NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2005 - 2006

MA1102R CALCULUS

November 2005 – Time Allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** sections: Section A and Section B. It contains a total of **SIX** questions and comprises **FOUR** printed pages.
- 2. Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Answer not more than **TWO** questions from Section B. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f: \mathbf{R} \to \mathbf{R}$ be defined by

$$f(x) = \begin{cases} -x^2 + 1, & x < 0\\ (x - 1)^2 \sin\left(\frac{\pi}{2(x^2 + 1)}\right), & 0 \le x < 1\\ x^4 - 4x + 3, & x \ge 1 \end{cases}.$$

- (a) Determine all x in \mathbf{R} at which the function f is *continuous*. Justify your answer.
- (b) Find the image of the interval [0, 1] under f, i.e., find f([0,1]).
- (c) Find the range of the function f.
- (d) Determine if f is surjective.
- (e) Determine if f is differentiable at x, when x = 0 or 1. Justify your answer.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^5 + 3x^2 + \cos(1/x) + 2}{6x^5 + 3x + 1}}$$
.

(b)
$$\lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{x + \sin(x)}.$$

(c)
$$\lim_{x\to 0^+} x \cos(e^{(1/x)})$$
.

(d)
$$\lim_{x\to 0} (1+9x^3)^{(1/x^3)}$$
.

(e)
$$\lim_{x \to \infty} \frac{(\ln(\ln(x)))^3}{\ln(x)}.$$

PAGE 3 MA1102R

Question 3 [20 marks]

- (a) Evaluate $\int \frac{35 9x^2 4x}{(x^2 + 4x + 5)(x^2 4x + 5)} dx.$
- (b) Compute $\int_{1}^{3} \sqrt{x+2[x]} dx$, where [t] denotes the greatest integer $\leq t$.
- (c) Find an antiderivative of g(x), which is defined by

$$g(x) = \begin{cases} x + x^5 + 3, & x < 1 \\ 3\sin(\frac{\pi x}{2}) - \cos(\pi x)e^{\sin(\pi x)} + 1, & x \ge 1 \end{cases}.$$

- (d) Evaluate $\int \sin^{-1}(2x)dx$.
- (e) Evaluate $\int \sin^5(3x) \cos^4(3x) dx$.

SECTION B

Answer not more than **TWO** questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) Find the critical points of the function g, defined by

$$g(x) = x^3 - 12x^2 + 45x + 1,$$

in the open interval (2, 6). Determine the absolute maximum and the absolute minimum values of the function in the interval [2, 6].

- (b) Differentiate each of the following functions.
 - (i) $h(x) = (7 + 2\sin(x + \cos(x)))^{\sec(x)}, x \in (0, \frac{\pi}{2}).$
 - (ii) $j(x) = \int_{\ln(x)}^{x^3} \frac{t^2}{2 + \sin(t^2) + e^t} dt, \ x \in (0, \infty).$
 - (iii) $k(x) = \tan^{-1}(\sec^2(x)), x \in (0, \frac{\pi}{2}).$
- (c) Suppose f and g are two differentiable functions defined on the real numbers \mathbf{R} such that f'(x) > g'(x) for all x in \mathbf{R} and f(0) = g(0). Prove that for x > 0, f(x) > g(x) and for x < 0, f(x) < g(x).

PAGE 4 MA1102R

Question 5 [20 marks]

- (a) (i) Suppose f is a continuous function defined on the closed and bounded interval [a, b] such that f is differentiable on [a, b]. Give the integral formula for the arc length of the curve y = f(x) from x = a to x = b.
 - (ii) Use this formula or otherwise, find the arc length of the curve $y = \ln(\cos(x))$ from x = 0 to $x = \frac{\pi}{3}$.
- (b) Differentiate the function k defined on **R** by $k(x) = \int_{1}^{x^3} (2 + \sin(\cos(t))) dt.$
 - (i) Without integrating, show that the function k is injective.
 - (ii) Determine $(k^{-1})'(0)$.
- (c) Find the following limit.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^3}{n^6} \cdot \sqrt{3n^4 + i^4} \,.$$

Question 6 [20 marks]

Let the function f be defined on \mathbf{R} by

$$f(x) = 2x^5 - 5x^2 + 3$$
.

- (a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
- (b) Find the intervals on which the graph of f is (i) *concave upward*, and (ii) *concave downward*.
- (c) Find the *relative extrema* of f, if any.
- (d) Find the points of inflection of the graph of f.
- (e) Sketch the graph of f.

