NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER 2 EXAMINATION 2005 - 2006 MA1102R CALCULUS
 April 2006 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO sections: Section A and Section B. It contains a total of SIX questions and comprises FOUR printed pages.
2. Answer ALL questions in Section A. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{rl}
x^{2}, & x \leq 0 \\
x^{2} \sin \left(\frac{\pi}{2 x}\right), & 0<x<1 \\
-x^{3}+3 x-1, & x \geq 1
\end{array} .\right.
$$

(a) Determine all x in \mathbf{R} at which the function f is continuous. Justify your answer.
(b) Find the range of the function f.
(c) Determine if f is surjective.
(d) Determine if f is differentiable at x, when $x=0$ or 1 . Justify your answer.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \sqrt{\frac{x^{7}+3 x^{2}+\sin (x)+7}{5 x^{7}+6 x^{3}+1}}$.
(b) $\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{x+\sin (x)}$.
(c) $\lim _{x \rightarrow 0^{+}} \sin (x) \sin \left(e^{\sin (1 / x)}\right)$.
(d) $\lim _{x \rightarrow 0}\left(1+17 x^{3}\right)^{\left(1 / x^{3}\right)}$.
(e) $\lim _{x \rightarrow \infty} \frac{e^{\left(x^{2}\right)}}{1+x^{3}+x^{5}}$.

Question 3 [20 marks]
(a) Evaluate $\int \frac{2 x^{2}-x+1}{\left(x^{2}+3 x+3\right)\left(x^{2}-3 x+3\right)} d x$.
(b) Compute $\int_{-1}^{2} \sin (x+3|x|) d x$.
(c) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{c}
x^{3}+x+2, x<0 \\
3 \sin (\pi x)+\cos (2 x) e^{\sin (2 x)}+1, x \geq 0
\end{array} .\right.
$$

(d) Evaluate $\int \frac{1}{\sqrt{x^{2}-2 x-1}} d x$.
(e) Evaluate $\int \ln \left(2+x^{2}\right) d x$.

SECTION B

Answer not more than TWO questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) Find the critical points of the function g, defined by

$$
g(x)=2 x^{3}-15 x^{2}+24 x+1,
$$

in the open interval $(0,5)$. Determine the absolute maximum and the absolute minimum values of the function in the interval [0,5].
(b) Differentiate each of the following functions.
(i) $h(x)=\left(x^{2}+1+\cos (\cos (x))\right)^{\sin (x)}$.
(ii) $j(x)=\int_{x}^{\ln (x)} \frac{e^{t}}{\sin \left(t+\sin \left(t^{2}\right)\right)+2} d t, x \in(0, \infty)$.
(iii) $k(x)=\cot ^{-1}\left(\csc ^{2}(x)\right), x \in\left(0, \frac{\pi}{2}\right)$.
(c) Suppose f and g are two continuous functions defined on the interval [a,
$b]$ with $a<b$. Suppose $f(x) \geq 0$ for all x in $[a, b]$.
(i) Show that if m is the absolute minimum of $\mathrm{g}(x)$ on $[a, b]$ and M is the absolute maximum of $\mathrm{g}(x)$ on $[a, b]$, then

$$
m \int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq M \int_{a}^{b} f(x) d x .
$$

(ii) Hence, or otherwise, show that there exists a point c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=g(c) \int_{a}^{b} f(x) d x
$$

Question 5 [20 marks]
(a) (i) Suppose f is a continuous function defined on the closed and bounded interval $[a, b]$. Give the integral formula for the volume of solid of revolution obtained by rotating about the x-axis the region bounded by the curve $y=f(x)$, the x-axis the lines $x=a$ and $x=b$.
(ii) Use this formula or otherwise, find the volume of the solid of revolution when the ellipse,

$$
\frac{x^{2}}{3}+\frac{y^{2}}{5}=1
$$

is rotated about the x-axis through 2π radians.
(b) Differentiate the function k defined on \mathbf{R} by

$$
k(x)=\int_{1}^{x^{5}}\left(1+t^{2}+\cos (\sin (\pi t))\right) d t
$$

(i) Without integrating, show that the function k is injective.
(ii) Determine $\left(k^{-1}\right)^{\prime}(0)$.
(c) Find the following limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{2}}{n^{4}} \cdot \sqrt[3]{7 n^{3}+2 i^{3}}
$$

Question 6 [20 marks]
Let the function f be defined on \mathbf{R} by

$$
f(x)=x^{5}-20 x^{2}+7 .
$$

(a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(b) Find the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
(c) Find the relative extrema of f, if any.
(d) Find the points of inflection of the graph of f.
(e) Sketch the graph of f.

