NATIONAL UNIVERSITY OF SINGAPORE
 FACULTY OF SCIENCE
 SEMESTER 1 EXAMINATION 2002 - 2003
 MA1102R CALCULUS

November 2002 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO sections: Section A and Section B. It contains a total of SIX questions and comprises FOUR printed pages.
2. Answer ALL questions in Section A The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]
Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{rc}
x^{3}+1, & x<-1 \\
\sin \left(\frac{\pi}{2 x}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\
2 x^{2}-1, & x>1 \\
0, & x=0
\end{array}\right.
$$

(a) Find the range of the function f.
(b) Determine if f is surjective.
(c) Determine all x in \mathbf{R} at which the function f is continuous. Justify your answer.
(d) Is f differentiable at $x=1$? Justify your answer.
(e) Evaluate $\int_{-1}^{1} f(x) d x$.

Question 2 [20 marks]
Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{7 x^{3}+x \sin \left(x^{3}\right)+1}{2 x^{2}-21 x^{3}+3}$.
(b) $\lim _{x \rightarrow+\infty}\left(\cos \left(\frac{\pi}{x}\right)\right)^{x}$.
(c) $\lim _{x \rightarrow 0} \frac{\sin (\sin (x))}{x^{2}+2 x}$.
(d) $\lim _{x \rightarrow+\infty} \sqrt{2+x+x^{2}}-\sqrt{2-x+x^{2}}$.
(e) $\lim _{x \rightarrow 0} \frac{5 \sin ^{-1}(x)}{2 x}$.

Question 3 [20 marks]
(a) Evaluate $\int \frac{2 e^{2 x}-\sin (2 x)}{e^{2 x}+\cos ^{2}(x)+1} d x$.
(b) Compute $\int_{0}^{3}(|x-1|+|x-2|) d x$.
(c) Compute $\int_{1}^{2}(\ln (5 x))^{2} d x$.
(d) Evaluate $\int \cos (\tan (x)) \sec ^{2}(x) d x$.
(e) Evaluate $\int \sqrt{x} e^{\sqrt{x}} d x$.

SECTION B

Answer not more than TWO (2) questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) State, but do not prove, the Mean Value Theorem.
(b) Prove that $\cot \left(\frac{\pi}{5}\right)-1=\frac{\pi}{20} \csc ^{2}(c)$ for some c in $\left(\frac{\pi}{5}, \frac{\pi}{4}\right)$.
(c) Suppose f is a differentiable function defined on \mathbf{R} such that

1. $f(0)=0$ and
2. $f^{\prime}(x)=\frac{x^{2}}{1+2 x^{2}}$ for all x in \mathbf{R}.
(i) Show that if $x>0$, then there exists c in the interval $(0, x)$ such that

$$
\frac{f(x)}{x}=\frac{c^{2}}{1+2 c^{2}} .
$$

(ii) Deduce that $0<f(x)<x$ for $x>0$ and $0>f(x)>x$ for $x<0$.
(d) Show that the equation

$$
x^{5}+\frac{9}{1+\sin ^{2}(x)}=3
$$

has at least one real root.

Question 5 [20 marks]

(a) Differentiate the following functions.
(i) $h(x)=\left(\ln \left(1+x^{2}\right)+1\right)^{\sin (x)}$.
(ii) $j(x)=\int_{x}^{x^{2}} \frac{1}{1+2 t^{2}+\sin \left(t^{2}\right)} d t$.
(b) Let the function k be defined on \mathbf{R} by

$$
k(x)=\int_{1}^{x^{3}} e^{-t^{2}} d t
$$

(i) Without integrating, show that the function k is injective.
(ii) Determine $\left(k^{-1}\right)^{\prime}(0)$.
(c) Suppose that the function g defined on \mathbf{R} satisfies

1. $\mathrm{g}(x+y)=\mathrm{g}(x) \mathrm{g}(y)$ for all x and y in \mathbf{R},
2. $\mathrm{g}(0)=1$ and that
3. g is differentiable at $x=0$ and $\mathrm{g}^{\prime}(0)=1$.