END OF PAPER

PAGE 5 MA1102R

Answer To MA1102 Calculus

Question 1

The function f is defined by $f(x) = \begin{cases} -x^2 + 1, & x < 0 \\ (x-1)^2 \sin\left(\frac{\pi}{2(x^2+1)}\right), & 0 \le x < 1 \end{cases}$

(a) For x < 0, $f(x) = -x^2 + 1$ is a polynomial function. Therefore, f is continuous on the interval $(-\infty, 0)$ since any polynomial function is continuous on **R** and hence on any interval. Similarly for x > 1, $f(x) = x^4 - 4x + 3$ is a polynomial function there and so is continuous on $(1, \infty)$.

For 0 < x < 1, $f(x) = (x-1)^2 \sin\left(\frac{\pi}{2(x^2+1)}\right)$ and so f is continuous on (0, 1) since $\sin\left(\frac{\pi}{2(x^2+1)}\right)$ is continuous on **R** and $(x-1)^2$ is continuous on **R** so that the product of these two functions is continuous on \mathbf{R} and so on (0, 1). Thus it remains to check the continuity of f at 0 and 1. Note that f(0) = 1 and f(1) = 0.

Now we determine the left limit at x = 0. It is $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} -x^2 + 1 = 1$

The right limit at x = 0 is $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x - 1)^2 \sin\left(\frac{\pi}{2(x^2 + 1)}\right) = \sin\left(\frac{\pi}{2}\right) = 1$.

Hence, $\lim_{x \to 0} f(x) = 1$, and since f(0) = 1 it follows that f is continuous at x = 0.

Now consider the left limit of f at x = 1, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1)^{2} \sin\left(\frac{\pi}{2(x^{2} + 1)}\right) = 0 \cdot \sin\left(\frac{\pi}{4}\right) = 0$ Now $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{4} - 4x + 3 = 0$ and so $\lim_{x \to 1} f(x) = 0$.
Therefore, $\lim_{x \to 1} f(x) = 0 = f(1)$ and so f is continuous at f and f is continuous at f is conti

Therefore f is continuous at x for any x in \mathbf{R} .

(b) To determine the image f([0, 1]), first note that f(0) = 1 and f(1) = 0. Now observe that for $0 \le x \le 1$, $1 \le x^2 + 1 \le 2$ so that $\frac{\pi}{4} \le \frac{\pi}{2(x^2 + 1)} \le \frac{\pi}{2}$ and so $1 \ge \sin\left(\frac{\pi}{2(x^2 + 1)}\right) \ge 0$. Therefore, for $0 \le x \le 1$, $(x - 1)^2 \ge (x - 1)^2 \sin\left(\frac{\pi}{2(x^2 + 1)}\right) \ge 0$. For $0 \le x \le 1$, $0 \le (x-1)^2 \le 1$. Thus, for $0 \le x \le 1$

$$0 \le f(x) = (x-1)^2 \sin\left(\frac{\pi}{2(x^2+1)}\right) \le (x-1)^2 \le 1.$$

That means $f([0, 1]) \subseteq [0, 1]$. Since f is continuous on [0, 1] by part (a) and because f(0)= 1 and f(1) = 0, by the Intermediate Value Theorem, $[0, 1] \subseteq f([0, 1])$. Therefore, $f([0, 1]) \subseteq f([0, 1])$. 1]) = [0, 1].

(c) For x < 0, $-x^2 + 1 < 1$ and so the image $f((-\infty, 0)) \subseteq (-\infty, 1)$. Now for any y < 1, $-x^2 + 1 = 1$ y implies that $x^2 = 1 - y$ and so we have a solution $x = -\sqrt{1 - y} < 0$ to $-x^2 + 1 = y$ in $(-\infty, 0)$. Therefore, $(-\infty, 1) \subseteq f((-\infty, 0))$. That means $f((-\infty, 0)) = (-\infty, 1)$. Next for $x \ge 1$, $f(x) = x^4 - 4x + 3$ so that $f'(x) = 4x^3 - 4 > 0$ for x > 1. Therefore, f is strictly increasing on $[1, \infty)$ and so $f(x) \ge f(1) = 0$ for $x \ge 1$. Also note that