END OF PAPER

Answer To MA1102 Calculus

Question 1

The function f is defined by $f(x)=\left\{\begin{array}{c}x^{2}, \quad x \leq 0 \\ x^{2} \sin \left(\frac{\pi}{2 x}\right), 0<x<1 \\ -x^{3}+3 x-1, \quad x \geq 1\end{array}\right.$.
(a) For $x<0, f(x)=x^{2}$ is a polynomial function. Therefore, f is continuous on the interval $(-\infty, 0)$ since any polynomial function is continuous on \mathbf{R} and hence on any interval. Similarly for $x>1, f(x)=-x^{3}+3 x-1$ is a polynomial function there and so is continuous on $(1, \infty)$.
For $0<x<1, f(x)=x^{2} \sin \left(\frac{\pi}{2 x}\right)$ and so f is continuous on $(0,1)$ since $\sin \left(\frac{\pi}{2 x}\right)$ is continuous on $(0,1)$ and x^{2} is continuous on \mathbf{R} so that the product of these two functions is continuous on $(0,1)$. Thus it remains to check the continuity of f at 0 and 1 . Note that $f(0)=0$ and f $(1)=1$.

Now we determine the left limit at $x=0$. It is $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}=0$. The right limit at $x=0$ is $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=0$ by the Squeeze Theorem since
$-|x|^{2} \leq x^{2} \sin \left(\frac{\pi}{2 x}\right) \leq|x|^{2}$ for $x \neq 0$ and $\lim _{x \rightarrow 0^{+}}|x|^{2}=0$. Therefore, $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and so f is continuous at $x=0$.
Now consider the left limit of f at $x=1$,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=1 \cdot \sin \left(\frac{\pi}{2}\right)=1$
Now $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-x^{3}+3 x-1=-1+3-1=1$ and so $\lim _{x \rightarrow 1} f(x)=1$.
Therefore, $\lim _{x \rightarrow 1} f(x)=1=f(1)$ and so f is continuous at $x=1$.
Therefore f is continuous at x for any x in \mathbf{R}.
(b) For $x \leq 0, x^{2} \geq 0$ and so the image $f((-\infty, 0]) \subseteq[0, \infty)$. Now for any $y \geq 0, x^{2}=y$ has a solution $x=-\sqrt{y} \leq 0$ to $x^{2}=y$ in $(-\infty, 0]$. Therefore, $[0, \infty) \subseteq f((-\infty, 0])$. That means f $((-\infty, 0]=[0, \infty)$.
Next for $x>1$, $f(x)=-x^{3}+3 x-1$ so that $f^{\prime}(x)=-3 x^{2}+3=3\left(1-x^{2}\right)<0$ for $x>1$.
Therefore, f is strictly decreasing on $[1, \infty)$ and so $f(x) \leq f(1)=1$ for $x \geq 1$. Hence $f([1$, $\infty) \subseteq(-\infty, 1]$. Also note that
$\lim _{x \rightarrow \infty} f(x)=-\infty$ since $\lim _{x \rightarrow \infty}-x^{3}+3 x-1=\lim _{x \rightarrow \infty}-x^{3}\left(1-\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)=-\infty$ because $\lim _{x \rightarrow \infty}-x^{3}=-\infty$ and $\lim _{x \rightarrow \infty}\left(1-\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)=1>0$. Hence, since f is continuous on [1, ∞), by the
Intermediate Value Theorem $f([1, \infty))=(-\infty, 1]$. We deduce this as follows. For any y in $(-\infty, 1]$, say $y<1$. Then since $\lim _{x \rightarrow \infty} f(x)=-\infty$, there exists a point $K>1$ such that f $(K)<y$. Thus, $f(K)<y<1=f(1)$. Hence since f is continuous on [1, $K]$, by the Intermediate Value Theorem, there is a point k in $[1, K]$, hence in $[1, \infty)$ such that $f(k)=$ y. This means $(-\infty, 1] \subseteq f([1, \infty))$ and so $f([1, \infty))=(-\infty, 1]$. Now observe that f $((-\infty, 0])) \cup f([1, \infty))=[0, \infty) \cup(-\infty, 1]=\mathbf{R}$. Therefore, the range of f is

$$
f(\mathbf{R})=f((-\infty, 0]) \cup f((0,1)) \cup f([1, \infty))=f((0,1)) \cup \mathbf{R}=\mathbf{R} .
$$

(There is no need to know what is $f((0,1))$.)
(c) By part (b) Range $(f)=\mathbf{R}=$ codomain of f. Therefore, f is surjective.
(e) To check the differentiability of f at $x=0$ consider the following limits.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x}=\lim _{x \rightarrow 0^{-}} x=0 \\
& \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin \left(\frac{\pi}{2 x}\right)-0}{x}=\lim _{x \rightarrow 0^{+}} x \sin \left(\frac{\pi}{2 x}\right)=0
\end{aligned}
$$

by the Squeeze Theorem, since

$$
-|x| \leq x \sin \left(\frac{\pi}{2 x}\right) \leq|x| \text { for } x \neq 0 \text { and } \lim _{x \rightarrow 0^{+}}|x|=0
$$

