NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER 2 EXAMINATION 2004 - 2005
 MA1102R CALCULUS
 April 2005 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO sections: Section A and Section B. It contains a total of SIX questions and comprises FOUR printed pages.
2. Answer ALL questions in Section A. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{c}
x^{2}-1, \quad x<0 \\
-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|, \quad 0 \leq x<1 \quad . \\
x^{3}-3 x+2, \quad x \geq 1
\end{array} .\right.
$$

(a) Determine all x in \mathbf{R} at which the function f is continuous. Justify your answer.
(b) Find the image of the interval $[0,1]$ under f, i.e., find $f([0,1])$.
(c) Find the range of the function f.
(d) Determine if f is surjective.
(e) Determine if f is differentiable at x, when $x=0$ or 1 . Justify your answer.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \sqrt{\frac{x^{3}+3 x+\sin (x)+1}{4 x^{3}+7 x+1}}$.
(b) $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{x^{2}+3 x}$.
(c) $\lim _{x \rightarrow 0^{+}} x^{2} \sin (\ln (x))$.
(d) $\lim _{x \rightarrow 0}\left(e^{x}+7 x\right)^{\left(\frac{1}{x}\right)}$.
(e) $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{4}\right)\right)^{(1 / \ln (x))}$.

Question 3 [20 marks]
(a) Evaluate $\int \frac{6-5 x^{2}-2 x}{\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)} d x$.
(b) Compute $\int_{-1}^{1} \sqrt{x+2|x|} d x$.
(c) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{c}
x^{3}+x+7, x<1 \\
3 e^{(x-1)}-6 \cos (\pi x), x \geq 1
\end{array} .\right.
$$

(d) Evaluate $\int e^{2 x} \sin (5 x) d x$.
(e) Evaluate $\int \sin ^{4}(5 x) \cos ^{3}(5 x) d x$.

SECTION B

Answer not more than TWO questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]
(a) (i) State the Extreme Value Theorem.
(ii) Find the critical points of the function g , defined by

$$
g(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+4 x+3,
$$

in the open interval $(0,5)$. Determine the absolute maximum and the absolute minimum values of the function in the interval [0, 5].

Hence, or otherwise, prove that there exists a point c in $[0,5]$ such that $g(c)=c$.
(b) Differentiate each of the following functions.
(i) $h(x)=\left(1+e^{\sin \left(2 x^{2}\right)}\right)^{\cot (x)}, x \in\left(0, \frac{\pi}{2}\right)$.
(ii) $j(x)=\int_{x^{2}}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.
(iii) $k(x)=\cos ^{-1}\left(\frac{1}{1+x^{2}}\right)$.

Question 5 [20 marks]
(a) Differentiate the function k defined on \mathbf{R} by

$$
k(x)=\int_{1}^{x}\left(1+\frac{t^{2}}{1+\sin (\pi t)+e^{t}}\right) d t
$$

(i) Without integrating, show that the function k is injective.
(ii) Determine $\left(k^{-1}\right)^{\prime}(0)$.
(b) Suppose f is a continuous function on $[a, b]$ and g is a Riemann integrable function on $[a, b]$. If $g(x) \geq 0$ for any x in $[a, b]$, then show that there exists a point c in $[a, b]$ such that

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x
$$

(c) Find the following limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}
$$

Question 6 [20 marks]
Let the function f be defined on \mathbf{R} by

$$
f(x)=\left\{\begin{array}{c}
x^{5}-5 x^{2}+7, x \geq 0 \\
x^{2}+7, x<0
\end{array}\right.
$$

(a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(b) Find the intervals on which the graph of f is (i) concave upward, and (ii) concave downward.
(c) Find the relative extrema of f, if any.
(d) Find the points of inflection of the graph of f.
(e) Sketch the graph of f.

END OF PAPER

Answer To MA1102 Calculus

Question 1

The function f is defined by $f(x)=\left\{\begin{array}{c}x^{2}-1, \quad x<0 \\ -(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|, \quad 0 \leq x<1 \quad \\ x^{3}-3 x+2, \quad x \geq 1\end{array}\right.$.
(a) For $x<0, f(x)=x^{2}-1$ is a polynomial function. Therefore, f is continuous on the interval $(-\infty, 0)$ since any polynomial function is continuous on \mathbf{R} and hence on any interval. Similarly for $x>1, f(x)=x^{3}-3 x+2$ is a polynomial function there and so is continuous on $(1, \infty)$.
For $0<x<1, f(x)=-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|$ and so f is continuous on $(0,1)$ since $\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|$ is continuous on $\mathbf{R}-\{0\}$ and $-(x-1)^{2}$ is continuous on \mathbf{R} so that the product of these two functions is continuous on $\mathbf{R}-\{0\}$ and so on $(0,1)$. Thus it remains to check the continuity of f at 0 and 1 . Note that $f(0)=-1$ and $f(1)=0$.