 $\lim_{x \to \infty} f(x) = +\infty$ since $\lim_{x \to \infty} x^4 - 4x + 3 = \lim_{x \to \infty} x^4 (1 - \frac{4}{x^3} + \frac{3}{x^4}) = +\infty$ because $\lim_{x \to \infty} x^4 = +\infty$ and

PAGE 6 MA1102R

 $\lim_{x\to\infty} \left(1 - \frac{4}{x^3} + \frac{3}{x^4}\right) = 1 > 0. \text{ Hence, since } f \text{ is continuous on } [1, \infty), \text{ by the Intermediate}$ Value Theorem $f([1, \infty)) = [0, \infty)$. Therefore, the range of f is $f(\mathbf{R}) = f((-\infty, 0)) \cup f([0, 1]) \cup f([1, \infty)) = (-\infty, 1) \cup [0, 1] \cup [0, \infty) = \mathbf{R}.$

- (d) By part (c) Range(f) = \mathbf{R} = codomain of f. Therefore, f is surjective.
- (e) To check the differentiability of f at x = 0 consider the following limits.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x^{2} + 1 - 1}{x} = \lim_{x \to 0^{-}} -x = 0$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(x - 1)^{2} \sin\left(\frac{\pi}{2(x^{2} + 1)}\right) - 1}{x}$$

$$= \lim_{x \to 0^{+}} \frac{2(x - 1) \sin\left(\frac{\pi}{2(x^{2} + 1)}\right) + (x - 1)^{2} \cos\left(\frac{\pi}{2(x^{2} + 1)}\right) \cdot \frac{-\pi x}{(x^{2} + 1)^{2}}}{1} = -2$$

Thus, f is not differentiable at x = 0 since $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} \neq \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$. $\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{4} - 4x + 3}{x - 1} = \lim_{x \to 1^{+}} (4x^{3} - 4) = 0 \quad \text{by L' Hôpital's Rule.}$ $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{(x - 1)^{2} \sin\left(\frac{\pi}{2(x^{2} + 1)}\right)}{x - 1} = \lim_{x \to 1^{-}} (x - 1) \sin\left(\frac{\pi}{2(x^{2} + 1)}\right) = 0$

Therefore, f is differentiable at x = 1 since $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = 0$ and f'(1) = 0.

OR,

$$f'(x) = \begin{cases} -2x, & x < 0 \\ 2(x-1)\sin\left(\frac{\pi}{2(x^2+1)}\right) + (x-1)^2\cos\left(\frac{\pi}{2(x^2+1)}\right) \cdot \frac{-\pi x}{(x^2+1)^2}, & 0 < x < 1 \\ 4x^3 - 4, & x > 1 \end{cases}$$

$$\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{-}} -2x = 0,$$

 $\lim_{x \to 0^{+}} f'(x) = \lim_{x \to 0^{+}} 2(x-1) \sin\left(\frac{\pi}{2(x^{2}+1)}\right) + (x-1)^{2} \cos\left(\frac{\pi}{2(x^{2}+1)}\right) \cdot \frac{-\pi x}{(x^{2}+1)^{2}} = -2$ Since both limits $\lim_{x \to 0^{-}} f'(x)$ and $\lim_{x \to 0^{+}} f'(x)$ are finite and not the same, f is not

Now $\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} (4x^3 - 4) = 0$ and

 $\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{-}} 2(x-1) \sin\left(\frac{\pi}{2(x^2+1)}\right) + (x-1)^2 \cos\left(\frac{\pi}{2(x^2+1)}\right) \cdot \frac{-\pi x}{(x^2+1)^2} = 0.$ Thus both limits $\lim_{x \to 1^{-}} f'(x)$ and $\lim_{x \to 1^{+}} f'(x)$ are finite and the same, therefore, f is differentiable at x = 1.