Thus, f is differentiable at $x=0$ since $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$.
Next $\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{-x^{3}+3 x-1-1}{x-1}=-\lim _{x \rightarrow 1^{+}} \frac{x^{3}-3 x+2}{x-1}$

$$
=-\lim _{x \rightarrow 1^{+}} \frac{(x+2)(x-1)^{2}}{x-1}=-\lim _{x \rightarrow 1^{+}}(x+2)(x-1)=0
$$

OR $\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{-x^{3}+3 x-1-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{-3 x^{2}+3}{1}$
by L' Hôpital's Rule

$$
=0 \text {. }
$$

$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x^{2} \sin \left(\frac{\pi}{2 x}\right)-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x \sin \left(\frac{\pi}{2 x}\right)-\frac{\pi}{2} \cos \left(\frac{\pi}{2 x}\right)}{1}=2$

by L' Hôpital's Rule

Therefore, f is not differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \neq \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
OR, $\quad f^{\prime}(x)=\left\{\begin{aligned} & 2 x, \quad x<0 \\ & 2 x \sin \left(\frac{\pi}{2 x}\right)-\frac{\pi}{2} \cos \left(\frac{\pi}{2 x}\right), 0<x<1 \\ &-3 x^{2}+3, x>1\end{aligned}\right.$
$\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}}-3 x^{2}+3=0$,
$\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} 2 x \sin \left(\frac{\pi}{2 x}\right)-\frac{\pi}{2} \cos \left(\frac{\pi}{2 x}\right)=2$
Since both limits $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)$ and $\lim _{x \rightarrow 1^{+}} f^{\prime}(x)$ are finite and not the same, f is not differentiable at $x=1$.

Question 2

(a) $\lim _{x \rightarrow+\infty} \sqrt{\frac{x^{7}+3 x^{2}+\sin (x)+7}{5 x^{7}+6 x^{3}+1}}=\lim _{x \rightarrow+\infty} \sqrt{\frac{1+\frac{3}{x^{5}}+\frac{1}{x^{7}} \sin (x)+\frac{7}{x^{7}}}{5+\frac{6}{x^{4}}+\frac{1}{x^{7}}}}=\sqrt{\frac{1+0+0+0}{5+0+0}}=\frac{1}{\sqrt{5}}$. This is because $\lim _{x \rightarrow+\infty} \frac{1}{x^{5}}=\lim _{x \rightarrow+\infty} \frac{1}{x^{4}}=\lim _{x \rightarrow+\infty} \frac{1}{x^{7}}=0$ and $\lim _{x \rightarrow+\infty} \frac{\sin (x)}{x^{7}}=0$ by the Squeeze Theorem since $-\left|\frac{1}{x^{7}}\right| \leq \frac{\sin (x)}{x^{7}} \leq\left|\frac{1}{x^{7}}\right|$ for $x \neq 0$ and $\lim _{x \rightarrow+\infty}\left|\frac{1}{x^{7}}\right|=0$
(b) $\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{x+\sin (x)}=\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{4 x+\sin (\cos (x)-1)} \cdot \frac{4 x+\sin (\cos (x)-1)}{x+\sin (x)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{4 x+\sin (\cos (x)-1)} \cdot\left(\frac{4 x}{x+\sin (x)}+\frac{\sin (\cos (x)-1)}{x+\sin (x)}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{4 x+\sin (\cos (x)-1)} \cdot \lim _{x \rightarrow 0}\left(\frac{4}{1+\sin (x) / x}+\frac{\sin (\cos (x)-1)}{\cos (x)-1} \frac{\cos (x)-1}{x} \frac{1}{1+\sin (x) / x}\right) \\
& =1 \cdot\left(\frac{4}{1+1}+1 \cdot 0 \cdot \frac{1}{1+1}\right)=2
\end{aligned}
$$

because $\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{4 x+\sin (\cos (x)-1)}=1, \lim _{x \rightarrow 0} \frac{\sin (\cos (x)-1)}{\cos (x)-1}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0$.

