NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 2 EXAMINATION 2005 – 2006

MA1102R CALCULUS

April 2006 – Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** sections: Section A and Section B. It contains a total of **SIX** questions and comprises **FOUR** printed pages.
- 2. Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

•

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f : \mathbf{R} \to \mathbf{R}$ be defined by

$$f(x) = \begin{cases} x^2, & x \le 0\\ x^2 \sin\left(\frac{\pi}{2x}\right), & 0 < x < 1\\ -x^3 + 3x - 1, & x \ge 1 \end{cases}$$

- (a) Determine all x in **R** at which the function f is *continuous*. Justify your answer.
- (b) Find the *range* of the function f.
- (c) Determine if f is *surjective*.
- (d) Determine if f is *differentiable* at x, when x = 0 or 1. Justify your answer.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^7 + 3x^2 + \sin(x) + 7}{5x^7 + 6x^3 + 1}}$$

(b)
$$\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1)))}{x + \sin(x)}$$
.

(c) $\lim_{x \to 0^+} \sin(x) \sin(e^{\sin(1/x)})$.

(d)
$$\lim_{x\to 0} (1+17x^3)^{(1/x^3)}$$
.

(e)
$$\lim_{x \to \infty} \frac{e^{(x^2)}}{1 + x^3 + x^5}$$
.

Question 3 [20 marks]

- (a) Evaluate $\int \frac{2x^2 x + 1}{(x^2 + 3x + 3)(x^2 3x + 3)} dx$.
- (b) Compute $\int_{-1}^{2} \sin(x+3|x|) dx$.
- (c) Find an antiderivative of g(x), which is defined by

$$g(x) = \begin{cases} x^3 + x + 2, \ x < 0\\ 3\sin(\pi x) + \cos(2x)e^{\sin(2x)} + 1, \ x \ge 0 \end{cases}$$

- (d) Evaluate $\int \frac{1}{\sqrt{x^2 2x 1}} dx$.
- (e) Evaluate $\int \ln(2+x^2)dx$.

SECTION B

Answer not more than **TWO** questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) Find the critical points of the function g, defined by

$$g(x) = 2x^3 - 15x^2 + 24x + 1,$$

in the open interval (0, 5). Determine the absolute maximum and the absolute minimum values of the function in the interval [0, 5].

- (b) Differentiate each of the following functions.
 - (i) $h(x) = (x^2 + 1 + \cos(\cos(x)))^{\sin(x)}$. (ii) $j(x) = \int_x^{\ln(x)} \frac{e^t}{\sin(t + \sin(t^2)) + 2} dt, \ x \in (0, \infty)$. (iii) $k(x) = \cot^{-1}(\csc^2(x)), \ x \in (0, \frac{\pi}{2})$.
- (c) Suppose f and g are two continuous functions defined on the interval [a, b] with a < b. Suppose $f(x) \ge 0$ for all x in [a, b].

(i) Show that if *m* is the absolute minimum of g(x) on [a, b] and *M* is the absolute maximum of g(x) on [a, b], then

$$m\int_{a}^{b} f(x)dx \leq \int_{a}^{b} f(x)g(x)dx \leq M\int_{a}^{b} f(x)dx.$$

...-4-

(ii) Hence, or otherwise, show that there exists a point c in [a, b] such that

$$\int_{a}^{b} f(x)g(x)dx = g(c)\int_{a}^{b} f(x)dx.$$

Question 5 [20 marks]

(a) (i) Suppose *f* is a continuous function defined on the closed and bounded interval [*a*, *b*]. Give the integral formula for the volume of solid of revolution obtained by rotating about the *x*-axis the region bounded by the curve y = f(x), the *x*-axis the lines x = a and x = b.

(ii) Use this formula or otherwise, find the volume of the solid of revolution when the ellipse,

$$\frac{x^2}{3} + \frac{y^2}{5} = 1$$

is rotated about the *x*-axis through 2π radians.

- (b) Differentiate the function k defined on **R** by $k(x) = \int_{1}^{x^{5}} (1 + t^{2} + \cos(\sin(\pi t))) dt.$
 - (i) Without integrating, show that the function k is injective.
 - (ii) Determine $(k^{-1})'(0)$.
- (c) Find the following limit.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2}{n^4} \cdot \sqrt[3]{7n^3 + 2i^3}.$$

Question 6 [20 marks]

Let the function f be defined on **R** by $f(x) = x^5 - 20x^2 + 7$.