PAGE 7 MA1102R

Question 2

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^5 + 3x^2 + \cos(1/x) + 2}{6x^5 + 3x + 1}} = \lim_{x \to +\infty} \sqrt{\frac{1 + \frac{3}{x^3} + \frac{1}{x^5}(\cos(1/x) + 2)}{6 + \frac{3}{x^4} + \frac{1}{x^5}}}} = \sqrt{\frac{1 + 0 + 0}{6 + 0 + 0}} = \frac{1}{\sqrt{6}}.$$
This is because
$$\lim_{x \to +\infty} \frac{1}{x^3} = \lim_{x \to +\infty} \frac{1}{x^4} = \lim_{x \to +\infty} \frac{1}{x^5} = 0 \text{ and } \lim_{x \to +\infty} \frac{\cos(1/x) + 2}{x^5} = 0 \text{ by the}$$
Squeeze Theorem since
$$-|\frac{3}{x^5}| \le \frac{\cos(2/x) + 2}{x^5} \le |\frac{3}{x^5}| \text{ for } x \ne 0 \text{ and } \lim_{x \to +\infty} |\frac{3}{x^5}| = 0$$
or
$$\lim_{x \to +\infty} \frac{\cos(1/x) + 2}{x^5} = \lim_{x \to +\infty} \frac{\cos(1/x)}{x^5} + \lim_{x \to +\infty} \frac{2}{x^5} = \lim_{x \to +\infty} \frac{2}{x^5} \lim_{x \to +\infty} \cos(1/x) + 0 = 0 \times 1 = 0.$$
(b)
$$\lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{x + \sin(x)} = \lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{2x + \sin(x + \sin(x))} \cdot \left(\frac{2x}{x + \sin(x + \sin(x))} + \frac{\sin(2x + \sin(x + \sin(x)))}{x + \sin(x)}\right)$$

$$= \lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{2x + \sin(x + \sin(x))} \cdot \lim_{x \to 0} \left(\frac{2}{1 + \sin(x)/x} + \frac{\sin(x + \sin(x))}{x + \sin(x)}\right) = 1 \cdot (1 + 1) = 2$$
because
$$\lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{2x + \sin(x + \sin(x))} = 1 \text{ and } \lim_{x \to 0} \frac{\sin(x + \sin(x))}{x + \sin(x)} = \lim_{x \to 0} \frac{\sin(x)}{x} = 1.$$

OR

$$\lim_{x \to 0} \frac{\sin(2x + \sin(x + \sin(x)))}{x + \sin(x)} = \lim_{x \to 0} \frac{\cos(2x + \sin(x + \sin(x))) \cdot (2 + \cos(x + \sin(x))(1 + \cos(x)))}{1 + \cos(x)}$$

by L' Hôpital's Rule

$$= \frac{\cos(0) \cdot (2 + \cos(0) \cdot (1 + \cos(0)))}{2} = 2$$

(c) $\lim_{x \to 0^+} x \cos(e^{(1/x)}) = 0$ by the Squeeze Theorem since

$$-|x| \le x \cos(e^{(1/x)}) \le |x| \text{ for } x > 0 \text{ and } \lim_{x \to 0^+} |x| = 0.$$

(d)
$$\lim_{x \to 0} (1 + 9x^3)^{(1/x^3)}$$
. Let $y = (1 + 9x^3)^{(1/x^3)}$. Then $\ln(y) = \frac{1}{x^3} \ln(1 + 9x^3)$
Since $\lim_{x \to 0} \ln(y) = \lim_{x \to 0} \frac{1}{x^3} \ln(1 + 9x^3) = \lim_{x \to 0} \frac{\frac{27x^2}{1 + 9x^3}}{3x^2} = \lim_{x \to 0} \frac{9}{1 + 9x^3} = 9$

by L' Hôpital's Rule,

Therefore,
$$\lim_{x\to 0} y = e^{\lim_{x\to 0} \ln(y)} = e^9$$

(e)
$$\lim_{x \to \infty} \frac{(\ln(\ln(x)))^3}{\ln(x)} = \lim_{x \to \infty} \frac{3(\ln(\ln(x)))^2 \frac{1}{x \ln(x)}}{1/x} = \lim_{x \to \infty} \frac{3(\ln(\ln(x)))^2}{\ln(x)} \quad \text{by L' Hôpital's Rule,}$$
$$= \lim_{x \to \infty} \frac{6(\ln(\ln(x)))^1 \frac{1}{x \ln(x)}}{1/x} = \lim_{x \to \infty} \frac{6(\ln(\ln(x)))}{\ln(x)} = \lim_{x \to \infty} \frac{6 \frac{1}{x \ln(x)}}{1/x} = \lim_{x \to \infty} 6 \frac{1}{\ln(x)} = 0$$

by repeated use of L' Hôpital's Rule and the fact that $\lim_{x \to \infty} \ln(x) = \infty$.