OR
$\lim _{x \rightarrow 0} \frac{\sin (4 x+\sin (\cos (x)-1))}{x+\sin (x)}=\lim _{x \rightarrow 0} \frac{\cos (4 x+\sin (\cos (x)-1)) \cdot(4+\cos (\cos (x)-1)(-\sin (x)))}{1+\cos (x)}$ by L' Hôpital's Rule

$$
=\frac{\cos (0) \cdot(4+\cos (0) \cdot(-\sin (0)))}{2}=2
$$

(c) $\lim _{x \rightarrow 0^{+}} \sin (x) \sin \left(e^{\sin (1 / x)}\right)=0$ by the Squeeze Theorem since

$$
-|\sin (x)| \leq \sin (x) \sin \left(e^{\sin (1 / x)}\right) \leq|\sin (x)| \text { for } x>0 \text { and } \lim _{x \rightarrow 0^{+}}|\sin (x)|=0 .
$$

(d) $\lim _{x \rightarrow 0}\left(1+17 x^{3}\right)^{\left(1 / x^{3}\right)}$. Let $y=\left(1+17 x^{3}\right)^{\left(1 / x^{3}\right)}$. Then $\ln (y)=\frac{1}{x^{3}} \ln \left(1+17 x^{3}\right)$ Since $\lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \frac{1}{x^{3}} \ln \left(1+17 x^{3}\right)=\lim _{x \rightarrow 0} \frac{\frac{51 x^{2}}{1+17 x^{3}}}{3 x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{3}}{1+17 x^{3}}=17$

Therefore, $\quad \lim _{x \rightarrow 0} y=e^{\lim _{x \rightarrow 0} \ln (y)}=e^{17}$
(e) $\lim _{x \rightarrow \infty} \frac{e^{\left(x^{2}\right)}}{1+x^{3}+x^{5}}=\lim _{x \rightarrow \infty} \frac{2 x e^{\left(x^{2}\right)}}{3 x^{2}+5 x^{4}}=\lim _{x \rightarrow \infty} \frac{2 e^{\left(x^{2}\right)}}{3 x+5 x^{3}}=\lim _{x \rightarrow \infty} \frac{4 x e^{\left(x^{2}\right)}}{3+15 x^{2}}=\lim _{x \rightarrow \infty} \frac{4\left(1+2 x^{2}\right) e^{\left(x^{2}\right)}}{30 x}$ $=\lim _{x \rightarrow \infty} \frac{4\left(6 x+4 x^{3}\right) e^{\left(x^{2}\right)}}{30}=\infty \quad$ by repeated use of L' Hôpital's Rule,
by repeated use of L' Hôpital's Rule and the fact that $\lim _{x \rightarrow \infty}\left(6 x+4 x^{3}\right) e^{\left(x^{2}\right)}=\infty$.

Question 3

(a) $\int \frac{2 x^{2}-x+1}{\left(x^{2}+3 x+3\right)\left(x^{2}-3 x+3\right)} d x=\int \frac{-5 / 18+1 / 3}{\left(x^{2}+3 x+3\right)} d x+\int \frac{5 / 18 x}{\left(x^{2}-3 x+3\right)} d x$
by a partial fraction expansion determined as follows.
Writing,

$$
\frac{2 x^{2}-x+1}{\left(x^{2}+3 x+3\right)\left(x^{2}-3 x+3\right)}=\frac{A x+B}{x^{2}+3 x+3}+\frac{C x+D}{x^{2}-3 x+3}
$$

then $(A x+B)\left(x^{2}-3 x+3\right)+(C x+D)\left(x^{2}+3 x+3\right)=2 x^{2}-x+1$.

Comparing coefficients of x^{3} : $\quad \mathrm{A}+\mathrm{C}=0$
Comparing constant terms : $\quad 3 \mathrm{~B}+3 \mathrm{D}=1$, i.e. $\mathrm{B}+\mathrm{D}=1 / 3$
Comparing coefficients of $x^{2}: \quad-3 \mathrm{~A}+\mathrm{B}+3 \mathrm{C}+\mathrm{D}=2$. Since $B+D=1 / 3$ by (2) we get $-3 A+3 C=2-1 / 3=5 / 3$, i.e.,

$$
\begin{equation*}
-\mathrm{A}+\mathrm{C}=5 / 9 \tag{3}
\end{equation*}
$$

Comparing coefficients of $x: \quad 3 \mathrm{~A}-3 \mathrm{~B}+3 \mathrm{C}+3 \mathrm{D}=-1$.
Since A $+C=0$ we get from above $-3 B+3 D=-1$
and
$-B+D=-1 / 3$
Equation (1) + Equation (3) gives $2 \mathrm{C}=5 / 9$ and so $\mathrm{C}=5 / 18$ and $\mathrm{A}=-\mathrm{C}=-5 / 18$.
Equation (2) + Equation (4) gives $2 \mathrm{D}=0$ and so $\mathrm{D}=0$ and $\mathrm{B}=1 / 3-\mathrm{D}=1 / 3$
Now $\int \frac{-5 / 18 x+1 / 3}{\left(x^{2}+3 x+3\right)} d x=\int \frac{-5 / 36(2 x+3)+1 / 3+5 / 12}{\left(x^{2}+3 x+3\right)} d x=\int \frac{-5 / 36(2 x+3)+3 / 4}{\left(x^{2}+3 x+3\right)} d x$

$$
\begin{aligned}
& =-\frac{5}{36} \int \frac{2 x+3}{\left(x^{2}+3 x+3\right)} d x+\frac{3}{4} \int \frac{1}{(x+3 / 2)^{2}+3 / 4} d x \\
& =-\frac{5}{36} \ln \left|x^{2}+3 x+3\right|+\frac{3}{4} \frac{1}{\sqrt{3} / 2} \tan ^{-1}\left(\frac{x+3 / 2}{\sqrt{3} / 2}\right)+C \\
& =-\frac{5}{36} \ln \left|x^{2}+3 x+3\right|+\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+3}{\sqrt{3}}\right)+C
\end{aligned}
$$

