
Solution to MA3110 Analysis  Semester 2 2005/06
Question 1
(a)  Let S  be a non-empty set of positive real numbers with the following property: There

exists a positive real constant C such that for any positive integer n and any n distinct
elements s1 , s2 ,  … , sn in S, we have  s1 + s2 + … + sn ≤ C.
(i) Show that for every positive integer k, the set Sk = { s ∈ S : s ≥ C/k } has at most k
elements.
(ii) Deduce that S is countable.

(b)  Let  (an) be a bounded sequence of real numbers.  You may use the fact that 
, where  bn = sup {an ,an+1 , an+2 , …}.  Denote  by a.

n d ∞
lim sup xn =n d ∞

lim bn
n d ∞

lim sup xn

(1) Prove that for every x > a, there exists N  ∈ N such that an  < x  for all n ≥ N.
(2) Prove that for every y < a, there exist infinitely many n in N such that y < an

(3) Prove that conversely, if a is any real number satisfying both conditions in (1) and (2)
above, then  .a =

n d ∞
lim sup xn

Answer
(a)  This is a countability argument.
S consists of positive real numbers for which any n distinct elements in S has their sum ≤ C
for some constant C.
(i)   Sk = { s ∈ S : s ≥ C/k } for each positive integer.        
Then Sk  has at most k elements.
Suppose on the contrary that Sk has more than k elements,  i.e., |Sk | = n > k.
Let Sk = { s1 , s2 ,  … , sn} . Then s1 + s2 + … + sn > n × C/k > C since n/k > 1.  But since Sk ⊆
S ,
s1 + s2 + … + sn ≤ C.  This contradicts s1 + s2 + … + sn > C and so Sk  has at most k elements.
(ii) 
Take any s in S.  Then by the Archimedean property of R, there exists a positive integer N
such that 
N s > C .  Therefore, s > C/N and so s ∈ SN ⊆ ∪{ Sk : k ∈ N }. That means S ⊆ ∪{ Sk : k ∈ N
}.  Since each Sk ⊆ S,  ∪{ Sk : k ∈ N }⊆ S.  Therefore, S = ∪{ Sk : k ∈ N }.  Thus S is a
countable union of sets each of which is finite (and so countable). It follows that S is
countable.

(b) This is about the property of limit superior.
Given that (an) is a bounded sequence.  Now we recall why   exists.

n d ∞
lim sup xn

For each positive integer n, let bn be the supremum or the least upper bound of the set {an

,an+1 , an+2 , …}.  This exists because {an ,an+1 , an+2 , …} is bounded since the sequence (an)
is  bounded.  Plainly (bn) is bounded also. (If  L < an < K for all n, then L ≤ bn ≤ K because  L
and K are also lower and upper bounds for {an ,an+1 , an+2 , …}.)  Now (bn) is a decreasing
sequence.  This is seen as follows.  For n > m ,  {an ,an+1 , an+2 , …} ⊆ {am,an+1 , am+2 , …}.
Therefore,  
                        bn = sup {an ,an+1 , an+2 , …} ≤ sup {am,an+1 , am+2 , …} = bm .
Thus, since (bn) is bounded below, by the Monotone Convergence Theorem, (bn) is
convergent. The limit of  (bn) is  .  In particular, the limit is the infimum of {b1 ,b2 ,

