} \\ 2x, \text{ if } x \text{ is irrational} \end{cases}$.

Determine if *h* is integrable on [0, 1]. Justify your answer.

(b) Suppose that $f : [a, b] \to \mathbf{R}$ is increasing and differentiable on [a, b] and its derivative f'is Riemann integrable on [a, b], and suppose that $g:[a, b] \rightarrow \mathbf{R}$ is continuous on [a, b]. Prove that there exists c in [a, b] such that a h

$$\int_{a}^{b} f(x)g(x)dx = f(a)\int_{a}^{c} g(x)dx + f(b)\int_{c}^{b} g(x)dx.$$
(Hint: Use integration by parts.)

Answer.

(a) Recall $h : [0, 1] \to \mathbf{R}$ is defined by $h(x) = \begin{cases} -x, \text{ if } x \text{ is rational,} \\ 2x, \text{ if } x \text{ is irrational} \end{cases}$ Then h is discontinuous at every irrational points in [0, 1]

Let *x* be an irrational point in [0, 1]. Then 0 < x < 1. Then there exists a positive integer *N* such that 0 < 1/N < x. Therefore, by the density of the rational numbers, for each $n \ge N$ there exists a rational number a_n such that $0 < x - 1/n < a_n < x$, i.e. $|a_n - x| = x - a_n < 1/n$. Therefore, by the Comparison Theorem, since 1/n tends to 0 as *n* tends to infinity the sequence $(a_n)_{n\ge N}$ tends to *x*.

Now, $h(a_n) = -a_n$ because a_n is rational. Therefore, the sequence $(h(a_n))_{n \ge N} = (-a_n)_{n \ge N}$ converges to -x. Also, by the density of the irrational numbers for each $n \ge N$ there exists an irrational number b_n such that $0 < x - 1/n < b_n < x$, i.e. $|b_n - x| = x - b_n < 1/n$. Similarly we deduce that $(b_n)_{n \ge N}$ tends to x. But since each b_n is irrational $(h(b_n))_{n \ge N} = (2a_n)_{n \ge N}$ and so the sequence $(h(b_n))_{n \ge N}$ converges to 2x. It follows that because $2x \ne -x$, $(h(a_n))_{n \ge N}$ and $(h(b_n))_{n \ge N}$ do not converge to the same limit while both $(a_n)_{n \ge N}$ and $(b_n)_{n \ge N}$ converge to the same limit x. Consequently, h is not continuous at x. Therefore, h is discontinuous at every irrational point in [0,1]. Therefore, by Lebesgue Theorem h is not Riemann integrable on [0,1] as the set of irrational points in [0, 1] has non zero measure.

Alternatively, we can use the upper and lower Darboux sums.

Let Δ : $x_0 = 0 < x_1 < x_2 ... < x_n = 1$ be a partition for [0, 1].

Then the upper Darboux sum with respect to Δ is

$$U(\Delta) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} M_i (x_i - x_{i-1}),$$

where $M_i = \sup\{h(x) : x \in [x_{i-1}, x_i]\} = 2x_i$ Similarly, the lower Darboux sum with respect to Δ is $L(\Delta) = \sum_{i=1}^n m_i \Delta x_i = \sum_{i=1}^n m_i (x_i - x_{i-1}),$ where $m_i = \inf\{h(x) : x \in [x_{i-1}, x_i]\} = -x_i.$

Therefore, $U(\Delta) - L(\Delta) = 3\sum_{i=1}^{n} x_i(x_i - x_{i-1}) = \frac{3}{2}\sum_{i=1}^{n} [x_i^2 - x_{i-1}^2 + (x_i - x_{i-1})^2]$ $> \frac{3}{2}\sum_{i=1}^{n} [x_i^2 - x_{i-1}^2] = \frac{3}{2}.$

Therefore, for any partition Δ , $U(\Delta) - L(\Delta) > 3/2$. Hence *h* is not Riemann integrable.

(b) This is sometimes called the Third Mean Value Theorem for Integral. Suppose $f : [a, b] \to \mathbf{R}$ is increasing and differentiable on [a, b] and its derivative f' is Riemann integrable on [a, b], and suppose that $g:[a, b] \to \mathbf{R}$ is continuous on [a, b]. Then there exists c in [a, b] such that

$$\int_{a}^{b} f(x)g(x)dx = f(a) \int_{a}^{c} g(x)dx + f(b) \int_{c}^{b} g(x)dx.$$

Follow the hint.

Let $G(x) = \int_{a}^{x} g(t)dt$. Then since g is continuous, G(x) is an anti-derivative of g(x) by the Fundamental Theorem of Calculus. Then using integration by parts,

$$\int_{a}^{b} f(x)g(x)dx = [f(x)G(x)]_{a}^{b} - \int_{c}^{b} G(x)f'(x)dx$$

= $f(b)G(b) - \int_{c}^{b} G(x)f'(x)dx$ ------ (1)
since $G(a) = 0$.

Now, since G(x) is continuous on [a, b], by the Extreme Value Theorem, there exists d and e in [a, b] such that for all x in [a, b],

$$G(d) \le G(x) \le G(e). \tag{2}$$

Note that since f is increasing and differentiable on [a, b], $f'(x) \ge 0$ for all x in [a, b]. Therefore, multiplying (2) by f'(x) we get for all x in [a, b],

$$G(d) f'(x) \le G(x) f'(x) \le G(e) f'(x).$$

Thus, taking integrals,

$$G(d) \int_{a}^{b} f'(x) \le \int_{a}^{b} G(x) f'(x) dx \le G(e) \int_{c}^{b} f'(x) dx$$