And $\int \frac{5 / 18 x}{\left(x^{2}-3 x+3\right)} d x=\int \frac{5 / 36(2 x-3)+5 / 12}{\left(x^{2}-3 x+3\right)} d x$

$$
\begin{aligned}
& =\frac{5}{36} \ln \left|x^{2}-3 x+3\right|+\frac{5}{12} \int \frac{1}{\left.(x-3 / 2)^{2}+3 / 4\right)} d x \\
& =\frac{5}{36} \ln \left|x^{2}-3 x+3\right|+\frac{5}{6 \sqrt{3}} \tan ^{-1}\left(\frac{2 x-3}{\sqrt{3}}\right)+C^{\prime}
\end{aligned}
$$

Therefore,

$$
\int \frac{2 x^{2}-x+1}{\left(x^{2}+3 x+3\right)\left(x^{2}-3 x+3\right)} d x=\frac{5}{36} \ln \frac{\left|x^{2}-3 x+3\right|}{\left|x^{2}+3 x+3\right|}+\frac{\sqrt{3}}{2} \tan ^{-1}\left(\frac{2 x+3}{\sqrt{3}}\right)+\frac{5 \sqrt{3}}{18} \tan ^{-1}\left(\frac{2 x-3}{\sqrt{3}}\right)+C^{\prime \prime}
$$

(b) $\int_{-1}^{2} \sin (x+3|x|) d x=\int_{-1}^{0} \sin (x-3 x) d x+\int_{0}^{2} \sin (x+3 x) d x$
$=\int_{-1}^{0} \sin (-2 x) d x+\int_{0}^{2-1} \sin (4 x) d x=\left[\frac{1}{2} \cos (-2 x)\right]_{-1}^{0}+\left[-\frac{1}{4} \cos (4 x)\right]_{0}^{2}$
$=\frac{3}{4}-\frac{1}{2} \cos (2)-\frac{1}{4} \cos (8)$.
(c) $g(x)=\left\{\begin{array}{c}x^{3}+x+2, x<0 \\ 3 \sin (\pi x)+\cos (2 x) e^{\sin (2 x)}+1, x \geq 0\end{array}\right.$.

First note that g is continuous on the interval $(-\infty, 0)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(0, \infty)$ since $3 \sin (\pi x)$ is a continuous function and the product $\cos (2 x) e^{\sin (2 x)}$ is continuous on (0 , ∞). Now the left limit at $x=0$ is $\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}} x^{3}+x+2=2$ and the right limit at $x=0$, $\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}} 3 \sin (\pi x)+\cos (2 x) e^{\sin (2 x)}+1=0+1+1=2=g(1)$. Therefore, $\lim _{x \rightarrow 0} g(x)=g(0)$. Thus g is continuous at $x=0$. Therefore, g is continuous on \mathbf{R} and we can use the Fundamental Theorem of Calculus to obtain an antiderivative $G(x)$ given by the following Riemann integral for each x in \mathbf{R}.
$G(x)=\int_{0}^{x} g(t) d t=\left\{\begin{array}{c}\int_{0}^{x} g(t) d t, x<0 \\ \int_{0}^{x} g(t) d t, x \geq 0\end{array}=\left\{\begin{array}{c}\int_{0}^{x}\left(t^{3}+t+2\right) d t, x<0 \\ \int_{0}^{x}\left(3 \sin (\pi t)+\cos (2 t) e^{\sin (2 t)}+1\right) d t, x \geq 0\end{array}\right.\right.$

$$
=\left\{\begin{array}{c}
\left.\left[\frac{1}{4} t^{4}+\frac{1}{2} t^{2}+2 t\right)\right]_{0}^{x}, x<0 \\
{\left[\frac{1}{2} e^{\sin (2 t)}-\frac{3}{\pi} \cos (\pi t)+t\right]_{0}^{x}, x \geq 1}
\end{array}=\left\{\begin{array}{c}
\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+2 x, x<0 \\
\frac{1}{2} e^{\sin (2 x)}-\frac{3}{\pi} \cos (\pi x)+x+\frac{3}{\pi}-\frac{1}{2}, x \geq 0
\end{array}\right.\right.
$$