PAGE 8 MA1102R

Question 3

(a)
$$\int \frac{35 - 9x^2 - 4x}{(x^2 + 4x + 5)(x^2 - 4x + 5)} dx.$$
$$\int \frac{35 - 9x^2 - 4x}{(x^2 + 4x + 5)(x^2 - 4x + 5)} dx = \int \frac{2x + 4}{(x^2 + 4x + 5)} dx + \int \frac{-2x + 3}{(x^2 - 4x + 5)} dx$$

by a partial fraction expansion determined as follows.

Writing,

$$\frac{35 - 9x^2 - 4x}{(x^2 + 4x + 5)(x^2 - 4x + 5)} = \frac{Ax + B}{x^2 + 4x + 5} + \frac{Cx + D}{x^2 - 4x + 5}$$

then
$$(Ax+B)(x^2-4x+5)+(Cx+D)(x^2+4x+5)=35-9x^2-4x$$
.

Comparing coefficients of
$$x^3$$
: $A + C = 0$ ----- (1)

Comparing constant terms :
$$5B + 5D = 35$$
, i.e. $B + D = 7$ -----(2)

Comparing coefficients of x^2 : -4A+B+4C+D=-9.

Since B+D = 7 by (2) we get
$$-4A + 4C = -9 - 7 = -16$$
, i.e.,

$$-A + C = -4$$
 -----(3)

5A - 4B + 5C + 4D = -4. Comparing coefficients of *x*:

Since
$$A + C = 0$$
 we get from above $-B + D = -1$ ----- (4)

Equation (1) + Equation (3) gives
$$2C = -4$$
 and so $C = -2$ and $A = -C = 2$.

Equation (2) + Equation (4) gives 2D = 6 and so D = 3 and B = 7-D = 4

Now
$$\int \frac{2x+4}{(x^2+4x+5)} dx = \ln|x^2+4x+5| + C$$

And $\int \frac{-2x+3}{(x^2-4x+5)} dx = \int \frac{-(2x-4)}{(x^2-4x+5)} dx - \int \frac{1}{(x^2-4x+5)} dx$
 $= -\ln|x^2-4x+5| - \int \frac{1}{(x-2)^2+1} dx = -\ln|x^2-4x+5| - \tan^{-1}(x-2) + C'$

Therefore,

$$\int \frac{35 - 9x^2 - 4x}{(x^2 + 4x + 5)(x^2 - 4x + 5)} dx = \ln|x^2 + 4x + 5| - \ln|x^2 - 4x + 5| - \tan^{-1}(x - 2) + C''$$

$$= \ln\left|\frac{x^2 + 4x + 5}{x^2 - 4x + 5}\right| - \tan^{-1}(x - 2) + C''$$

(b)
$$\int_{1}^{3} \sqrt{x+2[x]} dx = \int_{1}^{2} \sqrt{x+2} dx + \int_{2}^{3} \sqrt{x+4} dx = \left[\frac{2}{3}(x+2)^{3/2}\right]_{1}^{2} + \left[\frac{2}{3}(x+4)^{3/2}\right]_{2}^{3}$$
$$= \frac{2}{3}(4^{3/2} - 3^{3/2}) + \frac{2}{3}(7^{3/2} - 6^{3/2}) = \frac{2}{3}(8 - 3\sqrt{3} + 7\sqrt{7} - 6\sqrt{6}).$$

(c)
$$g(x) = \begin{cases} x + x^5 + 3, & x < 1 \\ 3\sin(\frac{\pi x}{2}) - \cos(\pi x)e^{\sin(\pi x)} + 1, & x \ge 1 \end{cases}$$
.

First note that g is continuous on the interval $(-\infty, 1)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(1, \infty)$ since $3\sin(\frac{\pi x}{2})$ is a continuous function and the product $\cos(\pi x)e^{\sin(\pi x)}$ is continuous on (1, ∞). Now the left limit at x = 1 is $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x + x^{5} + 3 = 5$ and the right limit at x = 1, $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} 3 \sin(\frac{\pi x}{2}) - \cos(\pi x)e^{\sin(\pi x)} + 1 = 3 - \cos(\pi) + 1 = 5 = g(1)$. Therefore, $\lim_{x \to 1} g(x) = g(1)$. Thus g is continuous at x = 1. Therefore, g is continuous on **R** and we can PAGE 9 MA1102R

use the Fundamental Theorem of Calculus to obtain an antiderivative G(x) given by the following Riemann integral for each x in \mathbf{R} .

