NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 2 EXAMINATION 2004 – 2005

MA1102R CALCULUS

April 2005 – Time Allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** sections: Section A and Section B. It contains a total of **SIX** questions and comprises **FOUR** printed pages.
- 2. Answer **ALL** questions in **Section A**. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- 3. Answer not more than **TWO** questions from Section B. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f: \mathbf{R} \to \mathbf{R}$ be defined by

$$f(x) = \begin{cases} x^2 - 1, & x < 0 \\ -(x - 1)^2 \left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right|, & 0 \le x < 1 \\ x^3 - 3x + 2, & x \ge 1 \end{cases}.$$

- (a) Determine all x in \mathbf{R} at which the function f is *continuous*. Justify your answer.
- (b) Find the image of the interval [0, 1] under f, i.e., find f([0,1]).
- (c) Find the range of the function f.
- (d) Determine if f is surjective.
- (e) Determine if f is differentiable at x, when x = 0 or 1. Justify your answer.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^3 + 3x + \sin(x) + 1}{4x^3 + 7x + 1}}$$
.

(b)
$$\lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{x^2 + 3x}$$
.

(c)
$$\lim_{x \to 0^+} x^2 \sin(\ln(x))$$
.

(d)
$$\lim_{x\to 0} (e^x + 7x)^{(\frac{1}{x})}$$
.

(e)
$$\lim_{x \to 0^+} (\sin(x^4))^{(1/\ln(x))}$$
.

PAGE 3 MA1102R

Question 3 [20 marks]

(a) Evaluate $\int \frac{6-5x^2-2x}{(x^2+2x+2)(x^2-2x+2)} dx.$

- (b) Compute $\int_{-1}^{1} \sqrt{x+2|x|} dx.$
- (c) Find an antiderivative of g(x), which is defined by

$$g(x) = \begin{cases} x^3 + x + 7, & x < 1 \\ 3e^{(x-1)} - 6\cos(\pi x), & x \ge 1 \end{cases}.$$

- (d) Evaluate $\int e^{2x} \sin(5x) dx$.
- (e) Evaluate $\int \sin^4(5x) \cos^3(5x) dx$.

SECTION B

Answer not more than **TWO** questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

- (a) (i) State the Extreme Value Theorem.
 - (ii) Find the critical points of the function g, defined by

$$g(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 4x + 3,$$

in the open interval (0, 5). Determine the absolute maximum and the absolute minimum values of the function in the interval [0, 5].

Hence, or otherwise, prove that there exists a point c in [0, 5] such that g(c) = c.

- (b) Differentiate each of the following functions.
 - (i) $h(x) = (1 + e^{\sin(2x^2)})^{\cot(x)}, x \in (0, \frac{\pi}{2}).$
 - (ii) $j(x) = \int_{x^2}^{\ln(1+x^2)} \frac{t}{1+t^2+\cos(t^2)} dt$.
 - (iii) $k(x) = \cos^{-1}(\frac{1}{1+x^2})$.

PAGE 4 MA1102R

Question 5 [20 marks]

(a) Differentiate the function
$$k$$
 defined on \mathbf{R} by
$$k(x) = \int_{1}^{x} (1 + \frac{t^2}{1 + \sin(\pi t) + e^t}) dt.$$

- (i) Without integrating, show that the function k is injective.
- (ii) Determine $(k^{-1})'(0)$.
- (b) Suppose f is a continuous function on [a, b] and g is a Riemann integrable function on [a, b]. If $g(x) \ge 0$ for any x in [a, b], then show that there exists a point c in [a, b] such that

$$\int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

(c) Find the following limit.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2} \cdot \sqrt{\frac{7n^2 + i^2}{n^2}}.$$

Question 6 [20 marks]

Let the function f be defined on \mathbf{R} by

$$f(x) = \begin{cases} x^5 - 5x^2 + 7, & x \ge 0 \\ x^2 + 7, & x < 0 \end{cases}.$$

- (a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
- (b) Find the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
- (c) Find the *relative extrema* of f, if any.
- (d) Find the points of inflection of the graph of f.
- (e) Sketch the graph of f.

END OF PAPER

PAGE 5 MA1102R

Answer To MA1102 Calculus

Question 1

The function
$$f$$
 is defined by $f(x) = \begin{cases} x^2 - 1, & x < 0 \\ -(x - 1)^2 \left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right|, & 0 \le x < 1 \\ x^3 - 3x + 2, & x \ge 1 \end{cases}$

(a) For x < 0, $f(x) = x^2 - 1$ is a polynomial function. Therefore, f is continuous on the interval $(-\infty, 0)$ since any polynomial function is continuous on **R** and hence on any interval. Similarly for x > 1, $f(x) = x^3 - 3x + 2$ is a polynomial function there and so is continuous on $(1, \infty)$.