Thus, any antiderivative is given by $G(x)+C$ for any constant C.
(d)

$$
\begin{aligned}
& \begin{array}{r}
\int \frac{1}{\sqrt{x^{2}-2 x-1}} d x=\int \frac{1}{\sqrt{(x-1)^{2}-2}} d x=\int \frac{1}{\sqrt{2} \sqrt{\left(\frac{x-1}{\sqrt{2}}\right)^{2}-1}} d x \\
\quad \text { using trigonometric substitution: } \\
\quad \sec (\theta)=\frac{x-1}{\sqrt{2}} \text { so that } d x=\sqrt{2} \sec (\theta) \tan (\theta) d \theta \\
=\int \frac{1}{\sqrt{2} \tan (\theta)} \sqrt{2} \sec (\theta) \tan (\theta) d \theta=\int \sec (\theta) d \theta=\ln |\sec (\theta)+\tan (\theta)|+C \\
=\ln \left|\frac{x-1}{\sqrt{2}}+\sqrt{\left(\frac{x-1}{\sqrt{2}}\right)^{2}-1}\right|+C=\ln \left|x-1+\sqrt{x^{2}-2 x-1}\right|-\frac{1}{2} \ln (2)+C \\
=\ln \left|x-1+\sqrt{x^{2}-2 x-1}\right|+C^{\prime} .
\end{array} .
\end{aligned}
$$

(e) $\quad \int \ln \left(2+x^{2}\right) d x=x \ln \left(2+x^{2}\right)-\int x \cdot \frac{2 x}{2+x^{2}} d x$ by integration by parts

$$
\begin{array}{r}
=x \ln \left(2+x^{2}\right)-\int\left(2-\frac{4}{2+x^{2}}\right) d x=x \ln \left(2+x^{2}\right)-2 x+\frac{4}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C \\
\text { OR }=x \ln \left(2+x^{2}\right)-2 x+2 \sqrt{2} \tan ^{-1}\left(\frac{\sqrt{2} x}{2}\right)+C
\end{array}
$$

OR part of the integral above is given by:

$$
\int \frac{4}{2+x^{2}} d x=\int \frac{2}{\left(1+\left(\frac{x}{\sqrt{2}}\right)^{2}\right)} d x=\int 2 \sqrt{2} d \theta=2 \sqrt{2} \theta+C^{\prime}=2 \sqrt{2} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+C^{\prime}
$$

using trigonometric substitution: $\tan (\theta)=\frac{x}{\sqrt{2}}$ where $d x=\sqrt{2} \sec ^{2}(\theta) d \theta$

Question 4.

(a) Recall $g(x)=2 x^{3}-15 x^{2}+24 x+1$

Thus, $g^{\prime}(x)=6 x^{2}-30 x+24=6(x-4)(x-1)$. Therefore, $g^{\prime}(x)=0$ if and only if $x=1$ or 4. Hence g has two stationary points in (0,5), namely 1 and 4 . Since g is differentiable, the critical points of g in $(0,5)$ are 1 and 4 . Since g is continuous on the closed and bounded interval $[0,5]$ and so by the Extreme Value Theorem g has absolute extrema on the interval $[0,5]$ and they are given respectively by the maximum and minimum of the values of the critical points in $(0,5)$ and the end points 1 and 4 under g. Now $g(0)=1, g(1)$ $=12, g(4)=-15$ and $g(5)=-4$. Therefore, the absolute maximum of g on $[0,5]$ is 12 and the absolute minimum of g on $[0,5]$ is -15 .
(b) (i)

$$
h(x)=\left(x^{2}+1+\cos (\cos (x))\right)^{\sin (x)} .
$$

Taking logarithm on both sides we get $\ln (h(x))=\sin (x) \ln \left(x^{2}+1+\cos (\cos (x))\right)$.
Differentiating both sides we get,

$$
\frac{h^{\prime}(x)}{h(x)}=\cos (x) \ln \left(x^{2}+1+\cos (\cos (x))\right)+\sin (x) \frac{2 x+\sin (\cos (x)) \sin (x)}{x^{2}+1+\cos (\cos (x))}
$$

Therefore, $h^{\prime}(x)=$
$\left(\left(x^{2}+1+\cos (\cos (x))\right)^{\sin (x)}\left[\cos (x) \ln \left(x^{2}+1+\cos (\cos (x))\right)+\sin (x) \frac{2 x+\sin (\cos (x)) \sin (x)}{x^{2}+1+\cos (\cos (x))}\right]\right.$
(ii) $j(x)=\int_{x}^{\ln (x)} \frac{e^{t}}{\sin \left(t+\sin \left(t^{2}\right)\right)+2} d t, x \in(0, \infty)$.