$$G(x) = \int_{1}^{x} g(t)dt = \begin{cases} \int_{1}^{x} g(t)dt, x < 1 \\ \int_{1}^{x} g(t)dt, x \ge 1 \end{cases} = \begin{cases} \int_{1}^{x} (t + t^{5} + 3)dt, x < 1 \\ \int_{1}^{x} (3\sin(\frac{\pi t}{2}) - \cos(\pi t)e^{\sin(\pi t)} + 1)dt, x \ge 1 \end{cases}$$

$$= \begin{cases} \left[\frac{1}{6}t^{6} + \frac{1}{2}t^{2} + 3t\right]_{1}^{x}, x < 1 \\ \left[-\frac{1}{\pi}e^{\sin(\pi t)} - \frac{6}{\pi}\cos(\frac{\pi t}{2}) + t\right]_{1}^{x}, x \ge 1 \end{cases} = \begin{cases} \frac{1}{6}x^{6} + \frac{1}{2}x^{2} + 3x - 3\frac{2}{3}, x < 1 \\ -\frac{1}{\pi}e^{\sin(\pi x)} - \frac{6}{\pi}\cos(\frac{\pi x}{2}) + x + \frac{1}{\pi} - 1, x \ge 1 \end{cases}$$

Thus, any antiderivative is given by G(x) + C for any constant C.

(d)
$$\int \sin^{-1}(2x)dx = x\sin^{-1}(2x) - \int x \cdot \frac{2}{\sqrt{1 - 4x^2}} dx$$

by integration by parts

$$= x \sin^{-1}(2x) + \frac{1}{4} \int \frac{-8x}{\sqrt{1 - 4x^2}} dx = x \sin^{-1}(2x) + \frac{1}{2} \sqrt{1 - 4x^2} + C$$

(e)
$$\int \sin^5(3x)\cos^4(3x)dx = -\int \frac{1}{3}\sin^4(3x)\cos^4(3x) \cdot (-3\sin(3x))dx$$

$$= -\int \frac{1}{3} (1 - \cos^2(3x))^2 \cos^4(3x) \cdot (-3\sin(3x)) dx = -\frac{1}{3} \int u^4 (1 - u^2)^2 \frac{du}{dx} dx,$$

where
$$u = \cos(3x)$$

$$= -\frac{1}{3} \int u^4 (1 - 2u^2 + u^4) du = -\frac{1}{3} \int (u^4 - 2u^6 + u^8) du$$
 by substitution or change of variable.
$$= -\frac{1}{3} (\frac{u^5}{5} - 2\frac{u^7}{7} + \frac{u^9}{9}) + C = -\frac{1}{15} \cos^5(3x) + \frac{2}{21} \cos^7(3x) - \frac{1}{27} \cos^9(3x) + C.$$

Question 4.

- (a) Recall $g(x) = x^3 12x^2 + 45x + 1$.
 - Thus, $g'(x) = 3x^2 24x + 45 = 3(x 3)(x 5)$. Therefore, g'(x) = 0 if and only if x = 3 or 5. Hence g has two stationary points in (2, 6), namely 3 and 5. Since g is differentiable, the critical points of g in (2, 6) are 3 and 5. Since g is continuous on the closed and bounded interval [2, 6] and so by the Extreme Value Theorem g has absolute extrema on the interval [2, 6] and they are given respectively by the maximum and minimum of the values of the critical points and the end points under g. Now g(2) = 51, g(3) = 55, g(5) = 51 and g(6) = 55. Therefore, the absolute maximum of g on [2, 6] is 55 and the absolute minimum of g on [2, 6] is 51.
- (b) (i) $h(x) = (7 + 2\sin(x + \cos(x)))^{\sec(x)}$, $x \in (0, \frac{\pi}{2})$. Taking logarithm on both sides we get $\ln(h(x)) = \sec(x)\ln(7 + 2\sin(x + \cos(x)))$. Differentiating both sides we get, $\frac{h'(x)}{h(x)} = \sec(x)\tan(x)\ln(7 + 2\sin(x + \cos(x))) + \sec(x)\frac{2\cos(x + \cos(x))(1 - \sin(x))}{7 + 2\sin(x + \cos(x))}$ Therefore, h'(x) =

PAGE 10 MA1102R

$$(7 + 2\sin(x + \cos(x)))^{\sec(x)} \sec(x) \left[\tan(x) \ln(7 + 2\sin(x + \cos(x))) + \frac{2\cos(x + \cos(x))(1 - \sin(x))}{7 + 2\sin(x + \cos(x))} \right]$$