By considering the limit of the difference quotient

$$
\frac{g(x+h)-g(x)}{h}
$$

show that g is differentiable at x for all x and that $\mathrm{g}^{\prime}(x)=\mathrm{g}(x)$.
Question 6 [20 marks]
Let the function f be defined on \mathbf{R} by

$$
f(x)=\frac{1+x-x^{2}}{(x-1)^{2}} .
$$

(a) Show that if $x \neq 1$, then

$$
f^{\prime}(x)=\frac{x-3}{(x-1)^{3}} \text { and } f^{\prime \prime}(x)=\frac{2(4-x)}{(x-1)^{4}} .
$$

(b) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(c) Find the intervals on which the graph of f is (i) concave upward, and
(ii) concave downward.
(d) Find the relative extrema of f, if any.
(e) Find the absolute extrema of f, if any.
(f) Find the points of inflection of the graph of f.
(g) Find the horizontal and vertical asymptotes of the graph of f and
sketch the graph of f.

END OF PAPER

Question 1

The function f is defined by $f(x)=\left\{\begin{array}{rcc}x^{3}+1, & x<-1 \\ \sin \left(\frac{\pi}{2 x}\right), & -1 \leq x \leq 1 \text { and } x \neq 0 \\ 2 x^{2}-1, & x>1 \\ 0, & x=0\end{array}\right.$
(a) For $x<-1, f(x)=x^{3}+1<0$. Also, for $x<-1, x^{3}+1<0 \Leftrightarrow x<-1$

Thus f maps $(-\infty,-1)$ onto $(-\infty, 0)$. (Because for any $y<0$, we can take $x=\sqrt[3]{y-1}(<-1)$ so that $f(x)=y)$ For $-1 \leq x \leq 1$ and $x \neq 0,|f(x)|=\left|\sin \left(\frac{\pi}{2 x}\right)\right| \leq 1$.
Now since $1 / 2 \leq x \leq 1$ if and only if $\frac{\pi}{2} \leq \frac{\pi}{2 x} \leq \pi$, the image of $[1 / 2,1]$ under f is the image of $[\pi / 2, \pi]$ under the sine function and so $f([1 / 2,1])=[0,1]$. Similarly the image of $[-1$, $-1 / 2]$ under f is the image of $[-\pi,-\pi / 2]$ under the sine function and so $f([-1,-1 / 2])=[-1$, $0]$. This is because $-1 \leq x \leq-1 / 2$ if and only if $-\pi \leq \frac{\pi}{2 x} \leq-\frac{\pi}{2}$. Thus, with $f(0)=0$, we conclude that $f([-1,1])=[-1,1]$.
Another easier way to show this is as follows. For $-1 \leq x \leq 1$, we observe as above that -1 $\leq f(x) \leq 1$. This means the image of $[-1,1]$ under f is contained in $[-1,1]$.
Next observe that $f(1 / 3)=\sin (3 \pi / 2)=-1$ and $f(1)=\sin (\pi / 2)=1$. Note that f on the interval $[1 / 3,1]$ is given by $\sin (\pi /(2 x))$ and so is continuous on $[1 / 3,1]$ because of the fact that the function $\pi /(2 x)$ is continuous on $[1 / 3,1]$ and sine is a continuous function implying that the composite $\sin (\pi /(2 x))$ is continuous on $[1 / 3,1]$. Therefore, by the Intermediate Value Theorem any y with $-1=f(1 / 3) \leq y \leq 1=f(1)$ is in the image of $[1 / 3,1]$ under f. This means $f([-1,1])$ contains $[-1,1]$. Therefore, $f([-1,1])=[-1,1]$.
Now for $x>1, f(x)=2 x^{2}-1>1$. Also for any $y>1$, we can take $x=\sqrt{\frac{y+1}{2}}>1$ such that $f(x)=y$. Therefore, f maps $(1, \infty)$ onto $(1, \infty)$. Hence the range of f is $f((-\infty$, $-1)) \cup f([-1,1]) \cup f((1, \infty))=(-\infty, 0) \cup[-1,1] \cup(1, \infty)=(-\infty, \infty)=\mathbf{R}$.
(b) By part (a) Range $(f)=\mathbf{R}=$ codomain of f. Therefore, f is surjective.
(c) When $x<-1, f(x)=x^{3}+1$, is a polynomial function and so f is continuous on $(-\infty,-1)$, since any polynomial function is continuous on \mathbf{R} and so is continuous on any open interval. When $-1<x<0, f(x)=\sin \left(\frac{\pi}{2 x}\right)$ and since sine is a continuous function and the function $\frac{\pi}{2 x}$ is a continuous function on $x>0, f$ on $(-1,0)$ being the composite of these two continuous functions is therefore continuous on $(-1,0)$. Similarly, f is continuous on the interval $(0,1) . f$ is continuous on $(1, \infty)$ since $f(x)=2 x^{2}-1$, a polynomial function. Thus we can conclude that f is continuous at x for $x \neq-1,0,1$. Thus it remains to check if f is continuous at $x=-1,0$ or 1 .
Consider the left limit at $x=-1$,
$\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1^{-}} x^{3}+1=0$ and the right limit at $x=-1$
$\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \sin \left(\frac{\pi}{2 x}\right)=-1$.