n d∞
lim sup xn

b3 , …}.  Let  .  Then  .n d∞
lim bn = a

n d∞
lim sup xn = a
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(1)  Take any x > a. Then x > inf {b1 ,b2 , b3 , …}.  Thus, there exists an element k in  {b1 ,b2 ,
b3 , …} such that x > k ≥ inf {b1 ,b2 , b3 , …} = a by the definition of infimum or greatest
lower bound.  Then there exists an integer N such that k = bN .  Therefore,  for all n ≥ N,
                  x > bN = sup {aN ,aN+1 , aN+2 , …} ≥ an .
Hence for all n ≥ N,  x > an .
(2)  Take y < a.  Then since a is the greatest lower bound or infimum of  {b1 ,b2 , b3 , …},  y
is a lower bound of  {b1 ,b2 , b3 , …}.  That is  y < bk for all positive integer k.
So  y < b1 = sup {a1 ,a2 , a3 , …}.  Therefore, by the definition of supremum or least upper
bound, there exists n1 ≥ 1 such that . Now   .  And so there exists n2 ≥ n1y < an1 [ b1 y < bn1+1
+ 1 > n1  such that .  In this way we inductively define  such that y < an2 [ bn1+1 ank

 and nk > nk-1 .  Hence the set satisfies    for all j in N andy < ank [ bnk−1 +1 {an1 , an2 ,¢} y < anj

the set {nj : j ∈ N} is an infinite subset of N as nj ≠ nk for j ≠ k.  Therefore, there are infinitely
many n in N such that y < an .
(3) Suppose (1) and (2) holds for some real number a.
Take any ε > 0.   Then a + ε > a.
Then by part (1) there exists an integer N such that for all n ≥ N,  a + ε > an .  Therefore,  a +
ε  is an upper bound for {aN ,aN+1 , aN+2 , …}.  Thus a + ε ≥ sup {aN ,aN+1 , aN+2 , …} = bN.   
Therefore, for all n ≥ N , bn ≤ bN ≤ a + ε .   Therefore,      Since ε is arbitrary, n d ∞

lim bn [ a + .
.n d ∞

lim bn [ a
Now consider a − ε < a.  By part (2) there exists infinitely many n in N such that a − ε < an. 
Thus for each n in N, there exists an integer mn ≥ n such that that .  Therefore,a − < amn

                             .a − < amn [ sup{an, an+1,¢} = bn
Hence,  for each m in N.  It follows that , .  Since ε is arbitrary, ,a − < bm a − [nd∞lim bn

.a [nd∞lim bn

Therefore, by the previous inequality, we have  and so .n d ∞
lim bn = a

n d ∞
lim sup xn = a

Question 2
(a)  Let S be the set , and F: R → R the function defined by {1 + 1

n : n cN}4{x cQ: 2 < x < 3)

                                            F(x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

3x if x c S
1

x + 2 if x " S
(i) Find the set of all cluster points of S.  (You do not need to give a proof of your
answer.)
(ii) Using the ε - δ definition of a limit, show that  exists and find its value.

xd3/2
lim F(x)

(iii) Determine if   exists.  Justify your answer.
xd2
lim F(x)

(b)  Let A and B  be non-empty sets,  let c in R be a cluster point of A and b in B a cluster
point of B.  Let g : A → B  and  f : B→ R are maps such that  f  is continuous at b and 

.  Use ε - δ argument to prove that  xdclim g(x) = b xdclim f ) g(x) = f (b)

Answer
(a)  Recall   andS = {1 + 1

n : n cN}4{x cQ: 2 < x < 3)