- (a) Find the intervals on which f is (i) *increasing*, and (ii) *decreasing*.
- (b) Find the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
- (c) Find the *relative extrema* of f, if any.
- (d) Find the *points of inflection* of the graph of f.
- (e) Sketch the graph of f.

END OF PAPER

Answer To MA1102 Calculus

Question 1

The function f is defined by $f(x) = \begin{cases} x^2, & x \le 0\\ x^2 \sin\left(\frac{\pi}{2x}\right), & 0 < x < 1\\ -x^3 + 3x - 1, & x \ge 1 \end{cases}$

- (a) For x < 0, f(x) = x² is a polynomial function. Therefore, f is continuous on the interval (-∞, 0) since any polynomial function is continuous on **R** and hence on any interval. Similarly for x >1, f(x) = -x³ +3x -1 is a polynomial function there and so is continuous on (1, ∞).
 - For 0 < x < 1, $f(x) = x^2 \sin\left(\frac{\pi}{2x}\right)$ and so f is continuous on (0, 1) since $\sin\left(\frac{\pi}{2x}\right)$ is continuous on (0, 1) and x^2 is continuous on \mathbf{R} so that the product of these two functions is continuous on (0, 1). Thus it remains to check the continuity of f at 0 and 1. Note that f(0) = 0 and f(1) = 1.

Now we determine the left limit at x = 0. It is $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 = 0$. The right limit at $x = 0 \text{ is } \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 \sin\left(\frac{\pi}{2x}\right) = 0 \text{ by the Squeeze Theorem since}$ $-|x|^2 \le x^2 \sin\left(\frac{\pi}{2x}\right) \le |x|^2 \text{ for } x \ne 0 \text{ and } \lim_{x \to 0^+} |x|^2 = 0. \text{ Therefore, } \lim_{x \to 0} f(x) = 0 = f(0) \text{ and so } f(x) = 0$ is continuous at x = 0. Now consider the left limit of f at x = 1, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} \sin\left(\frac{\pi}{2x}\right) = 1 \cdot \sin\left(\frac{\pi}{2}\right) = 1$ Now $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} -x^{3} + 3x - 1 = -1 + 3 - 1 = 1$ and so $\lim_{x \to 1} f(x) = 1$. Therefore, $\lim_{x \to 1} f(x) = 1 = f(1)$ and so f is continuous at x = 1. Therefore f is continuous at x for any x in **R**. (b) For $x \le 0$, $x^2 \ge 0$ and so the image $f((-\infty, 0]) \subseteq [0, \infty)$. Now for any $y \ge 0$, $x^2 = y$ has a solution $x = -\sqrt{y} \le 0$ to $x^2 = y$ in $(-\infty, 0]$. Therefore, $[0, \infty) \subseteq f((-\infty, 0])$. That means f $((-\infty, 0] = [0, \infty).$ Next for x > 1, $f(x) = -x^3 + 3x - 1$ so that $f'(x) = -3x^2 + 3 = 3(1 - x^2) < 0$ for x > 1. Therefore, f is strictly decreasing on $[1, \infty)$ and so $f(x) \le f(1) = 1$ for $x \ge 1$. Hence $f([1, \infty)$ ∞)) $\subset (-\infty, 1]$. Also note that $\lim_{x \to \infty} f(x) = -\infty \text{ since } \lim_{x \to \infty} -x^3 + 3x - 1 = \lim_{x \to \infty} -x^3 (1 - \frac{3}{x^2} + \frac{1}{x^3}) = -\infty \text{ because } \lim_{x \to \infty} -x^3 = -\infty$ and $\lim_{x \to \infty} \left(1 - \frac{3}{x^2} + \frac{1}{x^3}\right) = 1 > 0$. Hence, since f is continuous on $[1, \infty)$, by the Intermediate Value Theorem $f([1, \infty)) = (-\infty, 1]$. We deduce this as follows. For any y in $(-\infty, 1]$, say y < 1. Then since $\lim_{x \to \infty} f(x) = -\infty$, there exists a point K > 1 such that f (K) < y. Thus, f(K) < y < 1 = f(1). Hence since f is continuous on [1, K], by the Intermediate Value Theorem, there is a point k in [1, K], hence in [1, ∞) such that f(k) =y. This means $(-\infty, 1] \subseteq f([1, \infty))$ and so $f([1, \infty)) = (-\infty, 1]$. Now observe that f $((-\infty, 0])) \cup f([1, \infty)) = [0, \infty) \cup (-\infty, 1] = \mathbf{R}$. Therefore, the range of f is $f(\mathbf{R}) = f((-\infty, 0]) \cup f((0, 1)) \cup f([1, \infty)) = f((0, 1)) \cup \mathbf{R} = \mathbf{R}.$ (There is no need to know what is f((0, 1)).)

