NATIONAL UNIVERSITY OF SINGAPORE FACULTY OF SCIENCE SEMESTER 1 EXAMINATION 2004 - 2005

 MA1102R CALCULUS

 MA1102R CALCULUS}

November 2004 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO sections: Section A and Section B. It contains a total of SIX questions and comprises FOUR printed pages.
2. Answer ALL questions in Section A. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $\quad f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{c}
-x^{3}+5 x+3, \quad x<-1 \\
x^{2} \sin \left(\frac{\pi}{2 x}\right), \quad-1 \leq x \leq 1 \text { and } x \neq 0 \\
x^{2}-7 x+7, \quad x>1 \\
0, \quad x=0
\end{array} .\right.
$$

(a) Find the range of the function f.
(b) Determine if f is surjective.
(c) Determine all x in \mathbf{R} at which the function f is continuous. Justify your answer.
(d) Determine if f is differentiable at x, when $x=1$ or -1 . Justify your answer.
(e) Evaluate $\int_{-1}^{2} f(x) d x$.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{5 x^{2}+7 x+\sin \left(x^{2}\right)+1}{4 x^{2}+3 x+5}$.
(b) $\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{\sin ^{2}\left(x+x^{2}\right)}$.
(c) $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(\sin \left(x^{2}+x\right)\right)}{x^{2}+3 x}$.
(d) $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{3}\right)\right)^{\left(x^{2}\right)}$.
(e) $\lim _{x \rightarrow 0^{+}}\left(3^{x}+5 x\right)^{(1 / x)}$.

Question 3 [20 marks]
(a) Evaluate $\int \frac{1}{\left(x^{2}+6 x+10\right)\left(x^{2}+6 x+11\right)} d x$.
(b) Compute $\int_{-1}^{1} \cos (5+|x|) d x$.
(c) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{l}
x^{2}+2 x-2, x<1 \\
\frac{1}{x}+\sin (\pi x), x \geq 1
\end{array} .\right.
$$

(d) Evaluate $\int e^{x} \sin (6 x) d x$.
(e) Evaluate $\int x \sec ^{2}\left(\tan \left(x^{2}\right)\right) \sec ^{2}\left(x^{2}\right) d x$.

SECTION B

Answer not more than TWO questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]
(a) Find the critical points of the function g, defined by

$$
g(x)=x^{3}-9 x^{2}+24 x+7
$$

in the open interval $(1,5)$. Determine the absolute maximum and the absolute minimum values of the function in the interval [1, 5].
(b) Differentiate each of the following functions.
(i) $h(x)=\left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)^{\tan (x)}, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(ii) $j(x)=\int_{x^{2}}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.
(iii) $k(x)=\sin ^{-1}\left(\sin ^{2}(x)\right)$.
(c) Suppose f is a continuous function defined on the closed and bounded interval $[0,1]$ such that $f(0)=f(1)$. Prove that there exists a point c in $\left[\frac{1}{7}, 1\right]$ such that $f(c)=f\left(\frac{1}{6}\left(c-\frac{1}{7}\right)\right)$. Hence, or otherwise, deduce that there exists a point c in $\left[\frac{1}{7}, 1\right]$ such that

$$
\cos (2 \pi c)=\cos \left(\frac{c \pi}{3}-\frac{\pi}{21}\right) .
$$

Question 5 [20 marks]

(a) State clearly the Fundamental Theorem of Calculus.

Use it ,or otherwise, to differentiate the function

$$
g(x)=\int_{\ln (x)}^{2 x} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t
$$

(b) Let the function k be defined on \mathbf{R} by

$$
k(x)=\int_{0}^{x}\left(1+\frac{1}{2} \sin \left(\cos \left(t^{2}\right)\right)\right) d t
$$

(i) Without integrating, show that the function k is injective.
(ii) Determine $\left(k^{-1}\right)^{\prime}(0)$.
(c) Find the following limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right)
$$

Question 6 [20 marks]

Let the function f be defined on \mathbf{R} by

$$
f(x)=3 x^{5}-30 x^{2}+1
$$

(a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(b) Find the intervals on which the graph of f is (i) concave upward, and
(ii) concave downward.
(c) Find the relative extrema of f, if any.
(d) Find the points of inflection of the graph of f.
(e) Sketch the graph of f.