          F(x) =
⎧ 

⎩ 
⎨ 
⎪ 

⎪ 

3x if x c S
1

x + 2 if x " S
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(i).   Recall the definition of a cluster point. s is a cluster point of S if any open interval
containing s also contains infinitely many elements in S.      
      Thus the set of cluster points of S is {1}∪[2, 3].  
Obviously the points in this set are cluster points of S.  ( Any point in [2, 3] satisfies that any
open interval containing it has intersection with [2, 3] as an interval which is a non trivial
subinterval of [2, 3] which contains infinitely many rational points in (2, 3).  Any open
interval containing 1 contains infinitely many points in S of the form 1+ 1/n.  Plainly (1-ε,
1+ε )  ⊇ (1−1/N, 1+1/N) for some integer N such that 1/N < ε . Therefore, for all n ≥ N, 1+1/n
∈ S.   Obviously any x > 3, has an open neighbourhood that has empty intersection with S.
For all x < 1, x cannot be a cluster point of S for the same reason.  There is only a finite
number of members of S in [y, 2] for any y > 1.  We can deduce this as follows, for any y > 1,
there exists a positive integer M such that  1/M < y −1 and so consequently 1+1/M < y.  Thus
[y, 2]∩S ⊆ {1+1/n: 1≤ n≤M}∪{2}, which is finite and so [y, 2] can have only a finite number
of members of S.  Hence (1, 2) does not contain any cluster points of S . (This is because for
any x in (1, 2), there exists a δ > 0 such that x−δ > 1 and [x−δ, x+δ] ⊆ (1,2) and so [x−δ, x+δ]
⊆ [x−δ, 2] , consequently (x−δ, x+δ) has only a finite number of  members of S .) 
(ii)  Since 3/2 is not  a cluster point of S, there exists a δ > 0 such that 
        (3/2 − δ, 3/2+δ) ∩ S = {3/2}.  We can take δ = 1/2 − 1/3= 1/6.
       Claim that the limit is 1/(3/2+2)= 2/5.
       Give any ε > 0, take δ = min(1/6, 5ε/2).
Then  0< |x −3/2| < δ implies that x ∉ S since 0 < |x −3/2| < 1/6 so that  1+1/3 < x <  1 + 2/3
and x ≠ 3/2 and so 

                   |F(x) − 2/5| = 1
x + 1 − 2

5 = 3 − 2x
5(x + 1) = 2

5
x − 3

2
(x + 1) < 2

5 x − 3
2 < 2

5 $
5
2 =

since  0 < |x −3/2| < 5ε/2,
This proves that .

xd3/2
lim F(x) = 2

5
(iii) No. 
Let a be a real number.  Take  ε = 1.   Then for any δ > 0,  let δ1 = min (1/2, δ).  Then
consider the interval (2 − δ1, 2 + δ1).  Pick a rational number x and an irrational number y in
this (2, 2 + δ1).  We can do this by the density of the rational numbers and also that of the
irrational numbers.   Then  x ∈ S and y ∉ S.   Therefore, F(x) = 3x > 6  by the definition of  F.
Similarly, F( y)  = 1/(y+1) < 1/3.  Now by the triangular inequality,
             |F(x) − a | + |F(y) - a|  ≥ |F(x)−F(y)| = F(x)−F(y) > 6 − 1/3 > 2.
Then at least one of  |F(x) − a | or  F(y) - a| must be greater than or equal to 1.   Let xδ = x if
|F(x) − a | ≥ 1.  If  |F(x) − a | <  1, then let xδ =  y .

Thus for any  δ > 0, we can always find an element xδ  in (2 − δ1, 2 + δ1) such that |F(xδ ) − a |
≥ 1.  This means  for any a.  Therefore,  does not exist.

xd2
lim F(x) ! a

xd2
lim F(x)

Alternatively, take a sequence (an ) of rational numbers in (2,3) which converges to 2 and also
a sequence (bn ) of irrational numbers in (2,3) also converging to 2.  (We can do this by the
density of the rational numbers and that of the irrational numbers.  For eacn n in N, there is a
rational number an and an irrational number bn such that 2 < an , bn < 2+ 1/n.  Obviously, by
the Comparison Theorem, both (an ) and (bn ) converge to 2.)  Now since an is rational  and
between 2 and 3, an is in S.  Therefore, the sequence ( F(an )) = (3an ) and converges to
3×2=6.  Now bn  is irrational and so bn ∉ S.   Thus  F (bn ) = 1/(bn +1).   Since (bn ) converges
to 2,  (F (bn )) converges to 1/(2+1) = 1/3.  Therefore,  while nd∞lim F(an) !nd∞lim F(bn)