Now we determine the left limit at $x=0$. It is $\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}-1=-1$
The right limit at $x=0$ is $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|=-1\left|\sin \left(-\frac{\pi}{2}\right)\right|=-1$.
Hence, $\lim _{x \rightarrow 0} f(x)=-1$, and since $f(0)=-1$ it follows that f is continuous at $x=0$.
Now consider the left limit of f at $x=1$,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|=0$ by the Squeeze Theorem because for $x \neq 1$
$-(x-1)^{2} \leq-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right| \leq 0$ and $\lim _{x \rightarrow 1^{-}}-(x-1)^{2}=0$.
Now $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{3}-3 x+2=0$ and so $\lim _{x \rightarrow 1} f(x)=0$.
Therefore, $\lim _{x \rightarrow 1} f(x)=0=f(1)$ and so f is continuous at $x=1$.
Therefore f is continuous at x for any x in \mathbf{R}.
(b) To determine the image $f([0,1])$, first note that $f(0)=-1$ and $f(1)=0$.

Now observe that for $0 \leq x \leq 1,-1 \leq(x-1) \leq 0$ so that $-1 \leq-(x-1)^{2} \leq 0$.
Therefore, for $0 \leq x<1,-1 \leq-(x-1)^{2} \leq-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|=f(x) \leq 0$. Hence for all x in $[0,1],-1 \leq f(x) \leq 0$. That means $f([0,1]) \subseteq[-1,0]$. Since f is continuous on $[0,1]$ by part (a) and because $f(0)=-1$ and $f(1)=0$, by the Intermediate Value Theorem, $[-1,0] \subseteq f([0,1])$. Therefore, $f([0,1])=[-1,0]$.
(c) For $x<0, x^{2}-1>-1$ and so the image $f((-\infty, 0)) \subseteq(-1, \infty)$. Now for any $y>-1, x^{2}-1=$ y implies that $x^{2}=1+y$ and so we have a solution $x=-\sqrt{1+y}<0$ to $x^{2}-1=y$ in $(-\infty, 0)$. Therefore, $(-1, \infty) \subseteq f((-\infty, 0))$. That means $f((-\infty, 0))=(-1, \infty)$.
Next for $x \geq 1, f(x)=x^{3}-3 x+2$ so that $f^{\prime}(x)=3 x^{2}-3>0$ for $x>1$. Therefore, f is strictly increasing on $[1, \infty)$ and so $f(x) \geq f(1)=0$ for $x \geq 1$. Also note that $\lim _{x \rightarrow \infty} f(x)=+\infty$ since $\lim _{x \rightarrow \infty} x^{3}-3 x+2=\lim _{x \rightarrow \infty} x^{3}\left(1-\frac{3}{x^{2}}+\frac{2}{x^{3}}\right)=+\infty$ because $\lim _{x \rightarrow \infty} x^{3}=+\infty$ and
$\lim _{x \rightarrow \infty}\left(1-\frac{3}{x^{2}}+\frac{2}{x^{3}}\right)=1>0$. Hence, since f is continuous on $[1, \infty)$, by the Intermediate Value Theorem $f([1, \infty))=[0, \infty)$. Therefore, the range of f is

$$
f(\mathbf{R})=f((-\infty, 0)) \cup f([0,1]) \cup f([1, \infty))=(-1, \infty) \cup[-1,0] \cup[0, \infty))=[-1, \infty) .
$$

(d) By part (c) Range $(f) \neq \mathbf{R}=$ codomain of f. Therefore, f is not surjective.
(e) To check the differentiability of f at $x=0$ consider the following limits.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{-}} \frac{x^{2}-1+1}{x}=\lim _{x \rightarrow 0^{-}} x=0 \\
\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} & =\lim _{x \rightarrow 0^{+}} \frac{-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|+1}{x} \\
& =\lim _{x \rightarrow 0^{+}} \frac{(x-1)^{2} \sin \left(\frac{\pi}{2(x-1)}\right)+1}{x}
\end{aligned}
$$

This is because $\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|=-\sin \left(\frac{\pi}{2(x-1)}\right)$ for $0<x<1 / 2$. We derive this by observing that $0<x<1 / 2$ implies that $-1<x-1<-1 / 2$ so that

$$
-1>\frac{1}{x-1}>-2 \text { and hence }-\frac{\pi}{2}>\frac{\pi}{2(x-1)}>-\pi \text { and so } \sin \left(\frac{\pi}{2(x-1)}\right)<0 .
$$