Therefore, $\quad j(x)=\int_{1}^{\ln (x)} \frac{e^{t}}{\sin \left(t+\sin \left(t^{2}\right)\right)+2} d t-\int_{1}^{x} \frac{e^{t}}{\sin \left(t+\sin \left(t^{2}\right)\right)+2} d t$.
Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$
j^{\prime}(x)=\frac{1}{\sin \left(\ln (x)+\sin \left(\ln (x)^{2}\right)\right)+2}-\frac{e^{x}}{\sin \left(x+\sin \left(x^{2}\right)\right)+2}
$$

(iii) $k(x)=\cot ^{-1}\left(\csc ^{2}(x)\right), x \in\left(0, \frac{\pi}{2}\right)$. Thus by the Chain Rule
$k^{\prime}(x)=-\left(\cot ^{-1}\right)^{\prime}\left(\csc ^{2}(x)\right) \cdot 2 \csc ^{2}(x) \cot (x)=-\frac{2 \csc ^{2}(x) \cot (x)}{\cot ^{\prime}\left(\cot ^{-1}\left(\csc ^{2}(x)\right)\right)}$
$=\frac{2 \csc ^{2}(x) \cot (x)}{\csc ^{2}\left(\cot ^{-1}\left(\csc ^{2}(x)\right)\right)}=\frac{2 \csc ^{2}(x) \cot (x)}{1+\csc ^{4}(x)}=\frac{2 \cos (x) \sin (x)}{1+\sin ^{4}(x)}=\frac{\sin (2 x)}{1+\sin ^{4}(x)}$.
(c) (i) Since m is the absolute minimum of g on $[a, b]$ and M is the absolute maximum of g on [a,b], we have

$$
\begin{equation*}
m \leq g(x) \leq M \tag{1}
\end{equation*}
$$

for all x in $[a, b]$.
Therefore, since $f(x) \geq 0$ for all x in $[a, b]$, multiplying (1) by $f(x)$ we get

$$
\begin{equation*}
m f(x) \leq f(x) g(x) \leq M f(x) \tag{2}
\end{equation*}
$$

for all x in $[a, b]$.
Hence taking integral we get:

$$
m \int_{a}^{b} f(x) d x \leq \int_{q}^{b} f(x) g(x) d x \leq M \int_{a}^{b} f(x) d x .
$$

(ii) Therefore, $\int_{a}^{b} f(x) g(x) d x=k \int_{a}^{b} f(x) d x$ for some k in $[m, M]$. By the Extreme Value Theorem, since g is continuous on $[a, b], m=\mathrm{g}(d)$ and $M=\mathrm{g}(e)$ for some points d and e in $[a, b]$, and so by the Intermediate Value Theorem there is a point c between d and e and so in $[a, b]$, such that $g(c)=k$. Thus $\int_{a}^{b} f(x) g(x) d x=g(c) \int_{a}^{b} f(x) d x$.

Question 5.

(a) (i) The volume of the solid of revolution obtained by rotating about the x-axis the region bounded by the curve $y=f(x)$, the x-axis and the lines $x=a$ and $x=b$ is given by the Riemann integral $\int_{a}^{b} \pi(f(x))^{2} d x$.
(ii) The equation of the ellipse is $\frac{x^{2}}{3}+\frac{y^{2}}{5}=1$.

Thus the curve required is the part of the ellipse above the x - axis. It is of course given by

$$
f(x)=\sqrt{5\left(1-\frac{x^{2}}{3}\right)} \text { for }-\sqrt{3} \leq x \leq \sqrt{3} \text {. }
$$

Thus by the formula in (i) the volume of the solid of revolution obtained by rotating the ellipse is given by

$$
\int_{-\sqrt{3}}^{\sqrt{3}} 5 \pi\left(1-\frac{x^{2}}{3}\right) d x=5 \pi\left[x-\frac{x^{3}}{9}\right]_{-\sqrt{3}}^{\sqrt{3}}=10 \pi\left(\sqrt{3}-\frac{\sqrt{3}}{3}\right)=\frac{20 \sqrt{3}}{3} \pi
$$

(b) Recall $\quad k(x)=\int_{1}^{x^{5}}\left(1+t^{2}+\cos (\sin (\pi t))\right) d t$.
(i) Therefore, since the integrand $1+t^{2}+\cos (\sin (\pi t))$ is continuous for all x in \mathbf{R}, k is differentiable on \mathbf{R} and

$$
k^{\prime}(x)=\left(1+x^{10}+\cos \left(\sin \left(\pi x^{5}\right)\right)\right) \cdot 5 x^{4}
$$

by the Fundamental Theorem of Calculus and the Chain Rule.
Hence, for $x \neq 0, k^{\prime}(x)>0$ because $5 x^{4}>0$ and $1+x^{10}+\cos \left(\sin \left(\pi x^{5}\right)\right) \geq x^{10}>0$. Since k is continuous on \mathbf{R}, because it is differentiable on \mathbf{R}, k is (strictly) increasing on $(-\infty, 0$] and on $[0, \infty)$. Therefore, k is (strictly) increasing on \mathbf{R} and hence k is injective.
(ii) Note that $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}$.
$k(1)=\int_{1}^{1}\left(1+t^{2}+\cos (\sin (\pi t))\right) d t=0$ and so since k is injective $k^{-1}(0)=1$.
From part (i) $k^{\prime}(1)=5(2+\cos (\sin (\pi))=15$.
Thus, $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(1)}=\frac{1}{15}$.
(c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{2}}{n^{4}} \cdot \sqrt[3]{7 n^{3}+2 i^{3}}$.