(c) By part (b) Range(f) = **R** = codomain of f. Therefore, f is surjective.

(e) To check the differentiability of f at x = 0 consider the following limits.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^2}{x} = \lim_{x \to 0^{-}} x = 0$$
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x^2 \sin\left(\frac{\pi}{2x}\right) - 0}{x} = \lim_{x \to 0^{+}} x \sin\left(\frac{\pi}{2x}\right) = 0$$

by the Squeeze Theorem, since $-|x| \le x \sin\left(\frac{\pi}{2x}\right) \le |x|$ for $x \ne 0$ and $\lim_{x \to 0^+} |x| = 0$

Thus, f is differentiable at x = 0 since $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$. Next $\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{-x^3 + 3x - 1 - 1}{x - 1} = -\lim_{x \to 1^{+}} \frac{x^3 - 3x + 2}{x - 1}$.

$$OR \quad \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = -\lim_{x \to 1^+} \frac{(x + 2)(x - 1)^2}{x - 1} = -\lim_{x \to 1^+} (x + 2)(x - 1) = 0$$

$$= \lim_{x \to 1^+} \frac{-x^3 + 3x - 1 - 1}{x - 1} = \lim_{x \to 1^+} \frac{-3x^2 + 3}{1}$$

by L' Hôpital's Rule
$$= 0.$$

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x^2 \sin\left(\frac{\pi}{2x}\right) - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{2x \sin\left(\frac{\pi}{2x}\right) - \frac{\pi}{2} \cos\left(\frac{\pi}{2x}\right)}{1} = 2$$

by L' Hôpital's Rule Therefore, f is not differentiable at x = 1 since $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} \neq \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$

$$OR, \qquad f'(x) = \begin{cases} 2x, & x < 0\\ 2x \sin\left(\frac{\pi}{2x}\right) - \frac{\pi}{2}\cos\left(\frac{\pi}{2x}\right), & 0 < x < 1\\ & -3x^2 + 3, & x > 1 \end{cases}$$

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} -3x^2 + 3 = 0,$$

 $\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{-}} 2x \sin\left(\frac{\pi}{2x}\right) - \frac{\pi}{2} \cos\left(\frac{\pi}{2x}\right) = 2$ Since both limits $\lim_{x \to 1^{-}} f'(x)$ and $\lim_{x \to 1^{+}} f'(x)$ are finite and not the same, f is not differentiable at x = 1.

Question 2

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^7 + 3x^2 + \sin(x) + 7}{5x^7 + 6x^3 + 1}} = \lim_{x \to +\infty} \sqrt{\frac{1 + \frac{3}{x^5} + \frac{1}{x^7} \sin(x) + \frac{7}{x^7}}{5 + \frac{6}{x^4} + \frac{1}{x^7}}} = \sqrt{\frac{1 + 0 + 0 + 0}{5 + 0 + 0}} = \frac{1}{\sqrt{5}}.$$

This is because $\lim_{x \to +\infty} \frac{1}{x^5} = \lim_{x \to +\infty} \frac{1}{x^4} = \lim_{x \to +\infty} \frac{1}{x^7} = 0$ and $\lim_{x \to +\infty} \frac{\sin(x)}{x^7} = 0$ by the Squeeze
Theorem since $-|\frac{1}{x^7}| \le \frac{\sin(x)}{x^7} \le |\frac{1}{x^7}|$ for $x \ne 0$ and $\lim_{x \to +\infty} |\frac{1}{x^7}| = 0$
(b) $\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{x + \sin(x)} = \lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{4x + \sin(\cos(x) - 1)} \cdot \frac{4x + \sin(\cos(x) - 1)}{x + \sin(x)}$

...-7-

PAGE 7

MA1102R

$$=\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{4x + \sin(\cos(x) - 1)} \cdot \left(\frac{4x}{x + \sin(x)} + \frac{\sin(\cos(x) - 1)}{x + \sin(x)}\right)$$

$$=\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{4x + \sin(\cos(x) - 1)} \cdot \lim_{x \to 0} \left(\frac{4}{1 + \sin(x)/x} + \frac{\sin(\cos(x) - 1)}{\cos(x) - 1} \frac{\cos(x) - 1}{x} \frac{1}{1 + \sin(x)/x}\right)$$

$$= 1 \cdot \left(\frac{4}{1 + 1} + 1 \cdot 0 \cdot \frac{1}{1 + 1}\right) = 2$$
because $\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{4x + \sin(\cos(x) - 1)} = 1$, $\lim_{x \to 0} \frac{\sin(\cos(x) - 1)}{\cos(x) - 1} = \lim_{x \to 0} \frac{\sin(x)}{x} = 1$ and
$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0.$$