Therefore, $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{(x-1)^{2} \sin \left(\frac{\pi}{2(x-1)}\right)+1}{x}$

$$
=\lim _{x \rightarrow 0^{+}} \frac{2(x-1) \sin \left(\frac{\pi}{2(x-1)}\right)-(x-1)^{2} \cos \left(\frac{\pi}{2(x-1)}\right) \cdot\left(-\frac{\pi}{2(x-1)^{2}}\right)}{1}
$$

by L' Hôpital's Rule.

$$
=2(0-1) \sin \left(-\frac{\pi}{2}\right)=2
$$

Thus, f is not differentiable at $x=0$ since $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \neq \lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x^{3}-3 x+2}{x-1}=\lim _{x \rightarrow+^{+}}\left(-3 x^{2}-3\right)=0 \quad \text { by L' Hôpital's Rule. } \\
& \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{-(x-1)^{2}\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|}{x-1}=\lim _{x \rightarrow 1^{-}}=-(x-1)\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right|=0
\end{aligned}
$$

by the Squeeze Theorem
since $\quad 0 \leq-(x-1)\left|\sin \left(\frac{\pi}{2(x-1)}\right)\right| \leq-(x-1)$ for $x<1$ and $\lim _{x \rightarrow 1^{-}}-(x-1)=0$.

Therefore, f is differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=0$ and $f^{\prime}(1)=0$,

Question 2

(a)

$$
\lim _{x \rightarrow+\infty} \sqrt{\frac{x^{3}+3 x+\sin (x)+1}{4 x^{3}+7 x+1}}=\lim _{x \rightarrow+\infty} \sqrt{\frac{1+\frac{3}{x^{2}}+\frac{1}{x^{3}}(\sin (x)+1)}{4+\frac{7}{x^{2}}+\frac{1}{x^{3}}}}=\sqrt{\frac{1+0+0}{4+0+0}}=\frac{1}{2} .
$$

This is because $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=0$ and $\lim _{x \rightarrow+\infty} \frac{\sin (x)+1}{x^{3}}=0$ by the Squeeze Theorem since $-\left|\frac{2}{x^{3}}\right| \leq \frac{\sin (x)+1}{x^{3}} \leq\left|\frac{2}{x^{3}}\right|$ for $x>0$ and $\lim _{x \rightarrow+\infty}\left|\frac{1}{x^{3}}\right|=0$.
(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{x^{2}+3 x}=\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{\left(x^{2}+\sin \left(x^{2}+3 x\right)\right)} \cdot \frac{x^{2}+\sin \left(x^{2}+3 x\right)}{x^{2}+3 x} \\
& =\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{\left(x^{2}+\sin \left(x^{2}+3 x\right)\right)} \cdot\left(\frac{x^{2}}{x^{2}+3 x}+\frac{\sin \left(x^{2}+3 x\right)}{x^{2}+3 x}\right) \\
& =\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{\left(x^{2}+\sin \left(x^{2}+3 x\right)\right)} \cdot \lim _{x \rightarrow 0}\left(\frac{x}{x+3}+\frac{\sin \left(x^{2}+3 x\right)}{x^{2}+3 x}\right) \\
& =1 \cdot(0+1)=1
\end{aligned}
$$

because $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{\left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}=1$ and $\cdot \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+3 x\right)}{x^{2}+3 x}=1$.
OR $\quad \lim _{x \rightarrow 0} \frac{\sin \left(x^{2}+\sin \left(x^{2}+3 x\right)\right)}{x^{2}+3 x}=\lim _{x \rightarrow 0} \frac{\cos \left(x^{2}+\sin \left(x^{2}+3 x\right)\right) \cdot\left(2 x+\cos \left(x^{2}+3 x\right)(2 x+3)\right)}{2 x+3}$
by L' Hôpital's Rule

$$
=\frac{\cos (0) \cdot(0+\cos (0) \cdot 3)}{3}=1
$$

(c) $\lim _{x \rightarrow 0^{+}} x^{2} \sin (\ln (x))=0$ by the Squeeze Theorem since

$$
-x^{2} \leq x^{2} \sin (\ln (x)) \leq x^{2} \text { for } x>0 \text { and } \lim _{x \rightarrow 0^{+}} x^{2}=0
$$

(d) $\lim _{x \rightarrow 0}\left(e^{x}+7 x\right)^{(1 / x)}$. Let $y=\left(e^{x}+7 x\right)^{(1 / x)}$.