END OF PAPER

Answer To MA1102 Calculus

Question 1

The function f is defined by $f(x)=\left\{\begin{array}{cc}-x^{3}+5 x+3, & x<-1 \\ x^{2} \sin \left(\frac{\pi}{2 x}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\ x^{2}-7 x+7, & x>1 \\ 0, & x=0\end{array}\right.$.
(a) For $x<-1, \quad f(x)=-x^{3}+5 x+3=-(x+1)^{3}+3(x+1)^{2}+2(x+1)-1$
(expressing in terms of $(x+1)$)

$$
=-(x+1)^{3}+3\left((x+1)+\frac{1}{3}\right)^{2}-\frac{4}{3} \geq-\frac{4}{3}
$$

Thus, $\lim _{x \rightarrow-\infty} f(x)=+\infty$ since $\lim _{x \rightarrow-\infty}-(x+1)^{3}=+\infty$. Now $f(-1)=-1$. Therefore, by the Intermediate Value Theorem, since $-x^{3}+5 x+3$ is continuous on $(-\infty,-1]$,

$$
[-1, \infty) \subseteq f((-\infty,-1]) \subseteq[-4 / 3, \infty)
$$

Now for $x>1, f(x)=x^{2}-7 x+7=\left(x-\frac{7}{2}\right)^{2}+7-\frac{49}{4}=\left(x-\frac{7}{2}\right)^{2}-\frac{21}{4} \geq-5 \frac{1}{4}$.
Since $f\left(\frac{7}{2}\right)=-5 \frac{1}{4}=-\frac{21}{4}$ and since $\lim _{x \rightarrow \infty} x^{2}-7 x+7=+\infty$, by the Intermediate Value
Theorem, $f((1, \infty))=\left[-5 \frac{1}{4}, \infty\right)$ because f is continuous on the interval [7/2, $\left.\infty\right)$. Thus, since $|f(x)| \leq 1$ for $|x| \leq 1$ and because $[-4 / 3, \infty) \subseteq\left[-5 \frac{1}{4}, \infty\right)$, Range $f=f((-\infty,-1]) \cup f$ $([-1,1]) \cup f((1, \infty))=f((1, \infty))=\left[-5 \frac{1}{4}, \infty\right)$.
(b) By part (a) Range f) $\neq \mathbf{R}=$ codomain of f. Therefore, f is not surjective.
(c) When $x<-1, f(x)=-x^{3}+5 x+3$, is a polynomial function and so f is continuous on $(-\infty,-1)$, since any polynomial function is continuous on \mathbf{R} and therefore continuous on any open interval. When $-1<x<0, f(x)=x^{2} \sin \left(\frac{\pi}{2 x}\right)$. Since sine is a continuous function and the function $\frac{\pi}{2 x}$ is a continuous function on $x \neq 0, \sin \left(\frac{\pi}{2 x}\right)$ on $(-1,0)$ being the composite of these two continuous functions is therefore continuous on $(-1,0)$.
Therefore, as x^{2} is continuous on $(-1,0), f$ being the product of two continuous functions on $(-1,0)$ is continuous on $(-1,0)$. Similarly, f is continuous on the interval $(0,1) . f$ is continuous on $(1, \infty)$ since $f(x)=x^{2}-7 x+7$, a polynomial function. Thus we can conclude that f is continuous at x for $x \neq-1,0,1$. Thus it remains to check if f is continuous at $x=-1,0$ or 1 .