OR

$$\lim_{x \to 0} \frac{\sin(4x + \sin(\cos(x) - 1))}{x + \sin(x)} = \lim_{x \to 0} \frac{\cos(4x + \sin(\cos(x) - 1)) \cdot (4 + \cos(\cos(x) - 1)(-\sin(x)))}{1 + \cos(x)}$$

by L' Hôpital's Rule

$$=\frac{\cos(0)\cdot(4+\cos(0)\cdot(-\sin(0)))}{2}=2$$

(c) $\lim_{x\to 0^+} \sin(x) \sin(e^{\sin(1/x)}) = 0$ by the Squeeze Theorem since

$$-|\sin(x)| \le \sin(x)\sin(e^{\sin(1/x)}) \le |\sin(x)| \text{ for } x > 0 \text{ and } \lim_{x \to 0^+} |\sin(x)| = 0.$$

(d)
$$\lim_{x \to 0} (1 + 17x^3)^{(1/x^3)}$$
. Let $y = (1 + 17x^3)^{(1/x^3)}$. Then $\ln(y) = \frac{1}{x^3} \ln(1 + 17x^3)$
Since $\lim_{x \to 0} \ln(y) = \lim_{x \to 0} \frac{1}{x^3} \ln(1 + 17x^3) = \lim_{x \to 0} \frac{\frac{51x^2}{1 + 17x^3}}{3x^2} = \lim_{x \to 0^+} \frac{17}{1 + 17x^3} = 17$

by L' Hôpital's Rule,

Therefore, $\lim_{x \to 0} y = e^{\lim_{x \to 0} |x|} = e^{17}$ (e) $\lim_{x \to \infty} \frac{e^{(x^2)}}{1 + x^3 + x^5} = \lim_{x \to \infty} \frac{2xe^{(x^2)}}{3x^2 + 5x^4} = \lim_{x \to \infty} \frac{2e^{(x^2)}}{3x + 5x^3} = \lim_{x \to \infty} \frac{4xe^{(x^2)}}{3 + 15x^2} = \lim_{x \to \infty} \frac{4(1 + 2x^2)e^{(x^2)}}{30x}$ $=\lim_{x \to \infty} \frac{4(6x + 4x^3)e^{(x^2)}}{30} = \infty \text{ by repeated use of L' Hôpital's Rule,}$

by repeated use of L' Hôpital's Rule and the fact that $\lim_{x\to\infty} (6x + 4x^3)e^{(x^2)} = \infty$.

Question 3

(a)
$$\int \frac{2x^2 - x + 1}{(x^2 + 3x + 3)(x^2 - 3x + 3)} dx = \int \frac{-5/18 + 1/3}{(x^2 + 3x + 3)} dx + \int \frac{5/18x}{(x^2 - 3x + 3)} dx$$

by a partial fraction expansion determined as follows.

Writing,

$$\frac{2x^2 - x + 1}{(x^2 + 3x + 3)(x^2 - 3x + 3)} = \frac{Ax + B}{x^2 + 3x + 3} + \frac{Cx + D}{x^2 - 3x + 3}$$

then $(Ax + B)(x^2 - 3x + 3) + (Cx + D)(x^2 + 3x + 3) = 2x^2 - x + 1$.