For 0 < x < 1, $f(x) = -(x-1)^2 \left| \sin \left(\frac{\pi}{2(x-1)} \right) \right|$ and so f is continuous on (0, 1) since $\left| \sin \left(\frac{\pi}{2(x-1)} \right) \right|$ is continuous on $\mathbb{R} - \{0\}$ and $-(x-1)^2$ is continuous on \mathbb{R} so that the product of these two functions is continuous on $\mathbf{R} - \{0\}$ and so on (0, 1). Thus it remains to check the continuity of f at 0 and 1. Note that f(0) = -1 and f(1) = 0.

Now we determine the left limit at x = 0. It is $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x^2 - 1 = -1$ The right limit at x = 0 is $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} -(x - 1)^2 \left| \sin \left(\frac{\pi}{2(x - 1)} \right) \right| = -1 \left| \sin \left(-\frac{\pi}{2} \right) \right| = -1$. Hence, $\lim_{x \to 0} f(x) = -1$, and since f(0) = -1 it follows that f is continuous at x = 0.

Now consider the left limit of f at x = 1,

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} -(x-1)^{2} \left| \sin \left(\frac{\pi}{2(x-1)} \right) \right| = 0 \text{ by the Squeeze Theorem because for } x \neq 1$ $-(x-1)^{2} \le -(x-1)^{2} \left| \sin \left(\frac{\pi}{2(x-1)} \right) \right| \le 0 \text{ and } \lim_{x \to 1^{-}} -(x-1)^{2} = 0.$ Now $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{3} - 3x + 2 = 0 \text{ and so } \lim_{x \to 1} f(x) = 0.$ Therefore, $\lim_{x \to 1} f(x) = 0 = f(1)$ and so f is continuous at f is continuous at f for any f in f.

Therefore f is continuous at x for any x in \mathbf{R} .

- (b) To determine the image f([0, 1]), first note that f(0) = -1 and f(1) = 0. Now observe that for $0 \le x \le 1$, $-1 \le (x-1) \le 0$ so that $-1 \le -(x-1)^2 \le 0$. Therefore, for $0 \le x < 1$, $-1 \le -(x-1)^2 \le -(x-1)^2 \left| \sin \left(\frac{\pi}{2(x-1)} \right) \right| = f(x) \le 0$. Hence for all x in [0, 1], $-1 \le f(x) \le 0$. That means $f([0, 1]) \subseteq [-1, 0]$. Since f is continuous on [0, 1] by part (a) and because f(0) = -1 and f(1) = 0, by the Intermediate Value Theorem, $[-1, 0] \subseteq f([0, 1])$. Therefore, f([0, 1]) = [-1, 0].
- (c) For x < 0, $x^2 1 > -1$ and so the image $f((-\infty, 0)) \subseteq (-1, \infty)$. Now for any y > -1, $x^2 1 =$ y implies that $x^2 = 1 + y$ and so we have a solution $x = -\sqrt{1 + y} < 0$ to $x^2 - 1 = y$ in $(-\infty, 0)$. Therefore, $(-1, \infty) \subseteq f((-\infty, 0))$. That means $f((-\infty, 0)) = (-1, \infty)$. Next for $x \ge 1$, $f(x) = x^3 - 3x + 2$ so that $f'(x) = 3x^2 - 3 > 0$ for x > 1. Therefore, f is strictly increasing on $[1, \infty)$ and so $f(x) \ge f(1) = 0$ for $x \ge 1$. Also note that $\lim_{x \to \infty} f(x) = +\infty \text{ since } \lim_{x \to \infty} x^3 - 3x + 2 = \lim_{x \to \infty} x^3 \left(1 - \frac{3}{x^2} + \frac{2}{x^3}\right) = +\infty \text{ because } \lim_{x \to \infty} x^3 = +\infty \text{ and}$

PAGE 6 MA1102R

 $\lim_{x \to \infty} \left(1 - \frac{3}{x^2} + \frac{2}{x^3}\right) = 1 > 0.$ Hence, since f is continuous on $[1, \infty)$, by the Intermediate Value Theorem $f([1, \infty)) = [0, \infty)$. Therefore, the range of f is

$$f(\mathbf{R}) = f((-\infty, 0)) \cup f([0, 1]) \cup f([1, \infty)) = (-1, \infty) \cup [-1, 0] \cup [0, \infty)) = [-1, \infty).$$

- (d) By part (c) Range(f) \neq **R** = codomain of f. Therefore, f is not surjective.
- (e) To check the differentiability of f at x = 0 consider the following limits.