Thus, since $\lim _{x \rightarrow-1^{-}} f(x) \neq \lim _{x \rightarrow-1^{+}} f(x), \lim _{x \rightarrow-1} f(x)$ does not exist. It follows that f is not continuous at $x=-1$. Now consider the left limit of f at $x=1$,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sin \left(\frac{\pi}{2 x}\right)=1 \text { and the right limit at } x=1
$$

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2 x^{2}-1=1=f(1)
$$

Therefore, $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
Now we claim that the limit of f at $x=0$ cannot be equal to $f(0)=0$. We shall show that we can find a $\varepsilon>0$ such that for any $\delta>0$, we can find a x_{δ} such that $\left|x_{\delta}-0\right|<\delta$ but $\mid f\left(x_{\delta}\right)$ $-f(0)\left|=\left|f\left(x_{\delta}\right)\right| \geq \varepsilon\right.$. We shall take $\varepsilon=1$. For any $\delta>0$, since $\lim _{N \rightarrow \infty} \frac{1}{2 N+1}=0$, threr exists a positive integer $N>1$ such that $\frac{1}{2 N+1}<\delta$. So we take $0<x_{\delta}=\frac{1}{2 N+1}<\delta$
Then $\left|f\left(x_{\delta}\right)-f(0)\right|=\left|f\left(x_{\delta}\right)\right|=\left|\sin \left((2 N+1) \frac{\pi}{2}\right)\right|=1 \geq \varepsilon$. Thus f is not continuous at x $=0$. Therefore, f is continuous at x for all x except for $x=-1$ or 0 .
(d) To check the differentiability of f at $x=1$ consider the following limits.
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}-1-1}{x-1}=\lim _{x \rightarrow 1^{+}} 2(x+1)=4$
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{\sin \left(\frac{\pi}{2 x}\right)-1}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{\cos \left(\frac{\pi}{2 x}\right) \cdot\left(-\frac{\pi}{2 x^{2}}\right)}{1}=0$ by L' Hôpital's Rule.