Comparing coefficients of x^3 : $\mathbf{A} + \mathbf{C} = \mathbf{0}$ -----(1)3B+3D=1, i.e. B+D=1/3 -----(2) Comparing constant terms : Comparing coefficients of x^2 : -3A+B+3C+D=2. Since B+D = 1/3 by (2) we get -3A + 3C = 2 - 1/3 = 5/3, i.e., -A + C = 5/9 ------(3) 3A - 3B + 3C + 3D = -1. Comparing coefficients of *x*: Since A + C = 0 we get from above -3B + 3D = -1-B + D = -1/3 ----- (4) and Equation (1) + Equation (3) gives 2C = 5/9 and so C = 5/18 and A = -C = -5/18. Equation (2) + Equation (4) gives 2D = 0 and so D = 0 and B = 1/3-D = 1/3Now $\int \frac{-5/18x + 1/3}{(x^2 + 3x + 3)} dx = \int \frac{-5/36(2x + 3) + 1/3 + 5/12}{(x^2 + 3x + 3)} dx = \int \frac{-5/36(2x + 3) + 3/4}{(x^2 + 3x + 3)} dx$ = $-\frac{5}{36} \int \frac{2x + 3}{(x^2 + 3x + 3)} dx + \frac{3}{4} \int \frac{1}{(x + 3/2)^2 + 3/4} dx$ $= -\frac{5}{36} \ln|x^2 + 3x + 3| + \frac{3}{4} \frac{1}{\sqrt{3}/2} \tan^{-1}(\frac{x+3/2}{\sqrt{3}/2}) + C$ $= -\frac{5}{36} \ln|x^2 + 3x + 3| + \frac{\sqrt{3}}{2} \tan^{-1}(\frac{2x+3}{\sqrt{3}}) + C$ And $\int \frac{5/18x}{(x^2 - 3x + 3)} dx = \int \frac{5/36(2x - 3) + 5/12}{(x^2 - 3x + 3)} dx$ $= \frac{5}{36} \ln|x^2 - 3x + 3| + \frac{5}{12} \int \frac{1}{(x - 3/2)^2 + 3/4} dx$ $=\frac{5}{36}\ln|x^2 - 3x + 3| + \frac{5}{6\sqrt{3}}\tan^{-1}(\frac{2x-3}{\sqrt{3}}) + C'$ Therefor $\int \frac{2x^2 - x + 1}{(x^2 + 3x + 3)(x^2 - 3x + 3)} dx = \frac{5}{36} \ln \frac{|x^2 - 3x + 3|}{|x^2 + 3x + 3|} + \frac{\sqrt{3}}{2} \tan^{-1}(\frac{2x + 3}{\sqrt{3}}) + \frac{5\sqrt{3}}{18} \tan^{-1}(\frac{2x - 3}{\sqrt{3}}) + C''$ (b) $\int_{-1}^{2} \sin(x+3|x|) dx = \int_{-1}^{0} \sin(x-3x) dx + \int_{0}^{2} \sin(x+3x) dx$ $= \int_{-1}^{0} \sin(-2x) dx + \int_{0}^{2} \sin(4x) dx = \left[\frac{1}{2}\cos(-2x)\right]_{-1}^{0} + \left[-\frac{1}{4}\cos(4x)\right]_{0}^{2}$ $= \frac{3}{4} - \frac{1}{2}\cos(2) - \frac{1}{4}\cos(8).$ (c) $g(x) = \begin{cases} x^3 + x + 2, \ x < 0 \\ 3\sin(\pi x) + \cos(2x)e^{\sin(2x)} + 1, \ x \ge 0 \end{cases}$. First note that g is continuous on the interval $(-\infty, 0)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(0, \infty)$ since $3\sin(\pi x)$ is a continuous function and the product $\cos(2x)e^{\sin(2x)}$ is continuous on (0,

since $3\sin(\pi x)$ is a continuous function and the product $\cos(2x)e^{\sin(2x)}$ is continuous on (0, ∞). Now the left limit at x = 0 is $\lim_{x \to 0^-} g(x) = \lim_{x \to 0^-} x^3 + x + 2 = 2$ and the right limit at x = 0, $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} 3\sin(\pi x) + \cos(2x)e^{\sin(2x)} + 1 = 0 + 1 + 1 = 2 = g(1)$. Therefore, $\lim_{x \to 0} g(x) = g(0)$. Thus g is continuous at x = 0. Therefore, g is continuous on **R** and we can use the Fundamental Theorem of Calculus to obtain an antiderivative G(x) given by the

following Riemann integral for each x in **R**.

$$G(x) = \int_0^x g(t)dt = \begin{cases} \int_0^x g(t)dt, & x < 0\\ \int_0^x g(t)dt, & x \ge 0 \end{cases} = \begin{cases} \int_0^x (t^3 + t + 2)dt, & x < 0\\ \int_0^x (3\sin(\pi t) + \cos(2t)e^{\sin(2t)} + 1)dt, & x \ge 0 \end{cases}$$

PAGE 9

$$= \begin{cases} \left[\frac{1}{4}t^4 + \frac{1}{2}t^2 + 2t\right]_0^x, x < 0\\ \left[\frac{1}{2}e^{\sin(2t)} - \frac{3}{\pi}\cos(\pi t) + t\right]_0^x, x \ge 1 \end{cases} = \begin{cases} \frac{1}{4}x^4 + \frac{1}{2}x^2 + 2x, x < 0\\ \frac{1}{2}e^{\sin(2x)} - \frac{3}{\pi}\cos(\pi x) + x + \frac{3}{\pi} - \frac{1}{2}, x \ge 0 \end{cases}$$

Thus, any antiderivative is given by G(x) + C for any constant *C*.