 and so we conclude that  does not exist.nd∞lim an =nd∞lim bn = 2
xd2
lim F(x)
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(b)  This is just the chain rule for limit.  Recall that A and B are non-empty sets, c in R is a
cluster point of A and b in B is a cluster point of B.  g : A → B  and f : B→ R are maps such
that  f  is continuous at b and .xdclim g(x) = b
f  is continuous at b means given ε > 0, there exists a δ1 > 0 such that 
            for all y in B,  | y− b| < δ1  implies that | f (y) − f (b) | < ε  --------------------    (1)
Now     means that for the same δ1 > 0 given by (1),  there exists δ > 0 such that xdclim g(x) = b
             for all x in A , 0 < | x− c| < δ  implies that | g(x) − b| < δ1  ---------------------- (2).
Therefore, putting (1) and (2) together, given ε > 0, there exists δ > 0 (given by (2)) such that
          for all x in A , 0 < | x− c| < δ  implies that | g(x) − b| < δ1 which in turn implies by (1)
that 
       .   This means .f ) g(x) − f (b) = f (g(x)) − f (b) < xdclim f ) g(x) = f (b)

Question 3.
(a)  Let  f  :[a, b]  → R be continuous such that for every x in [a, b], there exists a y in [a, b]

such that | f (y) | ≤ 1/3 | f (x)|.  Prove that  f (c) = 0 for some c in [a, b].
(b)  Suppose  g :[0, +∞ ) → R is continuous on [0, +∞ ), and that there exist positive

constants a and K such that |g(x) − g(y)| ≤ K|x − y| for all x and y in [a, +∞ ).   Prove that
g  is uniformly continuous on [0, +∞ ).

Answer.
(a)  This will involve Bolzano Weierstrass Theorem and a charaterization of continuity by
sequences.
Recall  f  :[a, b]  → R is continuous such that for every x in [a, b], there exists a y in [a, b]
such that | f (y) | ≤ 1/3 | f (x) |.  We shall show that f (c) = 0 for some c in [a, b].
We shall construct a sequence in [a, b].   Use Bolzano Weierstrass Theorem to obtain a
convergent subsequence.  The limit of this sequence is the required element c with f (c) = 0.

Start with x0 in [a, b].  Then by the property of  f  there exists an element which we called x1

in [a, b] such that | f (x1) | ≤ 1/3 | f (x0) |.  Again using the property of   f  there exists an
element x2  in [a, b] such that | f (x2) | ≤ 1/3 | f (x1)|≤ 1/32 | f (x0)|.  Repeating this process we
get a sequence (xn ) in [a, b] such that | f (xn) | ≤ 1/3n | f (x0)|.  Then by the Bolzano
Weierstrass Theorem  (xn ) has a convergent subsequence  which converges to an(xnk)
element c in [a, b].  (This is the same thing as saying that the closed and bounded interval [a,
b] is sequentially compact. )  Therefore, since  f  is continuous at c, for any sequence (an ) that
converges to c, the sequence (f (an )) converges to   f (c).  Therefore,  the sequence ( f (xnk))
converges to  f (c).  But since | f (xn) | ≤ 1/3n | f (x0)|,
                 

kd∞
lim f (xnk) [kd∞

lim 1/3nk f (x0 = 0
Therefore,  and so by the Squeeze Theorem .  It follows that f

kd∞
lim f (xnk) = 0

kd∞
lim f (xnk) = 0

(c) = 0.