Consider the left limit at $x=-1$,

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}-x^{3}+5 x+3=-1 \text { and the right limit at } x=-1 \\
& \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=\sin \left(-\frac{\pi}{2}\right)=-1 .
\end{aligned}
$$

Thus, since $\lim _{x \rightarrow-1} f(x)=-1$, and $f(-1)=-1$ it follows that f is continuous at $x=-1$.
Now consider the left limit of f at $x=1$,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{2} \sin \left(\frac{\pi}{2 x}\right)=1 \text { and the right limit at } x=1 \text {, }
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2}-7 x+7=1=f(1) .
$$

Therefore, $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
Now $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{\pi}{2 x}\right)=0$ by the Squeeze Theorem since
$-|x|^{2} \leq x^{2} \sin \left(\frac{\pi}{2 x}\right) \leq|x|^{2}$ for $x \neq 0$ and $\lim _{x \rightarrow 0}|x|^{2}=0$. Since $f(0)=0$, we conclude that f is also continuous at $x=0$. Therefore f is continuous at x for any x in \mathbf{R}.
(d) To check the differentiability of f at $x=1$ consider the following limits.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{x^{2}-7 x+7-1}{x-1}=\lim _{x \rightarrow 1^{+}}(2 x-7)=-5 \\
& \lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{x^{2} \sin \left(\frac{\pi}{2 x}\right)-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{2 x \sin \left(\frac{\pi}{2 x}\right)-x^{2} \cos \left(\frac{\pi}{2 x}\right) \cdot\left(\frac{\pi}{2 x^{2}}\right)}{1}=2
\end{aligned}
$$

by L' Hôpital’s Rule.

Therefore, f is not differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \neq \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$.
$\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{-}} \frac{-x^{3}+5 x+3+1}{x+1}=\lim _{x \rightarrow-1^{-}}\left(-3 x^{2}+5\right)=2$
$\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{x^{2} \sin \left(\frac{\pi}{2 x}\right)+1}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{2 x \sin \left(\frac{\pi}{2 x}\right)-x^{2} \cos \left(\frac{\pi}{2 x}\right) \cdot\left(\frac{\pi}{2 x^{2}}\right)}{1}=2$

by L’ Hôpital’s Rule.

Therefore, f is differentiable at $x=-1$ since $\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x+1}=\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x+1}$ and $f^{\prime}(-1)=2$.
(e) $\quad f$ is Riemann integrable on $[-1,2]$ since the restriction of f is continuous on $[-1,2]$. Note that f is an odd function on $[-1,1]$, i.e. $f(-x)=-f(x)$ for all x in $[-1,1]$ because $f(-x)=x^{2} \sin (\pi /(-2 x))=-x^{2} \sin (\pi /(2 x))=-f(x)$ for $x \neq 0$ and for $x=0$, obviously $f(-0)=f(0)=0=-0=-f(0)$.
$\int_{-1}^{0} f(x) d x=\int_{-1}^{0}-f(x) \frac{d u}{d x} d x$ where $u=-x$ so that $\frac{d u}{d x}=-1$
$=-\int_{1}^{0} f(-u) d u$ by the Change of Variable formula,
$=\int_{1}^{0} f(u) d u \quad$ since f is an odd function,
$=-\int_{0}^{1} f(u) d u=-\int_{0}^{1} f(x) d x$ by renaming the variable.
Therefore, $\int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x=-\int_{0}^{1} f(x) d x+\int_{0}^{1} f(x) d x=0$.
Thus, $\int_{-1}^{2} f(x) d x=\int_{-1}^{1} f(x) d x+\int_{1}^{2} f(x) d x=\int_{1}^{2}\left(x^{2}-7 x+7\right) d x=\left[\frac{x^{3}}{3}-\frac{7 x^{2}}{2}+7 x\right]_{1}^{2}=-\frac{7}{6}$

Question 2

(a) $\lim _{x \rightarrow+\infty} \frac{5 x^{2}+7 x+\sin \left(x^{2}\right)+1}{4 x^{2}+3 x+5}=\lim _{x \rightarrow+\infty} \frac{5+\frac{7}{x}+\frac{1}{x^{2}} \sin \left(x^{2}\right)+\frac{1}{x^{2}}}{4+\frac{3}{x}+\frac{5}{x^{2}}}=\frac{5}{4}$.