To check the differentiability of
$$f$$
 at $x = 0$ consider the following limits.
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} - 1 + 1}{x} = \lim_{x \to 0^{-}} x = 0$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{-(x - 1)^{2} \left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right| + 1}{x}$$

$$= \lim_{x \to 0^{+}} \frac{(x - 1)^{2} \sin\left(\frac{\pi}{2(x - 1)}\right) + 1}{x}$$
This is because $\left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right| = -\sin\left(\frac{\pi}{2(x - 1)}\right)$ for $0 < x < \frac{1}{2}$. We derive this by

$$-1 > \frac{1}{x-1} > -2$$
 and hence $-\frac{\pi}{2} > \frac{\pi}{2(x-1)} > -\pi$ and so $\sin\left(\frac{\pi}{2(x-1)}\right) < 0$.

Therefore,
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(x - 1)^{2} \sin\left(\frac{\pi}{2(x - 1)}\right) + 1}{x}$$

$$= \lim_{x \to 0^{+}} \frac{2(x - 1) \sin\left(\frac{\pi}{2(x - 1)}\right) - (x - 1)^{2} \cos\left(\frac{\pi}{2(x - 1)}\right) \cdot \left(-\frac{\pi}{2(x - 1)^{2}}\right)}{1}$$

$$=2(0-1)\sin\left(-\frac{\pi}{2}\right)=2.$$

Thus, f is not differentiable at x = 0 since $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} \neq \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$.

$$\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{3} - 3x + 2}{x - 1} = \lim_{x \to 1^{+}} (-3x^{2} - 3) = 0$$
 by L' Hôpital's Rule.

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{-(x - 1)^{2} \left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right|}{x - 1} = \lim_{x \to 1^{-}} = -(x - 1) \left| \sin\left(\frac{\pi}{2(x - 1)}\right) \right| = 0$$
by the Squeeze Theorem

since
$$0 \le -(x-1) \left| \sin \left(\frac{\pi}{2(x-1)} \right) \right| \le -(x-1)$$
 for $x < 1$ and $\lim_{x \to 1^-} -(x-1) = 0$.

Therefore, f is differentiable at x = 1 since $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = 0$ and f'(1) = 0,.

Question 2

(a)
$$\lim_{x \to +\infty} \sqrt{\frac{x^3 + 3x + \sin(x) + 1}{4x^3 + 7x + 1}} = \lim_{x \to +\infty} \sqrt{\frac{1 + \frac{3}{x^2} + \frac{1}{x^3}(\sin(x) + 1)}{4 + \frac{7}{x^2} + \frac{1}{x^3}}} = \sqrt{\frac{1 + 0 + 0}{4 + 0 + 0}} = \frac{1}{2}.$$

PAGE 7 MA1102R

This is because $\lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to +\infty} \frac{1}{x^2} = 0$ and $\lim_{x \to +\infty} \frac{\sin(x) + 1}{x^3} = 0$ by the Squeeze Theorem since $-|\frac{2}{x^3}| \le \frac{\sin(x) + 1}{x^3} \le |\frac{2}{x^3}|$ for x > 0 and $\lim_{x \to +\infty} |\frac{1}{x^3}| = 0$.

(b)

$$\lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{x^2 + 3x} = \lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{(x^2 + \sin(x^2 + 3x))} \cdot \frac{x^2 + \sin(x^2 + 3x)}{x^2 + 3x}$$

$$= \lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{(x^2 + \sin(x^2 + 3x))} \cdot \left(\frac{x^2}{x^2 + 3x} + \frac{\sin(x^2 + 3x)}{x^2 + 3x}\right)$$

$$= \lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{(x^2 + \sin(x^2 + 3x))} \cdot \lim_{x \to 0} \left(\frac{x}{x + 3} + \frac{\sin(x^2 + 3x)}{x^2 + 3x}\right)$$

$$= 1 \cdot (0 + 1) = 1$$

because
$$\lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{(x^2 + \sin(x^2 + 3x))} = 1$$
 and $\lim_{x \to 0} \frac{\sin(x^2 + 3x)}{x^2 + 3x} = 1$.