(d)
$$\int \frac{1}{\sqrt{x^2 - 2x - 1}} dx = \int \frac{1}{\sqrt{(x - 1)^2 - 2}} dx = \int \frac{1}{\sqrt{2}} \frac{1}{\sqrt{(\frac{x - 1}{\sqrt{2}})^2 - 1}} dx$$

using trigonometric substitution:
 $\sec(\theta) = \frac{x - 1}{\sqrt{2}}$ so that $dx = \sqrt{2} \sec(\theta) \tan(\theta) d\theta$
 $= \int \frac{1}{\sqrt{2}} \tan(\theta) \sqrt{2} \sec(\theta) \tan(\theta) d\theta = \int \sec(\theta) d\theta = \ln|\sec(\theta) + \tan(\theta)| + C$
 $= \ln|\frac{x - 1}{\sqrt{2}} + \sqrt{(\frac{x - 1}{\sqrt{2}})^2 - 1}| + C = \ln|x - 1 + \sqrt{x^2 - 2x - 1}| - \frac{1}{2}\ln(2) + C$
 $= \ln|x - 1 + \sqrt{x^2 - 2x - 1}| + C'.$
(e) $\int \ln(2 + x^2) dx = x \ln(2 + x^2) - \int x \cdot \frac{2x}{2 + x^2} dx$ by integration by parts
 $= x \ln(2 + x^2) - \int (2 - \frac{4}{2 + x^2}) dx = x \ln(2 + x^2) - 2x + \frac{4}{\sqrt{2}} \tan^{-1}(\frac{x}{\sqrt{2}}) + C$
 $OR = x \ln(2 + x^2) - 2x + 2\sqrt{2} \tan^{-1}(\frac{\sqrt{2}x}{2}) + C$

OR part of the integral above is given by:

$$\int \frac{4}{2+x^2} dx = \int \frac{2}{(1+(\frac{x}{\sqrt{2}})^2)} dx = \int 2\sqrt{2} \, d\theta = 2\sqrt{2} \, \theta + C' = 2\sqrt{2} \, \tan^{-1}(\frac{x}{\sqrt{2}}) + C'$$

using trigonometric substitution: $\tan(\theta) = \frac{x}{\sqrt{2}}$ where $dx = \sqrt{2} \sec^2(\theta) d\theta$

Question 4.

(a) Recall
$$g(x) = 2x^3 - 15x^2 + 24x + 1$$

Thus, $g'(x) = 6x^2 - 30x + 24 = 6(x-4)(x-1)$. Therefore, g'(x) = 0 if and only if x = 1 or 4. Hence g has two stationary points in (0, 5), namely 1 and 4. Since g is differentiable, the critical points of g in (0, 5) are 1 and 4. Since g is continuous on the closed and bounded interval [0, 5] and so by the Extreme Value Theorem g has absolute extrema on the interval [0, 5] and they are given respectively by the maximum and minimum of the values of the critical points in (0, 5) and the end points 1 and 4 under g. Now g(0) = 1, g(1) = 12, g(4) = -15 and g(5) = -4. Therefore, the absolute maximum of g on [0, 5] is 12 and the absolute minimum of g on [0, 5] is -15.

(b) (i)

 $h(x) = (x^2 + 1 + \cos(\cos(x)))^{\sin(x)}.$ Taking logarithm on both sides we get $\ln(h(x)) = \sin(x)\ln(x^2 + 1 + \cos(\cos(x))).$ Differentiating both sides we get, $\frac{h'(x)}{h(x)} = \cos(x)\ln(x^2 + 1 + \cos(\cos(x))) + \sin(x)\frac{2x + \sin(\cos(x))\sin(x)}{x^2 + 1 + \cos(\cos(x))}$

Therefore,
$$h'(x) = (x^2 + 1 + \cos(\cos(x)))^{\sin(x)} \Big[\cos(x) \ln(x^2 + 1 + \cos(\cos(x))) + \sin(x) \frac{2x + \sin(\cos(x)) \sin(x)}{x^2 + 1 + \cos(\cos(x))} \Big]$$