This is because $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0$ and $\lim _{x \rightarrow+\infty} \frac{\sin \left(x^{2}\right)}{x^{2}}=0$ by the Squeeze Theorem since $-\left|\frac{1}{x^{2}}\right| \leq \frac{\sin \left(x^{2}\right)}{x^{2}} \leq\left|\frac{1}{x^{2}}\right|$ for $x<0$ and $\lim _{x \rightarrow+\infty}\left|\frac{1}{x^{2}}\right|=0$.
(b) $\lim _{x \rightarrow 0} \frac{1-\cos (7 x)}{\sin ^{2}\left(x+x^{2}\right)}=\lim _{x \rightarrow 0} \frac{7 \sin (7 x)}{(1+2 x) \sin \left(2 x+2 x^{2}\right)} \quad$ by L' Hôpital's Rule
$=\lim _{x \rightarrow 0} \frac{49 \cos (7 x)}{2 \sin \left(2 x+2 x^{2}\right)+2(1+2 x)^{2} \cos \left(2 x+2 x^{2}\right)} \quad$ by L' Hôpital's Rule
$=\frac{49}{2}$
(c) $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(\sin \left(x^{2}+x\right)\right)}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(\sin \left(x^{2}+x\right)\right)}{\sin \left(x^{2}+x\right)} \frac{\sin \left(x^{2}+x\right)}{x^{2}+x} \frac{x+1}{x+3}=1 \cdot 1 \cdot \frac{1}{3}=\frac{1}{3}$
since $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(\sin \left(x^{2}+x\right)\right)}{\sin \left(x^{2}+x\right)}=\lim _{x \rightarrow 0^{+}} \frac{\sin \left(x^{2}+x\right)}{x^{2}+x}=1$,
Or $\lim _{x \rightarrow 0^{+}} \frac{\sin \left(\sin \left(x^{2}+x\right)\right)}{x^{2}+3 x}=\lim _{x \rightarrow 0^{+}} \frac{\cos \left(\sin \left(x^{2}+x\right)\right) \cos \left(x^{2}+x\right)(2 x+1)}{2 x+3}$ by L' Hôpital's Rule

$$
=\frac{\cos (0) \cos (0) \cdot 1}{3}=\frac{1}{3} .
$$

(d) Let $y=\left(\sin \left(x^{3}\right)\right)^{\left(x^{2}\right)}$. Then $\ln (y)=x^{2} \ln \left(\sin \left(x^{3}\right)\right)$.

Now,

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \ln (y) & =\lim _{x \rightarrow 0^{+}} \frac{\ln \left(\sin \left(x^{3}\right)\right)}{1 / x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{3 x^{2} \cos \left(x^{3}\right)}{\sin \left(x^{3}\right)}}{-2 / x^{3}} \quad \text { by L' Hôpital's Rule, } \\
& =-\frac{3}{2} \lim _{x \rightarrow 0^{+}} \frac{x^{3}}{\sin \left(x^{3}\right)} x^{2}=-\frac{3}{2} \cdot 1 \cdot 0=0 \text { since } \lim _{x \rightarrow 0^{+}} \frac{x^{3}}{\sin \left(x^{3}\right)}=1
\end{aligned}
$$

OR by L' Hôpital's Rule,

$$
=-\frac{3}{2} \lim _{x \rightarrow 0^{+}} \frac{5 x^{4}}{3 x^{2} \cos \left(x^{3}\right)}=-\frac{5}{2} \lim _{x \rightarrow 0^{+}} \frac{x^{2}}{\cos \left(x^{3}\right)}=-\frac{5}{2} \cdot \frac{0}{1}=0
$$

Therefore, $\lim _{x \rightarrow 0^{+}} y=e_{x \rightarrow 0^{+}}^{\lim ^{\ln (y)}}=e^{0}=1$.
(e) $\lim _{x \rightarrow 0^{+}}\left(3^{x}+5 x\right)^{(1 / x)}$. Let $y=\left(3^{x}+5 x\right)^{(1 / x)}$.

Since $\lim _{x \rightarrow 0^{+}} \ln (y)=\lim _{x \rightarrow 0^{+}} \frac{1}{x} \ln \left(3^{x}+5 x\right)=\lim _{x \rightarrow 0^{+}} \frac{\frac{\ln (3) 3^{x}+5}{3 x+5 x}}{1}=\lim _{x \rightarrow 0^{+}} \frac{\ln (3) 3^{x}+5}{3^{x}+5 x}=\ln (3)+5$
by L' Hôpital's Rule,
Therefore, $\lim _{x \rightarrow \infty} y=e^{\lim _{x \rightarrow \infty} \ln (y)}=e^{\ln (3)+5}=3 e^{5}$.