(b)  This is about uniform continuity and Lipschitz condition.
Recall that g :[0, +∞ ) → R is continuous on [0, +∞ )  and that there exist positive constants
a and K such that |g(x) − g(y)| ≤ K|x − y| for all x and y in [a, +∞ ).   We shall show that  g is
uniformly continuous.
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Now since [0, a] is a closed and bounded interval and so is compact and  since  g  is
continuous on [0, a],  g is uniformly continuous on [0, a].  Therefore, for any ε > 0, there
exists δ1 > 0 such that 
    for all x and y in [0, a],  |x − y| < δ1 ⇒ |g(x) − g(y)| < ε/2   ----------------------   (1)
Also note that taking δ2 = ε/(2K), by the above property of the function g 
   for all x and y in [a, +∞ ),  |x − y| < δ2 ⇒ |g(x) − g(y)| ≤ K|x − y|< K ε/(2K) = ε/2 
                                                                                               ----------------------   (2)
Thus given any ε > 0, let δ = min(δ1, δ2).  For any x and y in [0,+∞ ), if
                          |x − y| < δ,  we proceed as follows.
(i) If max(x,  y)≤ a, then by (1), since  |x − y| <δ = min(δ1, δ2)≤δ1 ,  |g(x) − g(y)| < ε/2 < ε  or
(ii) If min(x,  y)≥ a, then by (2), since  |x − y| <δ = min(δ1, δ2)≤δ2 ,  |g(x) − g(y)| < ε/2 < ε  or
(iii) Either (i)  x < a < y  when x < y or  (ii) y < a < x when y < x.
     For case (i) since |x − a| <|x − y| < δ1, we have by (1) |g(x) − g(a)| < ε/2 and also  
      since |a − y| <|x − y| < δ2, by (2) |g(a) − g(y)| < ε/2. Therefore, by the triangular inequality,
       |g(x) − g(y)| ≤|g(x) − g(a)|+|g(a) − g(y)| < ε/2 + ε/2 = ε.
Similarly for case (ii) when  y < a < x , we can show that |g(x) − g(y)| < ε.
Hence, by (i) (ii) and (iii) above given ε > 0, there exists δ > 0 such that 
             for all x and y in [0, +∞ ),  |x − y| < δ ⇒ |g(x) − g(y)| < ε.
Thus, g  is uniformly continuous on [0, +∞ ),

Question 4.
(a)  Let  f  :(0, +∞ ) → R be differentiable (0, +∞ ) and .  Prove that .xd + ∞

lim f ∏(x) = 0

      .xd + ∞
lim

f (x)
x = 0

(b)  Let  g: R → R  is a continuous function such that the derivatives g', … , g(999) exist and
are continuous on R.   Suppose that g'(x0) = … = g(998)(x0)=0 and g(999)(x0)=1 for some x0

in R.  Does g have a relative maximum, or a  relative minimum, or neither at x0 ?  Justify
your answer. 

Answer.
(a)  This is about how one can handle the infinity question and a simple application of the
Mean Value Theorem.

Start with what we are given .xd + ∞
lim f ∏(x) = 0

Then given ε > 0, there exists a positive integer N such that x > N implies that | f '(x) | < ε/2 
                                                        ------------------------------  (1)
Now focus on the interval [N, +∞ ).  
For any x > N, since f  is differentiable, by the Mean Value Theorem, there exists a c such
that x > c > N and 
                           

f (x) − f (N)
x − N = f ∏(c)

This means  f (x) − f (N) = f '(c) ( x − N).
Dividing by x, we get      -----------------  (2)

f (x)
x = f ∏(c)(1 − N

x ) +
f (N)

x

Next, chose a positive integer M such that
                          x > M ⇒      ------------------------------- (3)

f (N)
x < 2
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(We can find M since .)xd + ∞
lim

f (N)
x = 0

Now take K = max(N, M).   Then x > K  implies that 
             by (2) since x > N

f (x)
x = f ∏(c)(1 − N

x ) +
f (N)

x

                      since [ f ∏(c)(1 − N
x ) +

f (N)
x [ f ∏(c) +

f (N)
x (1 − N

x ) < 1

                      by (1) since c > N < 2 +
f (N)

x
                      by (3) since x > K = max(N, M)≥M.< 2 + 2 =

This means  .xd + ∞
lim

f (x)
x = 0

(b)  This is a simple application of the Taylor Polynomial expansion with remainder.
Recall  that g: R → R  is a continuous function such that the derivatives g', … , g(999) exist
and are continuous on R.  It is given that g'(x0) = … = g(998)(x0)=0 and g(999)(x0)=1.
Then the Lagrange form of the Taylor expansion about x0 up to degree  998 gives for any x in
R,