(ii)
$$j(x) = \int_{\ln(x)}^{x^3} \frac{t^2}{2 + \sin(t^2) + e^t} dt, \ x \in (0, \infty).$$

(ii)
$$j(x) = \int_{\ln(x)}^{x^3} \frac{t^2}{2 + \sin(t^2) + e^t} dt$$
, $x \in (0, \infty)$.
Therefore, $j(x) = \int_0^{x^3} \frac{t^2}{2 + \sin(t^2) + e^t} dt - \int_0^{\ln(x)} \frac{t^2}{2 + \sin(t^2) + e^t} dt$.

Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$j'(x) = \frac{3x^8}{2 + \sin(x^6) + e^{x^3}} - \frac{(\ln(x))^2 \frac{1}{x}}{2 + \sin((\ln(x))^2) + x}$$

(iii) $k(x) = \tan^{-1}(\sec^2(x)), x \in (0, \frac{\pi}{2})$. Thus by the Chain Rule

$$k'(x) = (\tan^{-1})'(\sec^{2}(x)) \cdot 2\sec^{2}(x)\tan(x) = \frac{2\sec^{2}(x)\tan(x)}{\tan'(\tan^{-1}(\sec^{2}(x)))}$$

$$= \frac{2\sec^{2}(x)\tan(x)}{\sec^{2}(\tan^{-1}(\sec^{2}(x)))} = \frac{2\sec^{2}(x)\tan(x)}{1+\sec^{4}(x)} = \frac{2\cos(x)\sin(x)}{1+\cos^{4}(x)} = \frac{\sin(2x)}{1+\cos^{4}(x)}$$

(c) Define h(x) = f(x) - g(x) for x in **R**. Then since both f and g are differentiable on R, h is also differentiable on **R** and h'(x) = f'(x) - g'(x) > 0 because it is given that f' (x) > g'(x) for all x in **R**. Therefore, h is increasing on **R**. Hence for x > 0, h(x) > h(0)= f(0) - g(0) = 0 since it is given that f(0) = g(0). Thus, for x > 0 f(x) - g(x) = h(x) > 0and so f(x) > g(x). Similarly for x < 0, f(x) - g(x) = h(x) < h(0) = f(0) - g(0) = 0 so that f(x) < g(x).

Question 5.

(a) (i) The arc length of the curve y = f(x) from x = a to x = b is given by,

$$\int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx$$

when f is differentiable on [a, b].

(ii) By the above formula the arc length of the curve $y = \ln(\cos(x))$ from x = 0to $x = \frac{\pi}{3}$ is

$$\int_0^{\pi/3} \sqrt{1 + \tan^2(x)} \, dx = \int_0^{\pi/3} \sec(x) dx = \left[\ln(|\sec(x) + \tan(x)|) \right]_0^{\pi/3}$$
$$= \ln(|\sec(\frac{\pi}{3}) + \tan(\frac{\pi}{3})|) = \ln(2 + \sqrt{3}) \text{ unit.}$$

- $k(x) = \int_{1}^{x^3} (2 + \sin(\cos(t))) dt.$ (b) Recall
 - (i) Therefore, since the integrand $2 + \sin(\cos(x))$ is continuous for all x in **R**, k is differentiable on R and

$$k'(x) = (2 + \sin(\cos(x^3))) \cdot 3x^2$$

by the Fundamental Theorem of Calculus and the Chain Rule.

Thus, for $x \neq 0$, k'(x) > 0. Since k is continuous on **R**, because it is differentiable on **R**, k is (strictly) increasing on $(-\infty, 0]$ and on $[0, \infty)$. Therefore, k is (strictly) increasing on **R** and hence *k* is injective.

PAGE 11 MA1102R

(ii) Note that
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))}$$
.

$$k(1) = \int_{1}^{1} (2 + \sin(\cos(t)))dt = 0$$
 and so since k is injective $k^{-1}(0) = 1$.

From part (i) $k'(1) = 3(2 + \sin(\cos(1)))$.

Thus,
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))} = \frac{1}{k'(1)} = \frac{1}{3(2 + \sin(\cos(1)))}$$
.

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i^3}{n^6} \cdot \sqrt{3n^4 + i^4}$$
.