Question 3

(a) $\int \frac{1}{\left(x^{2}+6 x+10\right)\left(x^{2}+6 x+11\right)} d x=\int \frac{1}{\left((x+3)^{2}+1\right)\left((x+3)^{2}+2\right)} d x$

$$
\begin{aligned}
& =\int \frac{1}{\left((x+3)^{2}+1\right)} d x-\int \frac{1}{\left((x+3)^{2}+2\right)} d x \\
& =\tan ^{-1}(x+3)-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x+3}{\sqrt{2}}\right)+C
\end{aligned}
$$

(b) $\int_{-1}^{1} \cos (5+|x|) d x=\int_{0}^{1} \cos (5+x) d x+\int_{-1}^{0} \cos (5-x) d x$

$$
=[\sin (5+x)]_{0}^{1}+[-\sin (5-x)]_{-1}^{0}=2(\sin (6)-\sin (5))
$$

OR use the fact that $\cos (5+|x|)$ is an even function,

$$
\int_{-1}^{1} \cos (5+|x|) d x=2 \int_{0}^{1} \cos (5+x) d x=2[\sin (5+x)]_{0}^{1}=2(\sin (6)-\sin (5))
$$

(c) $g(x)=\left\{\begin{array}{l}x^{2}+2 x-2, x<1 \\ \frac{1}{x}+\sin (\pi x), x \geq 1\end{array}\right.$.

First note that g is continuous on the interval $(-\infty, 1)$ since it is a polynomial function there and polynomial functions are continuous. Note also that g is continuous on $(1, \infty)$ since $\sin (\pi x)$ is a continuous function because the sine function is continuous and that $1 / \mathrm{x}$ is continuous on $(1, \infty)$. Now the left limit at $x=1$ is $\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}} x^{2}+2 x-2=1$ and the right limit at $x=1, \lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x}+\sin (\pi x)=1+0=1=g(1)$. Therefore, $\lim _{x \rightarrow 1} g(x)=g(1)$. Thus g is continuous at $x=1$. Therefore, g is continuous on \mathbf{R} and we can use the Fundamental Theorem of Calculus to obtain an antiderivative $G(x)$ given by the following Riemann integral for each x in \mathbf{R}.

$$
\begin{aligned}
& G(x)=\int_{1}^{x} g(t) d t=\left\{\begin{array}{c}
\int_{1}^{x} g(t) d t, x<1 \\
\int_{1}^{x} g(t) d t, x \geq 1
\end{array}=\left\{\begin{array}{c}
\int_{1}^{x}\left(t^{2}+2 t-2\right) d t, x<1 \\
\int_{1}^{x}\left(\frac{1}{t}+\sin (\pi t)\right) d t, x \geq 1
\end{array}\right.\right. \\
& \quad=\left\{\begin{array}{c}
\left.\left[\frac{1}{3} t^{3}+t^{2}-2 t\right)\right]_{1}^{x}, x<1 \\
\ln (x)+\left[-\frac{1}{\pi} \cos (\pi t)\right]_{1}^{x}, x \geq 1
\end{array}=\left\{\begin{array}{c}
\frac{1}{3} x^{3}+x^{2}-2 x+\frac{2}{3}, x<1 \\
\ln (x)-\frac{1}{\pi} \cos (\pi x)-\frac{1}{\pi}, x \geq 1
\end{array}\right.\right.
\end{aligned}
$$

Thus, any antiderivative is given by $G(x)+C$ for any constant C.
(d) Evaluate $\int e^{x} \sin (6 x) d x$.

$$
\begin{aligned}
& \int e^{x} \sin (6 x) d x=e^{x} \sin (6 x)-\int e^{x} \cdot 6 \cos (6 x) d x \text { by integration by parts } \\
& =e^{x} \sin (6 x)-6\left[e^{x} \cos (6 x)-\int e^{x}(-6 \sin (6 x)) d x\right] \text { by integration by parts } \\
& \left.=e^{x}(\sin (6 x)-6 \cos (6 x))-36 \int e^{x} \sin (6 x)\right) d x .
\end{aligned}
$$