OR
$$\lim_{x \to 0} \frac{\sin(x^2 + \sin(x^2 + 3x))}{x^2 + 3x} = \lim_{x \to 0} \frac{\cos(x^2 + \sin(x^2 + 3x)) \cdot (2x + \cos(x^2 + 3x)(2x + 3))}{2x + 3}$$

by L' Hôpital's Rule

$$=\frac{\cos(0)\cdot(0+\cos(0)\cdot3)}{3}=1$$

(c) $\lim_{x \to 0^+} x^2 \sin(\ln(x)) = 0$ by the Squeeze Theorem since $-x^2 \le x^2 \sin(\ln(x)) \le x^2$ for x > 0 and $\lim_{x \to 0^+} x^2 = 0$.

(d)
$$\lim_{x \to 0} (e^x + 7x)^{(1/x)}$$
. Let $y = (e^x + 7x)^{(1/x)}$.
Since $\lim_{x \to 0} \ln(y) = \lim_{x \to 0} \frac{1}{x} \ln(e^x + 7x) = \lim_{x \to 0} \frac{\frac{e^x + 7}{e^x + 7x}}{1} = \lim_{x \to 0^+} \frac{e^x + 7}{e^x + 7x} = \frac{1 + 7}{1 + 0} = 8$

by L' Hôpital's Rule,

Therefore, $\lim_{x\to 0} y = e^{\lim_{x\to 0} (y)} = e^8$ (e) Let $y = (\sin(x^4))^{(1/\ln(x))}$. Then $\ln(y) = \frac{1}{\ln(x)} \ln(\sin(x^4))$. Now.

$$\lim_{x \to 0^{+}} \ln(y) = \lim_{x \to 0^{+}} \frac{\ln(\sin(x^{4}))}{\ln(x)} = \lim_{x \to 0^{+}} \frac{\frac{4x^{3}\cos(x^{4})}{\sin(x^{4})}}{1/x} \quad \text{by L' Hôpital's Rule,}$$

$$= 4 \lim_{x \to 0^{+}} \frac{x^{4}}{\sin(x^{4})} \cos(x^{4}) = 4 \cdot 1 \cdot \cos(0) = 4 \text{ since } \lim_{x \to 0^{+}} \frac{x^{4}}{\sin(x^{4})} = 1$$

OR by L' Hôpital's Rule

$$=4\lim_{x\to 0^+}\frac{4x^3\cos(x^4)-4x^7\sin(x^4)}{4x^3\cos(x^4)}=4\lim_{x\to 0^+}\frac{\cos(x^4)-x^4\sin(x^4)}{\cos(x^3)}=4$$

Therefore, $\lim_{y \to 0^+} y = e^{\lim_{x \to 0^+} \ln(y)} = e^4$.

PAGE 8 MA1102R

Question 3

(a)
$$\int \frac{6 - 5x^2 - 2x}{(x^2 + 2x + 2)(x^2 - 2x + 2)} dx = \int \frac{2x + 2}{(x^2 + 2x + 2)} dx + \int \frac{-2x + 1}{(x^2 - 2x + 2)} dx$$
by a partial fraction expansion determined as follows.

Writing,

$$\frac{6-5x^2-2x}{(x^2+2x+2)(x^2-2x+2)} = \frac{Ax+B}{x^2+2x+2} + \frac{Cx+D}{x^2-2x+2}$$

then
$$(Ax + B)(x^2 - 2x + 2) + (Cx + D)(x^2 + 2x + 2) = 6 - 5x^2 - 2x$$
.

Comparing coefficient of
$$x^3$$
: $A + C = 0$ ----- (1)
Comparing constant terms: $2B + 2D = 6$, i.e. $B + D = 3$ ----- (2)

Comparing constant terms:
$$2B + 2D = 6$$
, i.e. $B + D = 3$ -----(2)

Comparing coefficient of x^2 : -2A+B+2C+D=-5.

Since B+D = 3 by (2) we get
$$-2A + 2C = -5 - 3 = -8$$
, i.e.,
 $-A + C = -4$ -----(3)

2A - 2B + 2C + 2D = -2. Comparing coefficients of *x*:

Since
$$A + C = 0$$
 we get from above $-B + D = -1$ ----- (4)

Equation (1) + Equation (3) gives 2C = -4 and so C = -2 and A = -C = 2.