Since $\lim _{x \rightarrow 0} \ln (y)=\lim _{x \rightarrow 0} \frac{1}{x} \ln \left(e^{x}+7 x\right)=\lim _{x \rightarrow 0} \frac{\frac{e^{x}+7}{e^{x}+7 x}}{1}=\lim _{x \rightarrow 0^{+}} \frac{e^{x}+7}{e^{x}+7 x}=\frac{1+7}{1+0}=8$

by L' Hôpital's Rule,

Therefore, $\lim _{x \rightarrow 0} y=e^{\lim _{x \rightarrow 0} \ln (y)}=e^{8}$
(e) Let $y=\left(\sin \left(x^{4}\right)\right)^{(1 / \ln (x))}$. Then $\ln (y)=\frac{1}{\ln (x)} \ln \left(\sin \left(x^{4}\right)\right)$.

Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln (y) & =\lim _{x \rightarrow 0^{+}} \frac{\ln \left(\sin \left(x^{4}\right)\right)}{\ln (x)}=\lim _{x \rightarrow 0^{+}} \frac{\frac{4 x^{3} \cos \left(x^{4}\right)}{\sin \left(x^{4}\right)}}{1 / x} \quad \text { by L' Hôpital's Rule, } \\
& =4 \lim _{x \rightarrow 0^{+}} \frac{x^{4}}{\sin \left(x^{4}\right)} \cos \left(x^{4}\right)=4 \cdot 1 \cdot \cos (0)=4 \text { since } \lim _{x \rightarrow 0^{+}} \frac{x^{4}}{\sin \left(x^{4}\right)}=1
\end{aligned}
$$

OR by L' Hôpital's Rule,

$$
=4 \lim _{x \rightarrow 0^{+}} \frac{4 x^{3} \cos \left(x^{4}\right)-4 x^{7} \sin \left(x^{4}\right)}{4 x^{3} \cos \left(x^{4}\right)}=4 \lim _{x \rightarrow 0^{+}} \frac{\cos \left(x^{4}\right)-x^{4} \sin \left(x^{4}\right)}{\cos \left(x^{3}\right)}=4
$$

Therefore, $\lim _{x \rightarrow 0^{+}} y=e^{\lim _{x \rightarrow 0^{+}} \ln (y)}=e^{4}$.

Question 3

(a) $\int \frac{6-5 x^{2}-2 x}{\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)} d x=\int \frac{2 x+2}{\left(x^{2}+2 x+2\right)} d x+\int \frac{-2 x+1}{\left(x^{2}-2 x+2\right)} d x$
by a partial fraction expansion determined as follows.
Writing,

$$
\frac{6-5 x^{2}-2 x}{\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)}=\frac{A x+B}{x^{2}+2 x+2}+\frac{C x+D}{x^{2}-2 x+2}
$$

then $(A x+B)\left(x^{2}-2 x+2\right)+(C x+D)\left(x^{2}+2 x+2\right)=6-5 x^{2}-2 x$.
Comparing coefficient of x^{3} : $\quad \mathrm{A}+\mathrm{C}=0$
Comparing constant terms: $\quad 2 \mathrm{~B}+2 \mathrm{D}=6$, i.e. $\mathrm{B}+\mathrm{D}=3$
Comparing coefficient of $x^{2}:-2 \mathrm{~A}+\mathrm{B}+2 \mathrm{C}+\mathrm{D}=-5$.

$$
\text { Since B+D }=3 \text { by (2) we get }-2 A+2 C=-5-3=-8 \text {, i.e., }
$$

$$
\begin{equation*}
-\mathrm{A}+\mathrm{C}=-4 \tag{3}
\end{equation*}
$$

Comparing coefficients of $x: \quad 2 \mathrm{~A}-2 \mathrm{~B}+2 \mathrm{C}+2 \mathrm{D}=-2$.

$$
\begin{equation*}
\text { Since } \mathrm{A}+\mathrm{C}=0 \text { we get from above }-\mathrm{B}+\mathrm{D}=-1 \tag{4}
\end{equation*}
$$

Equation (1) + Equation (3) gives $2 \mathrm{C}=-4$ and so $\mathrm{C}=-2$ and $\mathrm{A}=-\mathrm{C}=2$.
Equation (2) + Equation (4) gives $2 \mathrm{D}=2$ and so $\mathrm{D}=1$ and $\mathrm{B}=3-\mathrm{D}=2$
Now $\int \frac{2 x+2}{\left(x^{2}+2 x+2\right)} d x=\ln \left|x^{2}+2 x+2\right|+C$
And $\int \frac{-2 x+1}{\left(x^{2}-2 x+2\right)} d x=\int \frac{-(2 x-2)}{\left(x^{2}-2 x+2\right)} d x-\int \frac{1}{\left(x^{2}-2 x+2\right)} d x$

$$
=-\ln \left|x^{2}-2 x+2\right|-\int \frac{1}{\left.(x-1)^{2}+1\right)} d x=-\ln \left|x^{2}-2 x+2\right|-\tan ^{-1}(x-1)+C^{\prime}
$$