Therefore, f is not differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} \neq \lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$.
(e) $\quad f$ is Riemann integrable on $[-1,1]$ since the restriction of f is continuous on $[-1,1]$ except for $x=0$. Note that f is an odd function on $[-1,1]$, i.e. $f(-x)=-f(x)$ for all x in $[-1$, 1] because $f(-x)=\sin (\pi /(-2 x))=-\sin (\pi /(2 x))=-f(x)$ for $x \neq 0$ and for $\mathrm{x}=0$, obviously $f(-0)=f(0)=0=-0=-f(0)$.
$\int_{-1}^{0} f(x) d x=\int_{-1}^{0}-f(x) \frac{d u}{d x} d x$ where $u=-x$ so that $\frac{d u}{d x}=-1$
$=-\int_{0}^{0} f(-u) d u$ by the Change of Variable formula,
$=\int_{1}^{0} f(u) d u \quad$ since f is an odd function,
$=-\int_{0}^{1} f(u) d u=-\int_{0}^{1} f(x) d x$ by renaming the variable.
Therefore, $\int_{-1}^{1} f(x) d x=\int_{-1}^{0} f(x) d x+\int_{0}^{1} f(x) d x=-\int_{0}^{1} f(x) d x+\int_{0}^{1} f(x) d x=0$

Question 2

(a) $\lim _{x \rightarrow+\infty} \frac{7 x^{3}+x \sin \left(x^{3}\right)+1}{2 x^{2}-21 x^{3}+3}=\lim _{x \rightarrow+\infty} \frac{7+\frac{1}{x^{2}} \sin \left(x^{3}\right)+\frac{1}{x^{3}}}{\frac{2}{2}-21+\frac{3}{x^{3}}}=\frac{7}{-21}=-\frac{1}{3}$

This is because $\lim _{x \rightarrow \infty} \frac{\sin \left(x^{3}\right)}{x^{2}}=0$ by the Squeeze Theorem since

$$
-\frac{1}{x^{2}} \leq \frac{\sin \left(x^{3}\right)}{x^{2}} \leq \frac{1}{x^{2}} \text { for } x>0 \text { and } \lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0
$$

(b) $\lim _{x \rightarrow \infty}\left(\cos \left(\frac{\pi}{x}\right)\right)^{x}$. Let $y=\left(\cos \left(\frac{\pi}{x}\right)\right)^{x}$. Since
$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} x \ln \left(\cos \left(\frac{\pi}{x}\right)\right),=\lim _{x \rightarrow \infty} \frac{\ln \left(\cos \left(\frac{\pi}{x}\right)\right)}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{-\frac{\sin \left(\frac{\pi}{x}\right)}{\cos \left(\frac{\pi}{x}\right)} \cdot\left(-\frac{\pi}{x^{2}}\right)}{-\frac{1}{x^{2}}}$ by L' Hôpital's
Rule,

$$
=\lim _{x \rightarrow \infty}-\pi \tan \left(\frac{\pi}{x}\right)=0
$$

$\lim _{x \rightarrow \infty} y=e^{\lim _{x \rightarrow-\infty} \ln (y)}=e^{0}=1$.
(c) $\lim _{x \rightarrow 0} \frac{\sin (\sin (x))}{x^{2}+2 x}=\lim _{x \rightarrow 0} \frac{\cos (\sin (x)) \cos (x)}{2 x+2}=\frac{1}{2} \quad$ by L' Hôpital's Rule.
(d) $\lim _{x \rightarrow+\infty} \sqrt{2+x+x^{2}}-\sqrt{2-x+x^{2}}=\lim _{x \rightarrow+\infty} \frac{2 x}{\sqrt{2+x+x^{2}}+\sqrt{2-x+x^{2}}}$

$$
\lim _{x \rightarrow+\infty} \frac{2}{\sqrt{\frac{2}{x^{2}}+\frac{1}{x}+1}+\sqrt{\frac{2}{x^{2}}-\frac{1}{x}+1}}=\frac{2}{2}=1
$$

(e) $\lim _{x \rightarrow 0} \frac{5 \sin ^{-1}(x)}{2 x}=\lim _{x \rightarrow 0} \frac{5 \frac{1}{\sqrt{1-x^{2}}}}{2}=\frac{5}{2}$ by L'Hôpital's rule.