Equation (2) + Equation (4) gives 2D = 2 and so D = 1 and B = 3-D = 2

Now
$$\int \frac{2x+2}{(x^2+2x+2)} dx = \ln|x^2+2x+2| + C$$

And $\int \frac{-2x+1}{(x^2-2x+2)} dx = \int \frac{-(2x-2)}{(x^2-2x+2)} dx - \int \frac{1}{(x^2-2x+2)} dx$
 $= -\ln|x^2-2x+2| - \int \frac{1}{(x-1)^2+1} dx = -\ln|x^2-2x+2| - \tan^{-1}(x-1) + C'$

Therefore,

$$\int \frac{6 - 5x^2 - 2x}{(x^2 + 2x + 2)(x^2 - 2x + 2)} dx = \ln|x^2 + 2x + 2| - \ln|x^2 - 2x + 2| - \tan^{-1}(x - 1) + C''$$

$$= \ln\left|\frac{x^2 + 2x + 2}{x^2 - 2x + 2}\right| - \tan^{-1}(x - 1) + C''$$

(b)
$$\int_{-1}^{1} \sqrt{x+2|x|} dx = \int_{-1}^{0} \sqrt{x-2x} dx + \int_{0}^{1} \sqrt{x+2x} dx = \int_{-1}^{0} \sqrt{-x} dx + \int_{0}^{1} \sqrt{3x} dx = -\int_{1}^{0} \sqrt{u} du + \int_{0}^{1} \sqrt{3} \sqrt{x} dx = (\sqrt{3}+1) \int_{0}^{1} \sqrt{x} dx = (\sqrt{3}+1) \frac{2}{3} [x^{3/2}]_{0}^{1} = \frac{2}{3} (\sqrt{3}+1)$$

(c)
$$g(x) = \begin{cases} x^3 + x + 7, & x < 1 \\ 3e^{(x-1)} - 6\cos(\pi x), & x \ge 1 \end{cases}$$
.

First note that g is continuous on the interval $(-\infty, 1)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(1, \infty)$ since $\cos(\pi x)$ is a continuous function because the cosine function is continuous and that e^{x-1} is continuous on $(1, \infty)$. Now the left limit at x = 1 is $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x^{3} + x + 7 = 9$ and the right limit at x = 1, $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{+}} 3e^{x-1} - 6\cos(\pi x) = 3 - 6\cos(\pi) = 9 = g(1)$. Therefore, $\lim_{x \to 1} g(x) = g(1)$. Thus g is continuous at x = 1. Therefore, g is continuous on **R** and we can use the Fundamental Theorem of Calculus to obtain an antiderivative G(x) given by the following Riemann integral for each x in \mathbf{R} .

...-9-

PAGE 9 MA1102R

$$G(x) = \int_{1}^{x} g(t)dt = \begin{cases} \int_{1}^{x} g(t)dt, x < 1 \\ \int_{1}^{x} g(t)dt, x \ge 1 \end{cases} = \begin{cases} \int_{1}^{x} (t^{3} + t + 7)dt, x < 1 \\ \int_{1}^{x} (3e^{(t-1)} - 6\cos(\pi t))dt, x \ge 1 \end{cases}$$
$$= \begin{cases} \left[\frac{1}{4}t^{4} + \frac{1}{2}t^{2} + 7t \right]_{1}^{x}, x < 1 \\ \left[3e^{(t-1)} - \frac{6}{\pi}\sin(\pi t) \right]_{1}^{x}, x \ge 1 \end{cases} = \begin{cases} \frac{1}{4}x^{4} + \frac{1}{2}x^{2} + 7x - 7\frac{3}{4}, x < 1 \\ 3e^{(x-1)} - \frac{6}{\pi}\sin(\pi x) - 3, x \ge 1 \end{cases}$$

Thus, any antiderivative is given by G(x) + C for any constant C.

(d)
$$\int e^{2x} \sin(5x) dx = \frac{1}{2} e^{2x} \sin(5x) - \frac{1}{2} \int e^{2x} \cdot 5 \cos(5x) dx$$
 by integration by parts
$$= \frac{1}{2} e^{2x} \sin(5x) - \frac{5}{2} \left[\frac{1}{2} e^x \cos(5x) - \int \frac{1}{2} e^{2x} (-5 \sin(5x)) dx \right]$$
 by integration by parts
$$= \frac{1}{2} e^{2x} (\sin(5x) - \frac{5}{2} \cos(5x)) - \frac{25}{4} \int e^{2x} \sin(5x) dx.$$
 Therefore, $\int e^{2x} \sin(5x) dx = \frac{4}{29} \frac{1}{2} e^{2x} (\sin(5x) - \frac{5}{2} \cos(5x)) + C.$
$$= \frac{2}{29} e^{2x} (\sin(5x) - \frac{5}{2} \cos(5x)) + C.$$
 Or
$$= \frac{1}{29} e^{2x} (2 \sin(5x) - 5 \cos(5x)) + C.$$

(e)
$$\int \sin^4(5x)\cos^3(5x)dx = \int \frac{1}{5}\sin^4(5x)\cos^2(5x) \cdot 5\cos(5x)dx$$

$$= \int \frac{1}{5}\sin^4(5x)(1-\sin^2(5x)) \cdot 5\cos(5x)dx = \frac{1}{5}\int u^4(1-u^2)\frac{du}{dx}dx, \text{ where } u = \sin(5x)$$

$$= \int \frac{1}{5}u^4(1-u^2)du = \frac{1}{5}(\frac{u^5}{5} - \frac{u^7}{7}) + C = \frac{1}{25}\sin^5(5x) - \frac{1}{35}\sin^7(5x) + C \text{ by substitution or change of variable.}$$

Question 4.