Therefore,

$$
\begin{aligned}
& \int \frac{6-5 x^{2}-2 x}{\left(x^{2}+2 x+2\right)\left(x^{2}-2 x+2\right)} d x=\ln \left|x^{2}+2 x+2\right|-\ln \left|x^{2}-2 x+2\right|-\tan ^{-1}(x-1)+C^{\prime \prime} \\
& \quad=\ln \left|\frac{x^{2}+2 x+2}{x^{2}-2 x+2}\right|-\tan ^{-1}(x-1)+C^{\prime \prime}
\end{aligned}
$$

(b) $\int_{-1}^{1} \sqrt{x+2|x|} d x=\int_{-1}^{0} \sqrt{x-2 x} d x+\int_{0}^{1} \sqrt{x+2 x} d x=\int_{-1}^{0} \sqrt{-x} d x+\int_{0}^{1} \sqrt{3 x} d x$ $=-\int_{1}^{0} \sqrt{u} d u+\int_{0}^{1} \sqrt{3} \sqrt{x} d x=(\sqrt{3}+1) \int_{0}^{1} \sqrt{x} d x=(\sqrt{3}+1) \frac{2}{3}\left[x^{3 / 2}\right]_{0}^{1}=\frac{2}{3}(\sqrt{3}+1)$
(c) $g(x)=\left\{\begin{array}{c}x^{3}+x+7, x<1 \\ 3 e^{(x-1)}-6 \cos (\pi x), x \geq 1\end{array}\right.$.

First note that g is continuous on the interval $(-\infty, 1)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(1, \infty)$ since $\cos (\pi x)$ is a continuous function because the cosine function is continuous and that e^{x-1} is continuous on $(1, \infty)$. Now the left limit at $x=1$ is $\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} x^{3}+x+7=9$ and the right limit at $x=1, \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} 3 e^{x-1}-6 \cos (\pi x)=3-6 \cos (\pi)=9=g(1)$. Therefore, $\lim _{x \rightarrow 1} g(x)=g(1)$. Thus g is continuous at $x=1$. Therefore, g is continuous on \mathbf{R} and we can use the Fundamental Theorem of Calculus to obtain an antiderivative $G(x)$ given by the following Riemann integral for each x in \mathbf{R}.

$$
\begin{aligned}
G(x) & =\int_{1}^{x} g(t) d t=\left\{\begin{array}{c}
\int_{1}^{x} g(t) d t, x<1 \\
\int_{1}^{x} g(t) d t, x \geq 1
\end{array}=\left\{\begin{array}{c}
\int_{1}^{x}\left(t^{3}+t+7\right) d t, x<1 \\
\int_{1}^{x}\left(3 e^{(t-1)}-6 \cos (\pi t)\right) d t, x \geq 1
\end{array}\right.\right. \\
& =\left\{\begin{array}{c}
\left.\left[\frac{1}{4} t^{4}+\frac{1}{2} t^{2}+7 t\right)\right]_{1}^{x}, x<1 \\
{\left[3 e^{(t-1)}-\frac{6}{\pi} \sin (\pi t)\right]_{1}^{x}, x \geq 1}
\end{array}=\left\{\begin{array}{c}
\frac{1}{4} x^{4}+\frac{1}{2} x^{2}+7 x-7 \frac{3}{4}, x<1 \\
3 e^{(x-1)}-\frac{6}{\pi} \sin (\pi x)-3, x \geq 1
\end{array}\right.\right.
\end{aligned}
$$

Thus, any antiderivative is given by $G(x)+C$ for any constant C.
(d) $\int e^{2 x} \sin (5 x) d x=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{1}{2} \int e^{2 x} \cdot 5 \cos (5 x) d x$ by integration by parts
$=\frac{1}{2} e^{2 x} \sin (5 x)-\frac{5}{2}\left[\frac{1}{2} e^{x} \cos (5 x)-\int \frac{1}{2} e^{2 x}(-5 \sin (5 x)) d x\right]$ by integration by parts
$\left.=\frac{1}{2} e^{2 x}\left(\sin (5 x)-\frac{5}{2} \cos (5 x)\right)-\frac{25}{4} \int e^{2 x} \sin (5 x)\right) d x$.
Therefore, $\int e^{2 x} \sin (5 x) d x=\frac{4}{29} \frac{1}{2} e^{2 x}\left(\sin (5 x)-\frac{5}{2} \cos (5 x)\right)+C$.