(ii) $j(x) = \int_x^{\ln(x)} \frac{e^t}{\sin(t + \sin(t^2)) + 2} dt, \ x \in (0, \infty).$
Therefore, $j(x) = \int_1^{\ln(x)} \frac{e^t}{\sin(t + \sin(t^2)) + 2} dt - \int_1^x \frac{e^t}{\sin(t + \sin(t^2)) + 2} dt.$
Hence by the Fundamental Theorem of Calculus and the Chain Rule,
 $j'(x) = \frac{1}{\sin(\ln(x) + \sin(\ln(x)^2)) + 2} - \frac{e^x}{\sin(x + \sin(x^2)) + 2}$

(iii)
$$k(x) = \cot^{-1}(\csc^{2}(x)), x \in (0, \frac{\pi}{2})$$
. Thus by the Chain Rule
 $k'(x) = -(\cot^{-1})'(\csc^{2}(x)) \cdot 2\csc^{2}(x)\cot(x) = -\frac{2\csc^{2}(x)\cot(x)}{\cot'(\cot^{-1}(\csc^{2}(x)))}$
 $= \frac{2\csc^{2}(x)\cot(x)}{\csc^{2}(\cot^{-1}(\csc^{2}(x)))} = \frac{2\csc^{2}(x)\cot(x)}{1+\csc^{4}(x)} = \frac{2\cos(x)\sin(x)}{1+\sin^{4}(x)} = \frac{\sin(2x)}{1+\sin^{4}(x)}.$

(c) (i) Since *m* is the absolute minimum of g on [*a*, *b*] and *M* is the absolute maximum of g on [*a*,*b*], we have

$$m \le g(x) \le M \quad \dots \quad (1)$$

for all x in [a, b]. Therefore, since $f(x) \ge 0$ for all x in [a, b], multiplying (1) by f(x) we get $mf(x) \le f(x)g(x) \le Mf(x)$ ------(2)

for all *x* in [*a*, *b*].

Hence taking integral we get:

 $m \int_{a}^{b} f(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M \int_{a}^{b} f(x)dx.$ $\int_{a}^{b} f(x)g(x)dx = k \int_{a}^{b} f(x)dx \text{ for some } k \text{ in } [m, M]. \text{ By the Extreme Value}$

(ii) Therefore, $\int_{a}^{b} f(x)g(x)dx = k \int_{a}^{b} f(x)dx$ for some k in [m, M]. By the Extreme Value Theorem, since g is continuous on [a, b], m = g(d) and M = g(e) for some points d and e in [a, b], and so by the Intermediate Value Theorem there is a point c between d and e and so in [a, b], such that g(c) = k. Thus $\int_{a}^{b} f(x)g(x)dx = g(c) \int_{a}^{b} f(x)dx$.

Question 5.

(a) (i) The volume of the solid of revolution obtained by rotating about the *x*-axis the region bounded by the curve y = f(x), the *x*-axis and the lines x = a and x = b is given by the Riemann integral $\int_{a}^{b} \pi(f(x))^{2} dx$.

(ii) The equation of the ellipse is
$$\frac{x^2}{3} + \frac{y^2}{5} = 1.$$

Thus the curve required is the part of the ellipse above the x- axis. It is of course given by

$$f(x) = \sqrt{5(1 - \frac{x^2}{3})}$$
 for $-\sqrt{3} \le x \le \sqrt{3}$.

Thus by the formula in (i) the volume of the solid of revolution obtained by rotating the ellipse is given by

$$\int_{-\sqrt{3}}^{\sqrt{3}} 5\pi (1 - \frac{x^2}{3}) dx = 5\pi \left[x - \frac{x^3}{9} \right]_{-\sqrt{3}}^{\sqrt{3}} = 10\pi (\sqrt{3} - \frac{\sqrt{3}}{3}) = \frac{20\sqrt{3}}{3}\pi$$

(b) Recall $k(x) = \int_{1}^{x^5} (1 + t^2 + \cos(\sin(\pi t))) dt.$

...-11-

(i) Therefore, since the integrand $1 + t^2 + \cos(\sin(\pi t))$ is continuous for all x in **R**, k is differentiable on **R** and

$$k'(x) = (1 + x^{10} + \cos(\sin(\pi x^5))) \cdot 5x^4$$

by the Fundamental Theorem of Calculus and the Ch

by the Fundamental Theorem of Calculus and the Chain Rule. Hence, for $x \neq 0$, k'(x) > 0 because $5x^4 > 0$ and $1 + x^{10} + \cos(\sin(\pi x^5)) \ge x^{10} > 0$. Since k is continuous on **R**, because it is differentiable on **R**, k is (strictly) increasing on (- ∞ , 0] and on $[0, \infty)$. Therefore, k is (strictly) increasing on **R** and hence k is injective.