(a) (i) Statement of The Extreme Value Theorem.

Suppose $f:[a,b] \to \mathbb{R}$ is a continuous function defined on a closed and bounded interval [a,b]. Then there exists elements c and d in the interval [a,b] such that

 $f(c) \le f(x) \le f(d)$ for all x in [a, b], i.e. f(c) is the absolute ninimum of f and f(d) is the absolute maximum of f.

(ii) Recall
$$g(x) = \frac{x^3}{3} - \frac{5x^2}{2} + 4x + 3$$
,

Thus, $g'(x) = x^2 - 5x + 4 = (x - 1)(x - 4)$. Therefore, g'(x) = 0 if and only if x = 1 or 4. Hence g has two stationary points in (0, 5), namely 1 and 4. Since g is differentiable, the critical points of g in (0, 5) are 1 and 4. Since g is continuous on the closed and bounded interval [0, 5] and so by the Extreme Value Theorem g has absolute extrema on the interval [0, 5] and they are given respectively by the maximum and minimum of the values of the critical points and the end points under g. Now g(0) = 3, g(1) = 29/6, g(4) = 1/3 and g(5) = 13/6. Therefore, the absolute maximum of g on [0, 5] is 29/6 < 5 and the absolute minimum of g on [0, 5] is 1/3 > 0. Thus $g([0,5]) = [1/3, 29/6] \subseteq [0,5]$ and so g maps [0, 5]

PAGE 10 MA1102R

into [0, 5]. Hence g has a fixed point in [0, 5]. I.e., there exists a point c in [0, 5] such that g(c) = c.

Alternatively, let h(x) = g(x) - x. Then h(0) = g(0) = 3 and h(5) = g(5) - 5 = 13/6-5 < 0. Since g is continuous on [0, 5], h is continuous on [0, 5] and so by the Intermediate Value Theorem, there exists a point c in [0, 5] such that h(c) = 0, i.e., g(c) = c.

(b) (i)
$$h(x) = (1 + e^{\sin(2x^2)})^{\cot(x)}, x \in (0, \frac{\pi}{2}).$$

Taking logarithm on both sides we get $\ln(h(x)) = \cot(x) \ln(1 + e^{\sin(2x^2)})$.

Differentiating both sides we get,

$$\frac{h'(x)}{h(x)} = -\csc^2(x)\ln(1 + e^{\sin(2x^2)}) + \cot(x)\frac{4x\cos(2x^2)e^{\sin(2x^2)}}{1 + e^{\sin(2x^2)}}$$

Therefore,
$$h'(x) = \left[\frac{4x\cos(2x^2)\cot(x)e^{\sin(2x^2)}}{1+e^{\sin(2x^2)}} - \csc^2(x)\ln(1+e^{\sin(2x^2)})\right](1+e^{\sin(2x^2)})^{\cot(x)}$$
.

(ii)
$$j(x) = \int_{x^2}^{\ln(1+x^2)} \frac{t}{1+t^2+\cos(t^2)} dt$$
.
Therefore, $j(x) = \int_0^{\ln(1+x^2)} \frac{t}{1+t^2+\cos(t^2)} dt - \int_0^{x^2} \frac{t}{1+t^2+\cos(t^2)} dt$.

Hence by the Fundamental Theorem of Calculus and the Chain Rule

$$j'(x) = \frac{2x\ln(1+x^2)}{(1+(\ln(1+x^2))^2 + \cos((\ln(1+x^2))^2))(1+x^2)} - \frac{2x^3}{1+x^4 + \cos(x^4)}$$