$$
=\frac{2}{29} e^{2 x}\left(\sin (5 x)-\frac{5}{2} \cos (5 x)\right)+C .
$$

Or $\quad=\frac{1}{29} e^{2 x}(2 \sin (5 x)-5 \cos (5 x))+C$.
(e) $\int \sin ^{4}(5 x) \cos ^{3}(5 x) d x=\int \frac{1}{5} \sin ^{4}(5 x) \cos ^{2}(5 x) \cdot 5 \cos (5 x) d x$
$=\int \frac{1}{5} \sin ^{4}(5 x)\left(1-\sin ^{2}(5 x)\right) \cdot 5 \cos (5 x) d x=\frac{1}{5} \int u^{4}\left(1-u^{2}\right) \frac{d u}{d x} d x$, where $u=\sin (5 x)$
$=\int \frac{1}{5} u^{4}\left(1-u^{2}\right) d u=\frac{1}{5}\left(\frac{u^{5}}{5}-\frac{u^{7}}{7}\right)+C=\frac{1}{25} \sin ^{5}(5 x)-\frac{1}{35} \sin ^{7}(5 x)+C$ by substitution or change of variable.

Question 4.

(a) (i) Statement of The Extreme Value Theorem.

Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a continuous function defined on a closed and bounded interval $[a, b]$. Then there exists elements c and d in the interval $[a, b]$ such that
$f(c) \leq f(x) \leq f(d)$ for all x in [a,b], i.e. $f(c)$ is the absolute ninimum of f and $f(d)$ is the absolute maximum of f.
(ii) Recall $g(x)=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+4 x+3$,

Thus, $g^{\prime}(x)=x^{2}-5 x+4=(x-1)(x-4)$. Therefore, $g^{\prime}(x)=0$ if and only if $x=1$ or 4 .
Hence g has two stationary points in $(0,5)$, namely 1 and 4 . Since g is differentiable, the critical points of g in $(0,5)$ are 1 and 4 . Since g is continuous on the closed and bounded interval $[0,5]$ and so by the Extreme Value Theorem g has absolute extrema on the interval $[0,5]$ and they are given respectively by the maximum and minimum of the values of the critical points and the end points under g. Now $g(0)=3, g(1)=29 / 6, g(4)=1 / 3$ and $g(5)$ $=13 / 6$. . Therefore, the absolute maximum of g on $[0,5]$ is $29 / 6<5$ and the absolute minimum of g on $[0,5]$ is $1 / 3>0$. Thus $g([0,5])=[1 / 3,29 / 6] \subseteq[0,5]$ and so g maps $[0,5]$
into $[0,5]$. Hence g has a fixed point in [0, 5]. I.e., there exists a point c in [0.5] such that $\mathrm{g}(c)=c$.
Alternatively, let $h(x)=\mathrm{g}(x)-x$. Then $\mathrm{h}(0)=\mathrm{g}(0)=3$ and $\mathrm{h}(5)=\mathrm{g}(5)-5=13 / 6-5<0$.
Since g is continuous on [0,5], h is continuous on $[0,5]$ and so by the Intermediate Value Theorem, there exists a point c in $[0,5]$ such that $h(c)=0$, i.e., $g(c)=c$.
(b) (i) $h(x)=\left(1+e^{\sin \left(2 x^{2}\right)}\right)^{\cot (x)}, x \in\left(0, \frac{\pi}{2}\right)$.

Taking logarithm on both sides we get $\ln (h(x))=\cot (x) \ln \left(1+e^{\sin \left(2 x^{2}\right)}\right)$.
Differentiating both sides we get,

$$
\frac{h^{\prime}(x)}{h(x)}=-\csc ^{2}(x) \ln \left(1+e^{\sin \left(2 x^{2}\right)}\right)+\cot (x) \frac{4 x \cos \left(2 x^{2}\right) e^{\sin \left(2 x^{2}\right)}}{1+e^{\sin \left(2 x^{2}\right)}}
$$

Therefore, $h^{\prime}(x)=$

$$
\left[\frac{4 x \cos \left(2 x^{2}\right) \cot (x) e^{\sin \left(2 x^{2}\right)}}{1+e^{\sin \left(2 x^{2}\right)}}-\csc ^{2}(x) \ln \left(1+e^{\sin \left(2 x^{2}\right)}\right)\right]\left(1+e^{\sin \left(2 x^{2}\right)}\right)^{\cot (x)} .
$$

(ii) $j(x)=\int_{x^{2}}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.