                         -------------  (1)g(x) = g(x0) +
g(999)(c)

999! (x − x0)999

for some c strictly between x and x0 .
Note that g(999)  is continuous and so is continuous at x0 .  Thus, since g(999)(x0)=1, there exists a
δ > 0 such that |x − x0| < δ implies that g(999)(x) > 0.  ( Take ε = 1/2 and so by continuity there
exists a δ > 0 such that |x − x0| < δ implies that 1/2 = g(999)(x0)-1/2< g(999)(x) < g(999)(x0)+1/2.)

Hence for any x in (x0 − δ, x0 + δ), g(999)(x) > 0.  Therefore for any x in (x0 − δ, x0 + δ), in the

Taylor expansion (1), the Lagrange remainder term has the factor   since the c so
g(999)(c)

999! > 0
obtained is between x and x0.   Thus, by (1) for  x > x0 in (x0 − δ, x0 + δ),

               since g(x) = g(x0) +
g(999)(c)

999! (x − x0)999 > g(x0) (x − x0)999 > 0
and that also by (1) for x <  x0 in (x0 − δ, x0 + δ),

                since g(x) = g(x0) +
g(999)(c)

999! (x − x0)999 < g(x0) (x − x0)999 < 0
Thus g cannot have a relative maximum nor relative minimum at x0. 

Question 5.

(a)  Let  h :[0, 1]  → R be defined by .h(x) =
⎧ 

⎩ 
⎨ 

−x , if x is rational,
2x , if x is irrational

       Determine if  h is integrable on [0, 1].  Justify your answer.
(b)  Suppose that f  :[a, b]  → R is increasing and differentiable on [a, b] and its derivative  f '
       is Riemann integrable on [a, b], and suppose  that g:[a, b]  → R is continuous on [a, b].    
       Prove that there exists c in [a, b] such that
                         .¶a

b
f (x)g(x)dx = f (a) ¶a

c
g(x)dx + f (b) ¶c

b
g(x)dx

      (Hint:  Use integration by parts. )

Answer.

(a) Recall h :[0, 1]  → R is defined by .h(x) =
⎧ 

⎩ 
⎨ 

−x , if x is rational,
2x , if x is irrational

Then h is discontinuous at every irrational points in [0, 1].  

6



Let x be an irrational point in [0, 1].  Then 0 < x < 1.  Then there exists a positive integer N
such that 0 < 1/N < x.   Therefore, by the density of the rational numbers, for each  n ≥ N
there exists a rational number an  such that 0 < x − 1/n < an < x, i.e. | an - x| = x - an < 1/n.
Therefore, by the Comparison Theorem, since 1/n tends to 0 as n tends to infinity the
sequence (an )n≥N tends to x.
Now, h(an ) = − an  because an   is rational. Therefore, the sequence ( h(an ))n≥N  = ( − an )n≥N

converges to − x.  Also, by the density of the irrational numbers for each  n ≥ N there exists
an irrational number bn  such that 0 < x − 1/n < bn < x, i.e. | bn - x| = x - bn < 1/n.   Similarly
we deduce that (bn )n≥N tends to x.  But since each bn is irrational ( h(bn ))n≥N  = ( 2an )n≥N and so
the sequence ( h(bn ))n≥N converges to 2x.  It follows that because 2x ≠ −x,  ( h(an ))n≥N and (
h(bn ))n≥N do not converge to the same limit while both (an )n≥N and (bn )n≥N converge to the
same limit x.  Consequently, h is not continuous at x.  Therefore, h is discontinuous at every
irrational point in [0,1]. Therefore, by Lebesgue Theorem h is not Riemann integrable on
[0,1] as the set of irrational points in [0, 1] has non zero measure.