(iii)
$$k(x) = \cos^{-1}\left(\frac{1}{1+x^2}\right)$$
. Thus by the Chain Rule $k'(x) = (\cos^{-1})'\left(\frac{1}{1+x^2}\right) \cdot \frac{-2x}{(1+x^2)^2} = \frac{1}{\cos'(\cos^{-1}(\frac{1}{1+x^2}))} \cdot \frac{-2x}{(1+x^2)^2}$

$$= \frac{1}{\sin(\cos^{-1}(\frac{1}{1+x^2}))} \cdot \frac{2x}{(1+x^2)^2} = \frac{1}{\sqrt{1-\cos^2(\cos^{-1}(\frac{1}{1+x^2}))}} \cdot \frac{2x}{(1+x^2)^2}$$

$$= \frac{1}{\sqrt{1-(\frac{1}{1+x^2})^2}} \cdot \frac{2x}{(1+x^2)^2} = \frac{1}{\sqrt{x^4+2x^2}} \cdot \frac{2x}{(1+x^2)} = 2\frac{x}{|x|} \cdot \frac{1}{\sqrt{2+x^2}(1+x^2)}$$

$$= \frac{2sign(x)}{\sqrt{2+x^2}(1+x^2)}$$

(a) Recall
$$k(x) = \int_{1}^{x} (1 + \frac{t^2}{1 + \sin(\pi t) + e^t}) dt$$
.

(i) Therefore, for all x in \mathbf{R} ,

$$k'(x) = 1 + \frac{x^2}{1 + \sin(\pi x) + e^x}$$
 by the Fundamental Theorem of Calculus $\geq 1 > 0$, since $1 + \sin(\pi x) + e^x \geq e^x > 0$ so that $\frac{x^2}{1 + \sin(\pi x) + e^x} \geq 0$.

Thus, k is (strictly) increasing on \mathbf{R} and hence k is injective.

(ii) Note that
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))}$$
.

PAGE 11 MA1102R

$$k(1) = \int_{1}^{1} (1 + \frac{t^{2}}{1 + \sin(\pi t) + e^{t}}) dt = 0$$
 and so since k is injective $k^{-1}(0) = 1$.

From part (i)
$$k'(1) = 1 + \frac{1}{1 + \sin(\pi) + e^1} = 1 + \frac{1}{1 + e} = \frac{2 + e}{1 + e}$$
.

Thus,
$$(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))} = \frac{1}{k'(1)} = \frac{1+e}{2+e}$$
.

(b) Since f is continuous on [a, b], by the Extreme Value Theorem, there exists points α and β in [a, b] such that $f(\alpha) \le f(x) \le f(\beta)$ for all x in [a, b]. It follows then that for all x in [a, b],

$$f(\alpha) g(x) \le f(x)g(x) \le f(\beta)g(x) \quad ----- (1)$$

because $g(x) \ge 0$ for all x in [a, b].

Now f is Riemann integrable on [a, b], because it is continuous on [a, b] and g is given to be Riemann integrable on [a, b]. Therefore, the product f(x)g(x) is Riemann integrable on [a, b]. It then follows from (1) that

$$f(a) \int_a^b g(x)dx \le \int_a^b f(x)g(x)dx \le f(\beta) \int_a^b g(x)dx$$

Thus, there exists m such that $f(\alpha) \le m \le f(\beta)$ and $\int_a^b f(x)g(x)dx = m \int_a^b g(x)dx$. Since f is continuous on [a, b], by the Intermediate Value Theorem, there exists a point c in $[\alpha, \beta]$ (if $\alpha \le \beta$) or $[\beta, \alpha]$ (if $\beta \le \alpha$) hence in [a, b], such that f(c) = m. Therefore, $\int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx$.

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2} \cdot \sqrt{\frac{7n^2 + i^2}{n^2}}$$
.

We seek to write the summation $\sum_{i=1}^{n} \frac{i}{n^2} \cdot \sqrt{\frac{7n^2 + i}{n^2}}$ as a Riemann sum

$$\sum_{i=1}^{n} \frac{i}{n^2} \cdot \sqrt{\frac{7n^2 + i^2}{n^2}} = \sum_{i=1}^{n} f(x_i) \Delta x,$$

where $x_0 < x_1 < \dots < x_n$ is a regular partition and $\Delta x = \Delta x_i = x_i - x_{i-1}$.

Therefore, we can take $x_i = \frac{i}{n}$ so that $\Delta x = \frac{1}{n}$, $x_0 = 0$ and $x_n = 1$. Thus by comparing,

$$f(x_i)\Delta x$$
 with $\frac{i}{n^2} \cdot \sqrt{\frac{7n^2 + i^2}{n^2}} = \frac{i}{n} \sqrt{7 + \left(\frac{i}{n}\right)^2} \cdot \frac{1}{n}$

we would want $f(x_i) = \frac{i}{n} \sqrt{7 + \left(\frac{i}{n}\right)^2} = x_i \sqrt{7 + x_i^2}$. Thus $f(x) = x\sqrt{7 + x^2}$.