Therefore, $\quad j(x)=\int_{0}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t-\int_{0}^{x^{2}} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.
Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$
j^{\prime}(x)=\frac{2 x \ln \left(1+x^{2}\right)}{\left(1+\left(\ln \left(1+x^{2}\right)\right)^{2}+\cos \left(\left(\ln \left(1+x^{2}\right)\right)^{2}\right)\right)\left(1+x^{2}\right)}-\frac{2 x^{3}}{1+x^{4}+\cos \left(x^{4}\right)}
$$

(iii) $k(x)=\cos ^{-1}\left(\frac{1}{1+x^{2}}\right)$. Thus by the Chain Rule

$$
\begin{aligned}
& k^{\prime}(x)=\left(\cos ^{-1}\right)^{\prime}\left(\frac{1}{1+x^{2}}\right) \cdot \frac{-2 x}{\left(1+x^{2}\right)^{2}}=\frac{1}{\cos ^{\prime}\left(\cos ^{-1}\left(\frac{1}{1+x^{2}}\right)\right)} \cdot \frac{-2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{1}{\sin \left(\cos ^{-1}\left(\frac{1}{1+x^{2}}\right)\right)} \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\sqrt{1-\cos ^{2}\left(\cos ^{-1}\left(\frac{1}{1+x^{2}}\right)\right)}} \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{1}{\sqrt{\left.1-\left(\frac{1}{1+x^{2}}\right)^{2}\right)}} \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}}=\frac{1}{\sqrt{x^{4}+2 x^{2}}} \cdot \frac{2 x}{\left(1+x^{2}\right)}=2 \frac{x}{|x|} \cdot \frac{1}{\sqrt{2+x^{2}}\left(1+x^{2}\right)} \\
& =\frac{2 \operatorname{sign}(x)}{\sqrt{2+x^{2}}\left(1+x^{2}\right)}
\end{aligned}
$$

Question 5.

(a) Recall $k(x)=\int_{1}^{x}\left(1+\frac{t^{2}}{1+\sin (\pi t)+e^{t}}\right) d t$.
(i) Therefore, for all x in \mathbf{R},

$$
\begin{aligned}
k^{\prime}(x) & =1+\frac{x^{2}}{1+\sin (\pi x)+e^{x}} \text { by the Fundamental Theorem of Calculus } \\
& \geq 1>0, \\
& \text { since } 1+\sin (\pi x)+e^{x} \geq e^{x}>0 \text { so that } \frac{x^{2}}{1+\sin (\pi x)+e^{x}} \geq 0 .
\end{aligned}
$$

Thus, k is (strictly) increasing on \mathbf{R} and hence k is injective.
(ii) Note that $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}$.
$k(1)=\int_{1}^{1}\left(1+\frac{t^{2}}{1+\sin (\pi t)+e^{t}}\right) d t=0$ and so since k is injective $k^{-1}(0)=1$.
From part (i) $k^{\prime}(1)=1+\frac{1}{1+\sin (\pi)+e^{1}}=1+\frac{1}{1+e}=\frac{2+e}{1+e}$.
Thus, $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(1)}=\frac{1+e}{2+e}$.
(b) Since f is continuous on $[a, b]$, by the Extreme Value Theorem, there exists points α and β in $[a, b]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all x in $[a, b]$. It follows then that for all x in [a, b],

$$
\begin{equation*}
f(\alpha) \mathrm{g}(x) \leq f(x) \mathrm{g}(x) \leq f(\beta) \mathrm{g}(x) \tag{1}
\end{equation*}
$$

because $\mathrm{g}(x) \geq 0$ for all x in $[a, b]$.
Now f is Riemann integrable on [a, b], because it is continuous on [a, b] and g is given to be Riemann integrable on $[a, b]$. Therefore, the product $f(x) \mathrm{g}(x)$ is Riemann integrable on $[a, b]$. It then follows from (1) that

$$
f(\alpha) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq f(\beta) \int_{a}^{b} g(x) d x
$$

Thus, there exists m such that $f(\alpha) \leq m \leq f(\beta)$ and $\int_{a}^{b} f(x) g(x) d x=m \int_{a}^{b} g(x) d x$. Since f is continuous on [a, b], by the Intermediate Value Theorem, there exists a point c in $[\alpha, \beta]$ (if $\alpha \leq \beta$) or $[\beta, \alpha]$ (if $\beta \leq \alpha$) hence in $[a, b]$, such that $f(c)=m$. Therefore, $\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x$.
(c) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}$.

We seek to write the summation $\sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}$ as a Riemann sum

$$
\sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x,
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$.
Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing,

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{i}{n^{2}} \cdot \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}=\frac{i}{n} \sqrt{7+\left(\frac{i}{n}\right)^{2}} \cdot \frac{1}{n}
$$

we would want $f\left(x_{i}\right)=\frac{i}{n} \sqrt{7+\left(\frac{i}{n}\right)^{2}}=x_{i} \sqrt{7+x_{i}^{2}}$. Thus $f(x)=x \sqrt{7+x^{2}}$.
Therefore, $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \sqrt{\frac{7 n^{2}+i^{2}}{n^{2}}}=\int_{0}^{1} x \sqrt{7+x^{2}} d x$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{1} 2 x \sqrt{7+x^{2}} d x=\frac{1}{2} \int_{0}^{1} \sqrt{u} \frac{d u}{d x} d x, \text { where } u=7+x^{2} \\
& =\frac{1}{2} \int_{7}^{8} \sqrt{u} d u \text { by a Change of Variable } \\
& =\frac{1}{2} \cdot \frac{2}{3}\left[u^{3 / 2}\right]_{7}^{8}=\frac{1}{3}\left(8^{3 / 2}-7^{3 / 2}\right) .
\end{aligned}
$$