Therefore, $\int e^{x} \sin (6 x) d x=\frac{e^{x}}{37}(\sin (6 x)-6 \cos (6 x))+C$.
(e) $\int x \sec ^{2}\left(\tan \left(x^{2}\right)\right) \sec ^{2}\left(x^{2}\right) d x=\int \frac{1}{2} \sec ^{2}\left(\tan \left(x^{2}\right)\right) \frac{d u}{d x} d x$, where $u=\tan \left(x^{2}\right)$
$=\int \frac{1}{2} \sec ^{2}(u) d u=\frac{1}{2} \tan (u)+C=\frac{1}{2} \tan \left(\tan \left(x^{2}\right)\right)+C$ by substitution or change of variable.

Question 4.

(a) Recall $g(x)=x^{3}-9 x^{2}+24 x+7$

Thus, $g^{\prime}(x)=3 x^{2}-18 x+24=3\left(x^{2}-6 x+8\right)=3(x-2)(x-4)$. Therefore, $g^{\prime}(x)=0$ if and only if $x=2$ or 4 . Hence g has two stationary points in (1,5), namely 2 and 4 . Since g is differentiable, the critical points of g in $(1,5)$ are 2 and 4 . Since g is continuous on the closed and bounded interval $[1,5]$ and so by the Extreme Value Theorem g has absolute extrema on the interval $[1,5]$ and they are given respectively by the maximum and minimum of the values of the critical points and the end points under g. Now $g(1)=23, g(2)=27, g(4)=23, g(5)=27$. Therefore, the absolute maximum of g on $[1,5]$ is 27 and the absolute minimum of g on $[1,5]$ is 23 .
(b) (i) $h(x)=\left(2+\cos \left(\sin \left(x^{2}\right)\right)^{\tan (x)}\right.$.

Taking logarithm on both sides we get $\ln (h(x))=\tan (x) \ln \left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)$.
Differentiating both sides we get,

$$
\begin{aligned}
\frac{h^{\prime}(x)}{h(x)} & =\sec ^{2}(x) \ln \left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)+\tan (x) \frac{-2 x \sin \left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)}{2+\cos \left(\sin \left(x^{2}\right)\right)} \\
& =\sec ^{2}(x) \ln \left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)-2 \frac{x \tan (x) \sin \left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)}{2+\cos \left(\sin \left(x^{2}\right)\right)}
\end{aligned}
$$

Therefore, $h^{\prime}(x)=$

$$
\left[\sec ^{2}(x) \ln \left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)-2 \frac{x \tan (x) \sin \left(\sin \left(x^{2}\right)\right) \cos \left(x^{2}\right)}{2+\cos \left(\sin \left(x^{2}\right)\right)}\right]\left(2+\cos \left(\sin \left(x^{2}\right)\right)\right)^{\tan (x)}
$$

(ii) $j(x)=\int_{x^{2}}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.

Therefore, $\quad j(x)=\int_{0}^{\ln \left(1+x^{2}\right)} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t-\int_{0}^{x^{2}} \frac{t}{1+t^{2}+\cos \left(t^{2}\right)} d t$.
Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$
j^{\prime}(x)=\frac{2 x \ln \left(1+x^{2}\right)}{\left(1+\left(\ln \left(1+x^{2}\right)\right)^{2}+\cos \left(\left(\ln \left(1+x^{2}\right)\right)^{2}\right)\right)\left(1+x^{2}\right)}-\frac{2 x^{3}}{1+x^{4}+\cos \left(x^{4}\right)}
$$

(iii) $k(x)=\sin ^{-1}\left(\sin ^{2}(x)\right)$. Thus by the Chain Rule

$$
k^{\prime}(x)=\frac{1}{\sqrt{1-\sin ^{4}(x)}} \sin (2 x)=\frac{\sin (2 x)}{\sqrt{1-\sin ^{4}(x)}} .
$$