(ii) Note that
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))}$$
.

$$k(1) = \int_{1}^{1} (1 + t^2 + \cos(\sin(\pi t))) dt = 0$$
 and so since k is injective $k^{-1}(0) = 1$.

From part (i) $k'(1) = 5(2 + \cos(\sin(\pi))) = 15$.

Thus,
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))} = \frac{1}{k'(1)} = \frac{1}{15}$$

(c) $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^2}{n^4} \cdot \sqrt[3]{7n^3 + 2i^3}$.

We shall write the summation $\sum_{i=1}^{n} \frac{i^2}{n^4} \cdot \sqrt[3]{7n^3 + 2i^3}$ as a Riemann sum

$$\sum_{i=1}^{n} \frac{i^2}{n^4} \cdot \sqrt[3]{7n^3 + 2i^3} = \sum_{i=1}^{n} \frac{i^2}{n^2} \sqrt[3]{7 + 2\left(\frac{i}{n}\right)^3} \cdot \frac{1}{n} = \sum_{i=1}^{n} f(x_i) \Delta x,$$

where $x_0 < x_1 < \cdots < x_n$ is a regular partition and $\Delta x = \Delta x_i = x_i - x_{i-1}$. Therefore, we can take $x_i = \frac{i}{n}$ so that $\Delta x = \frac{1}{n}$, $x_0 = 0$ and $x_n = 1$. Thus by comparing,

$$f(x_i)\Delta x \text{ with } \frac{i^2}{n^2} \sqrt[3]{7+2\left(\frac{i}{n}\right)^3} \cdot \frac{1}{n}$$

we would want $f(x_i) = \frac{i^2}{n^2} \sqrt[3]{7+2\left(\frac{i}{n}\right)^3} = x_i^2 \sqrt[3]{7+2x_i^3}$. Thus $f(x) = x^2 \sqrt[3]{7+2x^3}$.
Therefore, $\lim_{n \to \infty} \sum_{i=1}^n \frac{i^2}{n^4} \cdot \sqrt[3]{7n^3+2i^3} = \int_0^1 x^2 \sqrt[3]{7+2x^3} dx$
 $= \frac{1}{6} \int_0^1 6x^2 \sqrt[3]{7+2x^3} dx = \frac{1}{6} \int_0^1 \sqrt[3]{u} \frac{du}{dx} dx$, where $u = 7+2x^3$
 $= \frac{1}{6} \int_7^9 \sqrt[3]{u} du$ by Change of Variable
 $= \frac{1}{6} \cdot \frac{3}{4} [u^{4/3}]_7^9 = \frac{1}{8} (9\sqrt[3]{9} - 7\sqrt[3]{7}).$

Question 6

Recall $f(x) = x^5 - 20x^2 + 7$.

(a) Note that f is continuous on **R** since it is a polynomial function.

Now

$$f'(x) = 5x^4 - 40x = 5x(x^3 - 8) = 5x(x - 2)(x^2 + 2x + 4)$$

= 5x(x - 2)((x + 1)² + 3) ------ (1)

Therefore, for x < 0, f'(x) > 0 and so f is increasing on the interval $(-\infty, 0]$.

From (1), for 0 < x < 2, f'(x) < 0 and so f is decreasing on [0, 2]. From (1), for x > 2, f'(x) > 0 and so f is increasing on [2, ∞).

(b)
$$f''(x) = 20x^3 - 40 = 20(x^3 - 2)$$

= $20(x - 2^{1/3})(x^2 + 2^{1/3}x + 2^{2/3})$
= $20(x - 2^{1/3})((x + \frac{1}{2} \cdot 2^{1/3})^2 + \frac{3}{4}2^{2/3})$ ------(2)

Thus, f''(x) < 0 for $x < 2^{1/3}$. Therefore, the graph of f is concave downward on the interval $(-\infty, 2^{1/3})$. From (2), for $x > 2^{1/3}$, f''(x) > 0 and so the graph of f is concave upward on the interval $(2^{1/3}, \infty)$.

- (c) By part (a) f(0) = 7 is a relative maximum and f(2) = -41 is a relative minimum.
- (d) From part (b), there is a change of concavity before and after $x = 2^{1/3}$.

Now $f(2^{1/3}) = 2^{5/3} - 20 \cdot 2^{2/3} + 7 = 7 - 18 \cdot 2^{2/3}$.

Hence, the only point of inflection of the graph of f is

$$(2^{1/2}, 7-18 \cdot 2^{2/3}).$$

(e) The graph of f.