Question 6

Recall $f(x)=\left\{\begin{array}{c}x^{5}-5 x^{2}+7, x \geq 0 \\ x^{2}+7, x<0\end{array}\right.$
(a) Observe that

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{5}-5 x^{2}+7=7=\lim _{x \rightarrow 0^{-}} x^{2}+7=\lim _{x \rightarrow 0^{-}} f(x)=f(0) .
$$

Hence, f is continuous at $x=0$ and so is continuous on \mathbf{R} since it is continuous on $(-\infty, 0)$ and on $(0, \infty)$ because $f(x)$ is equal separately to a polynomial function there.
Now

$$
\begin{gather*}
f^{\prime}(x)=\left\{\begin{array}{c}
5 x^{4}-10 x, x>0 \\
2 x, x<0
\end{array}=\left\{\begin{array}{c}
5 x\left(x^{3}-2\right), x>0 \\
2 x, x<0
\end{array}\right.\right. \\
=\left\{\begin{array} { c }
{ 5 x (x - 2 ^ { 1 / 3 }) (x ^ { 2 } + 2 ^ { 1 / 3 } x + 2 ^ { 2 / 3 }) , x > 0 } \\
{ 2 x , x < 0 }
\end{array} \left\{\begin{array}{c}
5 x\left(x-2^{1 / 3}\right)\left(\left(x+\frac{1}{2} 2^{1 / 3}\right)^{2}+\frac{3}{4} 2^{2 / 3}\right), x>0 \\
2 x, x<0
\end{array}\right.\right. \tag{1}
\end{gather*}
$$

Therefore, for $x<0, f^{\prime}(x)=2 x<0$ and so f is decreasing on the interval $(-\infty, 0]$.
From (1), for $0<x<2^{1 / 3}, f^{\text {' }}(x)<0$ and so f is decreasing on [0, $\left.2^{1 / 3}\right]$. Hence f is decreasing on the interval $\left(-\infty, 2^{1 / 3}\right]$. From (1), for $x>2^{1 / 3}, f^{‘}(x)>0$ and so f is increasing on $\left[2^{1 / 3}, \infty\right)$.
(b) $f^{\prime \prime}(x)=\left\{\begin{array}{c}20 x^{3}-10, x>0 \\ 2, x<0\end{array}=\left\{\begin{array}{c}20\left(x^{3}-\frac{1}{2}\right), x>0 \\ 2, x<0\end{array}\right.\right.$

$$
=\left\{\begin{array}{c}
20\left(x-\frac{1}{2^{1 / 3}}\right)\left(x^{2}+\frac{1}{2^{1 / 3}} x+\frac{1}{2^{2 / 3}}\right), x>0 \tag{2}\\
2, x<0
\end{array}\right.
$$

Thus, $f^{\text {' }}(x)<0$ for $0<x<1 / 2^{1 / 3}$. Therefore, the graph of f is concave downward on the interval $\left(0,1 / 2^{1 / 3}\right)$. Also, for $x<0, f^{‘ \prime}(x)=2>0$. Thus, the graph of f is concave upward on the interval ($-\infty, 0$). From (2), for $x>1 / 2^{1 / 3}, f^{\prime \prime}(x)>0$ and so the graph of f is concave upward on the interval $\left(1 / 2^{1 / 3}, \infty\right)$.
(c) By part (a) $f\left(2^{1 / 3}\right)=2^{5 / 3}-5 \cdot 2^{2 / 3}+7=7-3 \cdot 2^{2 / 3}$ is a relative minimum. This is also the absolute minimum. There are no relative maximum values for f.
(d) From part (b), there is a change of concavity before and after $x=0$ and $x=1 / 2^{1 / 3}$.

Now, $f(0)=7$ and $f\left(\frac{1}{2^{1 / 3}}\right)=\frac{1}{2^{5 / 3}}-5 \frac{1}{2^{2 / 3}}+7=\frac{1}{2^{2 / 3}}\left(\frac{1}{2}-5\right)+7=7-\frac{9}{2 \cdot 2^{2 / 3}}$.
Hence, the points of inflection of the graph of f are

$$
(0,7) \text { and }\left(\frac{1}{2^{1 / 3}}, 7-\frac{9}{2 \cdot 2^{2 / 3}}\right) .
$$

(e)