(c) For x in $[1 / 7,1]$ define $g(x)=f(x)-f\left(\frac{1}{6}\left(x-\frac{1}{7}\right)\right)$. Since f is defined on [0, 1$]$, g is well defined and since f is continuous on $[0,1], \mathrm{g}(x)$ is continuous on $[1 / 7,1]$.
Now $g(1 / 7)=f(1 / 7)-f(0)$ and $g(1)=f(1)-f(1 / 7)=f(0)-f(1 / 7)$ because $f(1)=$ $f(0)$. Hence $g(1)=-g(1 / 7)$. Thus 0 lies between $g(1)$ and $g(1 / 7)$. Therefore, by the Intermediate Value Theorem, there exists a point c in $[1 / 7,1]$ such that $\mathrm{g}(c)=0$, i.e., $f(c)-f\left(\frac{1}{6}\left(c-\frac{1}{7}\right)\right)$.
Thus, taking $f(x)$ to be $\cos (2 \pi x)$. We have that there exists a point c in $[1 / 7,1]$ such that $\cos (2 \pi c)=\cos \left(\frac{c \pi}{3}-\frac{\pi}{21}\right)$

Question 5.

(a) Fundamental Theorem of Calculus. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a continuous function. Then (i) the function $F:[a, b] \rightarrow \mathbf{R}$ defined by $F(x)=\int_{a}^{x} f(t) d t$ is differentiable on [a, b] satisfying $F^{\prime}(x)=f(x)$ for every x in $[a, b]$ and (ii) for any antiderivative G of f the Riemann integral $\int_{a}^{b} f(t) d t=G(b)-G(a)$.

$$
\begin{aligned}
g(x) & =\int_{\ln (x)}^{2 x} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t=\int_{0}^{2 x} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t+\int_{\ln (x)}^{0} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t \\
& =\int_{0}^{2 x} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t-\int_{0}^{\ln (x)} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t . \\
& =F(2 x)-F(\ln (x)) \text { where } F(x)=\int_{0}^{x} \frac{t}{1+\cos ^{2}(t)+e^{2 t}} d t .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
g^{\prime}(x) & =F^{\prime}(2 x) \cdot 2-F^{\prime}(\ln (x)) \cdot\left(\frac{1}{x}\right) \text { by the Chain Rule } \\
& =\frac{4 x}{1+\cos ^{2}(2 x)+e^{4 x}}-\frac{\ln (x)}{x\left(1+\cos ^{2}(\ln (x))+e^{2 \ln (x)}\right)} \text { by the FTC. }
\end{aligned}
$$

$$
=\frac{4 x}{1+\cos ^{2}(2 x)+e^{4 x}}-\frac{\ln (x)}{x\left(1+\cos ^{2}(\ln (x))+x^{2}\right)}
$$

(b) Now $k(x)=\int_{0}^{x}\left(1+\frac{1}{2} \sin \left(\cos \left(t^{2}\right)\right)\right) d t$.
(i) Thus by the Fundamental Theorem of Calculus and the Chain Rule, $k^{\prime}(x)=1+\frac{1}{2} \sin \left(\cos \left(x^{2}\right)\right) \geq \frac{1}{2}>0$ for any x. Therefore, k is (strictly) increasing on \mathbf{R} and hence k is injective.
(ii) Note that $k(0)=0$ and so $k^{-1}(0)=0$. Thus,

$$
\begin{gathered}
\text { since } k^{\prime}(0)=1+\frac{1}{2} \sin (\cos (0))=1+\frac{1}{2} \sin (1)=\frac{2+\sin (1)}{2} \\
\qquad\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(0)}=\frac{2}{2+\sin (1)}
\end{gathered}
$$