We shall write the summation $\sum_{i=1}^{n} \frac{i^3}{n^6} \cdot \sqrt{3n^4 + i^4}$ as a Riemann sum

$$\sum_{i=1}^{n} \frac{i^3}{n^6} \cdot \sqrt{3n^4 + i^4} = \sum_{i=1}^{n} \frac{i^3}{n^3} \sqrt{3 + \left(\frac{i}{n}\right)^4} \cdot \frac{1}{n} = \sum_{i=1}^{n} f(x_i) \Delta x,$$

where $x_0 < x_1 < \cdots < x_n$ is a regular partition and $\Delta x = \Delta x_i = x_i - x_{i-1}$.

Therefore, we can take $x_i = \frac{i}{n}$ so that $\Delta x = \frac{1}{n}$, $x_0 = 0$ and $x_n = 1$. Thus by comparing,

$$f(x_i)\Delta x \text{ with } \frac{i^3}{n^3} \sqrt{3 + \left(\frac{i}{n}\right)^4} \cdot \frac{1}{n}$$
we would want $f(x_i) = \frac{i^3}{n^3} \sqrt{3 + \left(\frac{i}{n}\right)^4} = x_i^3 \sqrt{3 + x_i^4}$. Thus $f(x) = x^3 \sqrt{3 + x^4}$.

Therefore, $\lim_{n \to \infty} \sum_{i=1}^n \frac{i^3}{n^6} \cdot \sqrt{3n^4 + i^4} \cdot = \int_0^1 x^3 \sqrt{3 + x^4} \, dx$

$$= \frac{1}{4} \int_0^1 4x^3 \sqrt{3 + x^4} \, dx = \frac{1}{4} \int_0^1 \sqrt{u} \, \frac{du}{dx} dx, \text{ where } u = 3 + x^4$$

$$= \frac{1}{4} \int_3^4 \sqrt{u} \, du \text{ by Change of Variable}$$

$$= \frac{1}{4} \cdot \frac{2}{3} [u^{3/2}]_3^4 = \frac{1}{6} (8 - 3\sqrt{3}) = \frac{4}{3} - \frac{\sqrt{3}}{2}.$$

Ouestion 6

Recall
$$f(x) = 2x^5 - 5x^2 + 3$$
.

(a) Note that f is continuous on \mathbf{R} since it is a polynomial function.

Now

$$f'(x) = 10x^4 - 10x = 10x(x^3 - 1) = 10x(x - 1)(x^2 + x + 1)$$
$$= 10x(x - 1)((x + \frac{1}{2})^2 + \frac{3}{4}) \qquad (1)$$

Therefore, for x < 0, f'(x) > 0 and so f is increasing on the interval $(-\infty, 0]$.

From (1), for 0 < x < 1, f'(x) < 0 and so f is decreasing on [0, 1]. From (1), for x > 1, f'(x) > 0 and so f is increasing on [1, ∞).

(b)
$$f''(x) = 40x^3 - 10 = 40(x^3 - \frac{1}{4})$$

 $= 40(x - \frac{1}{4^{1/3}})(x^2 + \frac{1}{4^{1/3}}x + \frac{1}{4^{2/3}})$
 $= 40(x - \frac{1}{4^{1/3}})((x + \frac{1}{2} \cdot \frac{1}{4^{1/3}})^2 + \frac{3}{4}\frac{1}{4^{2/3}})$ ------(2)

PAGE 12 MA1102R

Thus, f ''(x) < 0 for $x < 1/4^{1/3}$. Therefore, the graph of f is concave downward on the interval $(-\infty, 1/4^{1/3})$. From (2), for $x > 1/4^{1/3}$, f ''(x) > 0 and so the graph of f is concave upward on the interval $(1/4^{1/3}, \infty)$.

- (c) By part (a) f(0) = 3 is a relative maximum and f(1) = 0 ia a relative minimum.
- (d) From part (b), there is a change of concavity before and after $x = 1/4^{1/3}$.

Now
$$f(\frac{1}{4^{1/3}}) = 2\frac{1}{4^{5/3}} - 5\frac{1}{4^{2/3}} + 3 = \frac{1}{4^{2/3}}(\frac{1}{2} - 5) + 3 = 3 - \frac{9}{2 \cdot 4^{2/3}}$$
.

Hence, the only point of inflection of the graph of f is

$$(\frac{1}{4^{1/3}}, 3 - \frac{9}{2 \cdot 4^{2/3}}).$$

(e)