Therefore,
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2} \sqrt{\frac{7n^2 + i^2}{n^2}} = \int_0^1 x \sqrt{7 + x^2} \, dx$$

 $= \frac{1}{2} \int_0^1 2x \sqrt{7 + x^2} \, dx = \frac{1}{2} \int_0^1 \sqrt{u} \, \frac{du}{dx} dx$, where $u = 7 + x^2$
 $= \frac{1}{2} \int_7^8 \sqrt{u} \, du$ by a Change of Variable
 $= \frac{1}{2} \cdot \frac{2}{3} [u^{3/2}]_7^8 = \frac{1}{3} (8^{3/2} - 7^{3/2}).$

PAGE 12 MA1102R

Question 6

Recall
$$f(x) = \begin{cases} x^5 - 5x^2 + 7, & x \ge 0 \\ x^2 + 7, & x < 0 \end{cases}$$

(a) Observe that

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^5 - 5x^2 + 7 = 7 = \lim_{x \to 0^-} x^2 + 7 = \lim_{x \to 0^-} f(x) = f(0).$$

 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^5 - 5x^2 + 7 = 7 = \lim_{x \to 0^-} x^2 + 7 = \lim_{x \to 0^-} f(x) = f(0).$ Hence, f is continuous at x = 0 and so is continuous on \mathbf{R} since it is continuous on $(-\infty, 0)$ and on $(0, \infty)$ because f(x) is equal separately to a polynomial function there. Now

$$f'(x) = \begin{cases} 5x^4 - 10x, \ x > 0 \\ 2x, \ x < 0 \end{cases} = \begin{cases} 5x(x^3 - 2), \ x > 0 \\ 2x, \ x < 0 \end{cases}$$

$$= \begin{cases} 5x(x-2^{1/3})(x^2+2^{1/3}x+2^{2/3}), & x > 0 \\ 2x, & x < 0 \end{cases} \begin{cases} 5x(x-2^{1/3})((x+\frac{1}{2}2^{1/3})^2+\frac{3}{4}2^{2/3}), & x > 0 \\ 2x, & x < 0 \end{cases}$$

Therefore, for x < 0, f'(x) = 2x < 0 and so f is decreasing on the interval $(-\infty, 0]$.

From (1), for $0 < x < 2^{1/3}$, f'(x) < 0 and so f is decreasing on $[0, 2^{1/3}]$. Hence f is decreasing on the interval $(-\infty, 2^{1/3}]$. From (1), for $x > 2^{1/3}$, f'(x) > 0 and so f is increasing on $[2^{1/3}, \infty)$.

(b)
$$f''(x) = \begin{cases} 20x^3 - 10, & x > 0 \\ 2, & x < 0 \end{cases} = \begin{cases} 20(x^3 - \frac{1}{2}), & x > 0 \\ 2, & x < 0 \end{cases}$$
$$= \begin{cases} 20(x - \frac{1}{2^{1/3}})(x^2 + \frac{1}{2^{1/3}}x + \frac{1}{2^{2/3}}), & x > 0 \\ 2, & x < 0 \end{cases}$$
(2)

Thus, f''(x) < 0 for $0 < x < 1/2^{1/3}$. Therefore, the graph of f is concave downward on the interval $(0, 1/2^{1/3})$. Also, for x < 0, f''(x) = 2 > 0. Thus, the graph of f is concave upward on the interval ($-\infty$, 0). From (2), for $x > 1/2^{1/3}$, f''(x) > 0 and so the graph of fis concave upward on the interval $(1/2^{1/3}, \infty)$.

- (c) By part (a) $f(2^{1/3}) = 2^{5/3} 5 \cdot 2^{2/3} + 7 = 7 3 \cdot 2^{2/3}$ is a relative minimum. This is also the absolute minimum. There are no relative maximum values for f.
- (d) From part (b), there is a change of concavity before and after x = 0 and $x = 1/2^{1/3}$.

Now,
$$f(0) = 7$$
 and $f(\frac{1}{2^{1/3}}) = \frac{1}{2^{5/3}} - 5\frac{1}{2^{2/3}} + 7 = \frac{1}{2^{2/3}}(\frac{1}{2} - 5) + 7 = 7 - \frac{9}{2 \cdot 2^{2/3}}$.

Hence, the points of inflection of the graph of f are

$$(0,7)$$
 and $(\frac{1}{2^{1/3}}, 7 - \frac{9}{2 \cdot 2^{2/3}})$.

PAGE 13 MA1102R

(e)