Alternatively, we can use the upper and lower Darboux sums.
Let Δ: x0 = 0 < x1 < x2 … < xn =1 be a partition for [0, 1].
Then the upper Darboux sum with respect to Δ is
                       ,U( ) =

i=1

n
Mi xi =

i=1

n
Mi(xi − xi−1)

where  Mi = sup{h(x) : x c [xi−1, xi]} = 2xi
Similarly, the lower Darboux sum with respect to Δ is
                       , L( ) =

i=1

n
mi xi =

i=1

n
mi(xi − xi−1)

where  .  mi = inf{h(x) : x c [xi−1, xi]} = −xi

Therefore,   U( ) − L( ) = 3
i=1

n
xi(xi − xi−1) = 3

2 i=1

n
[xi

2 − xi−1
2 + (xi − xi−1)2 ]

                    .> 3
2 i=1

n
[xi

2 − xi−1
2 ] = 3

2
Therefore, for any partition  Δ ,  U(Δ) − L(Δ) > 3/2.  Hence h is not Riemann integrable.

(b)  This is sometimes called the Third Mean Value Theorem for Integral.
Suppose  f  :[a, b]  → R is increasing and differentiable on [a, b] and its derivative  f ' is
Riemann integrable on [a, b], and suppose  that g:[a, b]  → R is continuous on [a, b].  Then
there exists c in [a, b] such that
                         .¶a

b
f (x)g(x)dx = f (a) ¶a

c
g(x)dx + f (b) ¶c

b
g(x)dx

Follow the hint.
Let  .  Then since g is continuous, G(x) is an anti-derivative of g(x) by theG(x) = ¶a

x
g(t)dt

Fundamental Theorem of Calculus.  Then using integration by parts,
                                                      ¶a

b
f (x)g(x)dx = [f (x)G(x)]a

b − ¶c

b
G(x) f ∏(x)dx

                                                       ----------------------  (1)= f (b)G(b) − ¶c

b
G(x) f ∏(x)dx

                                                                           since G(a) = 0.
Now, since G(x) is continuous on [a, b], by the Extreme Value Theorem, there exists d and e
in [a, b] such that for all x in [a, b],
                                                 G(d) ≤ G(x) ≤ G(e).               ---------------------------- (2)
Note that since  f  is increasing and differentiable on [a, b],  f '(x) ≥ 0 for all x in [a, b].
Therefore, multiplying (2) by  f '(x) we get for all x in [a, b],
                                               G(d) f '(x) ≤ G(x) f '(x) ≤ G(e)f '(x).
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Thus, taking integrals,
                                     G(d) ¶a

b
f ∏(x) [ ¶a

b
G(x) f ∏(x)dx [ G(e) ¶c

b
f ∏(x)dx

Hence by the Intermediate Value Theorem, there exists c between d and e and hence in [a, b]
such that 
                                         ----------   (3)¶a

b
G(x) f ∏(x)dx = G(c) ¶c

b
f ∏(x)dx

Now since  f ' is Riemann integrable on [a, b],  by Darboux Theorem,
                                  .¶a

b
f ∏(x)dx = f (b) − f (a)

It follows then from (3) that   
                                         -------------------   (4) ¶a

b
G(x) f ∏(x)dx = G(c)( f (b) − f (a))

Thus substituting (4) in (1) we obtain,
               ¶a

b
f (x)g(x)dx = f (b)G(b) − ¶c

b
G(x) f ∏(x)dx = f (b)G(b) − G(c)( f (b) − f (a))

                 = f (b)(G(b) − G(c)) + f (a)G(c)
                = f (b) ¶a

b
g(x)dx − ¶a

c
g(x)dx + f (a) ¶a

c
g(x)dx

                = f (b) ¶c

b
g(x)dx + f (a) ¶a

c
g(x)dx

This completes the proof.
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