(c) Try to write the following as a Riemann sum

$$
\sum_{i=1}^{n} \frac{i}{n^{2}} \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x,
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$.
Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing,

$$
f\left(x_{i}\right) \Delta x \text { with } \frac{i}{n^{2}} \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right)=\frac{i}{n} \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right) \cdot \frac{1}{n}
$$

we would want $f\left(x_{i}\right)=f\left(\frac{i}{n}\right)=\frac{i}{n} \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right)$. Thus $f(x)=x \cos \left(1+2 x^{2}\right)$.
Therefore $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \cos \left(1+2\left(\frac{i}{n}\right)^{2}\right)=\int_{0}^{1} x \cos \left(1+2 x^{2}\right) d x=\frac{1}{4}\left[\sin \left(1+2 x^{2}\right)\right]_{0}^{1}$

$$
=\frac{1}{4}(\sin (3)-\sin (1)) .
$$

Question 6

Recall $f(x)=3 x^{5}-30 x^{2}+1$. Note that f is continuous and differentiable on \mathbf{R}.
$f^{\prime}(x)=15 x^{4}-60 x=15 x\left(x^{3}-4\right)=15 x\left(x-4{ }^{(1 / 3)}\right)\left(x^{2}+4^{(1 / 3)} x+4^{(2 / 3)}\right)$.
Now we know that the cubic $g(x)=x^{3}-4=0$ has a real root. (We have used the identity $\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$ to obtain the above factorisation.) Notice that $\left.x^{2}+4^{(1 / 3)} x+4^{(2 / 3)}=\left(x+4^{(1 / 3)} / 2\right)^{2}+4^{(2 / 3)}-\frac{1}{4} 4^{(2 / 3)}\right)>0$.
Therefore, $\quad f^{\prime}(x)=15 x\left(x-4^{(1 / 3)}\right)\left(\left(x+4^{(1 / 3)} / 2\right)^{2}+\frac{3}{4} 4^{(2 / 3)}\right)$
$f^{\prime \prime}(x)=60 x^{3}-60=60\left(x^{3}-1\right)=60(x-1)\left(x^{2}+x+1\right)=60(x-1)\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)$
So f " is given by a cubic polynomial function. Again we know it must have a real root. The root is easily obtained by the above factorisation.
(a) From (1), $f^{\prime}(x)=0$ if and only if $x=0$ and $x=4{ }^{(1 / 3)}$. From (1) the sign of $f^{\prime}(x)$ is the same as the sign of $x\left(x-4^{(1 / 3)}\right)$ because $\left(x+4^{(1 / 3)} / 2\right)^{2}+\frac{3}{4} 4^{(2 / 3)}>0$. Thus we have: $x<0 \Rightarrow x<4^{(1 / 3)} \Rightarrow x-4^{(1 / 3)}<0 \Rightarrow x\left(x-4^{(1 / 3)}\right)>0 \Rightarrow f^{\prime}(x)>0$ so that f is increasing on $(-\infty, 0]$. Now $0<x<4^{(1 / 3)} \Rightarrow x-4^{(1 / 3)}<0 \Rightarrow x\left(x-4^{(1 / 3)}\right)<0 \Rightarrow f^{\prime}(x)<0$ so that f is decreasing on $\left[0,4{ }^{(13)}\right]$ and $x>4{ }^{(1 / 3)} \Rightarrow x\left(x-4{ }^{(1 / 3)}\right)>0 \Rightarrow f^{\prime}(x)>0$ so that f is increasing on $\left[4^{(1 / 3)}, \infty\right)$. Note that the end points of these intervals are included by virtue of continuity there.
(b) From (2), $f^{\prime \prime}(x)=0 \Leftrightarrow x=1$ and that the sign of $f^{\text {' ' }}(x)$ is the same as that of $x-1$. Now $x<1 \Rightarrow x-1<0 \Rightarrow f^{\prime \prime}(x)<0$. Therefore, the graph of f is concave downward on the interval $(-\infty, 1)$. Likewise from (2), $x>1 \Rightarrow x-1>0$ so that $f^{\prime \prime}(x)>0$ when $x>1$. Thus the graph of f is concave upward on $(1, \infty)$.
(c) From part (a), by the first derivative test, $f(0)=1$ is a relative maximum and $f\left(4^{(1 / 3)}\right)=1-36 * 2{ }^{(1 / 3)}$ is a relative minimum.
(d) From part b , since at $x=1$, there is a change of concavity before and after $x=1$, $(1, f(1))=(1,-26)$ is a point of inflection of the graph of f. There are no other points of inflection.
(e)