Question 3

(a) $\int \frac{2 e^{2 x}-\sin (2 x)}{e^{2 x}+\cos ^{2}(x)+1} d x .=\int \frac{1}{e^{2 x}+\cos ^{2}(x)+1} \frac{d y}{d x} d x$, where $y=e^{2 x}+\cos ^{2}(x)+1, \frac{d y}{d x}=2 e^{2 x}-\sin (2 x)$,
$=\int \frac{1}{y} d y$ by substitution or change of variable
$=\ln |y|+C=\ln \left(e^{2 x}+\cos ^{2}(x)+1\right)+C$.
(b) $\int_{0}^{3}(|x-1|+|x-2|) d x$

$$
=\int_{0}^{1}(|x-1|+|x-2|) d x+\int_{1}^{2}(|x-1|+|x-2|) d x+\int_{2}^{3}(|x-1|+|x-2|) d x
$$

$$
=\int_{0}^{1}(3-2 x) d x+\int_{1}^{2} 1 d x+\int_{2}^{3}(2 x-3) d x
$$

$$
=\left[3 x-x^{2}\right]_{0}^{1}+1+\left[x^{2}-3 x\right]_{2}^{3}=2+1+2=5 .
$$

(c) $\int(\ln (5 x))^{2} d x=x(\ln (5 x))^{2}-\int 2 \ln (5 x) d x=x(\ln (5 x))^{2}-2 x \ln (5 x)+\int 2 d x$ by integration by parts

$$
=x(\ln (5 x))^{2}-2 x \ln (5 x)+2 x+C .
$$

Therefore, $\int_{1}^{2}(\ln (5 x))^{2} d x=\left[x(\ln (5 x))^{2}-2 x \ln (5 x)+2 x\right]_{1}^{2}$

$$
\begin{aligned}
& =2(\ln (10))^{2}-4 \ln (10)+4-(\ln (5))^{2}+2 \ln (5)-2 \\
& =2(\ln (5))^{2}+2(\ln (2))^{2}+4 \ln (5)\left(\ln (2)-4 \ln (10)-(\ln (5))^{2}+2 \ln (5)+2\right. \\
& =(\ln (5))^{2}+2(\ln (2))^{2}+4 \ln (5)(\ln (2)-2 \ln (5)-4 \ln (2)+2
\end{aligned}
$$

(d) $\int \cos (\tan (x)) \sec ^{2}(x) d x=\int \cos (\tan (x)) \frac{d u}{d x} d x$, where $u=\tan (x)$

$$
=\int \cos (u) d u=\sin (u)+C=\sin (\tan (x))+C \quad \text { by substitution or change of variable. }
$$

(e) Evaluate $\int \sqrt{x} e^{\sqrt{x}} d x$. Let $u=\sqrt{ } x$. Then $\frac{d u}{d x}=\frac{1}{2 \sqrt{x}}$.
$\int 2 x e^{\sqrt{x}} \frac{1}{2 \sqrt{x}} d x=\int 2 x e^{\sqrt{x}} \frac{d u}{d x} d x=2 \int u^{2} e^{u} d u$ by substitution
$=2 u^{2} e^{u}-2 \int 2 u e^{u} d u$ by integration by parts
$=2 u^{2} e^{u}-4 u e^{u}+\int 4 e^{u} d u$ by integration by parts
$=2 u^{2} e^{u}-4 u e^{u}+4 e^{u}+C=2 x e^{\sqrt{x}}-4 \sqrt{x} e^{\sqrt{x}}+4 e^{\sqrt{x}}+C$

Question 4.

(a) Mean Value Theorem states that if $f:[a, b] \rightarrow \mathbf{R}$ is a function such that

1. f is continuous on $[a, b]$ and
2. f is differentiable on (a, b),
then there exists c in (a, b), such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
(b) Note that $\cot \left(\frac{\pi}{4}\right)=1$. Since cot is continuous on $\left[\frac{\pi}{5}, \frac{\pi}{4}\right]$ and differentiable on $\left(\frac{\pi}{5}, \frac{\pi}{4}\right)$, by the Mean Value Theorem, there exists c in $\left(\frac{\pi}{5}, \frac{\pi}{4}\right)$ such that

$$
\frac{\cot \left(\frac{\pi}{5}\right)-\cot \left(\frac{\pi}{4}\right)}{\frac{\pi}{5}-\frac{\pi}{4}}=-\csc ^{2}(c)
$$