We shall write the summation $\sum_{i=1}^{n} \frac{i^{2}}{n^{4}} \cdot \sqrt[3]{7 n^{3}+2 i^{3}}$ as a Riemann sum

$$
\sum_{i=1}^{n} \frac{i^{2}}{n^{4}} \cdot \sqrt[3]{7 n^{3}+2 i^{3}}=\sum_{i=1}^{n} \frac{i^{2}}{n^{2}} \sqrt[3]{7+2\left(\frac{i}{n}\right)^{3}} \cdot \frac{1}{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$.
Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing,

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{i^{2}}{n^{2}} \sqrt[3]{7+2\left(\frac{i}{n}\right)^{3}} \cdot \frac{1}{n}
$$

we would want $f\left(x_{i}\right)=\frac{i^{2}}{n^{2}} \sqrt[3]{7+2\left(\frac{i}{n}\right)^{3}}=x_{i}^{2} \sqrt[3]{7+2 x_{i}^{3}}$. Thus $f(x)=x^{2} \sqrt[3]{7+2 x^{3}}$.
Therefore, $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{2}}{n^{4}} \cdot \sqrt[3]{7 n^{3}+2 i^{3}} \cdot=\int_{0}^{1} x^{2} \sqrt[3]{7+2 x^{3}} d x$

$$
\begin{aligned}
& =\frac{1}{6} \int_{0}^{1} 6 x^{2} \sqrt[3]{7+2 x^{3}} d x=\frac{1}{6} \int_{0}^{1} \sqrt[3]{u} \frac{d u}{d x} d x, \text { where } u=7+2 x^{3} \\
& =\frac{1}{6} \int_{7}^{9} \sqrt[3]{u} d u \text { by Change of Variable } \\
& =\frac{1}{6} \cdot \frac{3}{4}\left[u^{4 / 3}\right]_{7}^{9}=\frac{1}{8}(9 \sqrt[3]{9}-7 \sqrt[3]{7})
\end{aligned}
$$

Question 6

Recall $f(x)=x^{5}-20 x^{2}+7$.
(a) Note that f is continuous on \mathbf{R} since it is a polynomial function.

Now

$$
\begin{align*}
f^{\prime}(x) & =5 x^{4}-40 x=5 x\left(x^{3}-8\right)=5 x(x-2)\left(x^{2}+2 x+4\right) \\
& =5 x(x-2)\left((x+1)^{2}+3\right) \tag{1}
\end{align*}
$$

Therefore, for $x<0, f^{\prime}(x)>0$ and so f is increasing on the interval $(-\infty, 0]$.

From (1), for $0<x<2, f^{\prime}(x)<0$ and so f is decreasing on [0, 2]. From (1), for $x>2$, $f^{\prime}(x)>0$ and so f is increasing on $[2, \infty)$.
(b) $f^{\prime \prime}(x)=20 x^{3}-40=20\left(x^{3}-2\right)$

$$
\begin{align*}
& =20\left(x-2^{1 / 3}\right)\left(x^{2}+2^{1 / 3} x+2^{2 / 3}\right) \\
& =20\left(x-2^{1 / 3}\right)\left(\left(x+\frac{1}{2} \cdot 2^{1 / 3}\right)^{2}+\frac{3}{4} 2^{2 / 3}\right) . \tag{2}
\end{align*}
$$

Thus, f ' ' $(x)<0$ for $x<2^{1 / 3}$. Therefore, the graph of f is concave downward on the interval $\left(-\infty, 2^{1 / 3}\right)$. From (2), for $x>2^{1 / 3}, f^{\prime \prime}(x)>0$ and so the graph of f is concave upward on the interval $\left(2^{1 / 3}, \infty\right)$.
(c) By part (a) $f(0)=7$ is a relative maximum and $f(2)=-41$ is a relative minimum.
(d) From part (b), there is a change of concavity before and after $x=2^{1 / 3}$.

Now $f\left(2^{1 / 3}\right)=2^{5 / 3}-20 \cdot 2^{2 / 3}+7=7-18 \cdot 2^{2 / 3}$.
Hence, the only point of inflection of the graph of f is

$$
\left(2^{1 / 2}, 7-18 \cdot 2^{2 / 3}\right)
$$

(e) The graph of f.