Therefore, $\cot \left(\frac{\pi}{5}\right)-\cot \left(\frac{\pi}{4}\right)=\left(\frac{\pi}{5}-\frac{\pi}{4}\right) \cdot\left(-\csc ^{2}(c)\right)=\frac{\pi}{20} \csc ^{2}(c)$.
(c) (i) Since f is differentiable on \mathbf{R}, by the Mean Value Theorem, for $x>0$,

$$
\frac{f(x)-f(0)}{x-0}=f^{\prime}(c) \text { for some } \mathrm{c} \text { such that } 0<c<x
$$

Therefore, since it is given that $f(0)=0$ by condition (1)
and $f^{\prime}(c)=\frac{c^{2}}{1+2 c^{2}}$, by Condition 2 , we have that $\frac{f(x)}{x}=\frac{c^{2}}{1+2 c^{2}}$.
(ii) Thus for $x>0$, we have then by (i) that $0<\frac{f(x)}{x}=\frac{c^{2}}{1+2 c^{2}}<1$ and so multiplying by x
(>0) we get $0<f(x)<x$.
Similarly for $x<0$, by the Mean Value Theorem we have that for some d such that $x<d<0, \quad 0<\frac{f(x)}{x}=\frac{d^{2}}{1+2 d^{2}}<1$. Thus, multiplying this inequality by $x(<0)$, we have that $0>f(x)>x$
(d) Let $\mathrm{g}(x)=x^{5}+\frac{9}{1+\sin ^{2}(x)}-3$. Then g is a continuous function on \mathbf{R}.
$\mathrm{g}(-2)=-32-3+\frac{9}{1+\sin ^{2}(-2)} \leq-26<0$ and $g(0)=6>0$.
Thus $\mathrm{g}(-2)<0<\mathrm{g}(0)$. Thus since g is continuous on $[-2,0]$, by the Intermediate
Value Theorem, there exists c in $(-2,0)$ such that $\mathrm{g}(\mathrm{c})=0$. That is to say, c is a root of the equation

$$
x^{5}+\frac{9}{1+\sin ^{2}(x)}=3
$$

Question 5.

(a) (i) $h(x)=\left(\ln \left(1+x^{2}\right)+1\right)^{\sin (x)}$

Taking logarithm on both sides we get $\ln (h(x))=\sin (x) \ln \left(\ln \left(1+x^{2}\right)+1\right)$.
Differentiating both sides we get,

$$
\begin{aligned}
\frac{h^{\prime}(x)}{h(x)} & =\cos (x) \ln \left(\ln \left(1+x^{2}\right)+1\right)+\sin (x) \frac{\frac{2 x}{1+x^{2}}}{\ln \left(1+x^{2}\right)+1} \\
& =\cos (x) \ln \left(\left(\ln \left(1+x^{2}\right)+1\right)+\frac{2 x \sin (x)}{\left(1+x^{2}\right)\left(\ln \left(1+x^{2}\right)+1\right)}\right.
\end{aligned}
$$

Therefore,

$$
h^{\prime}(x)=\left(\cos (x) \ln \left(\left(\ln \left(1+x^{2}\right)+1\right)+\frac{2 x \sin (x)}{\left(1+x^{2}\right)\left(\ln \left(1+x^{2}\right)+1\right)}\right) \ln \left(1+x^{2}\right)+1\right)^{\sin (x)}
$$

(ii) $j(x)=\int_{x}^{x^{2}} \frac{1}{1+2 t^{2}+\sin \left(t^{2}\right)} d t$.

Therefore, $\quad j(x)=\int_{0}^{x^{2}} \frac{1}{1+2 t^{2}+\sin \left(t^{2}\right)} d t-\int_{0}^{x} \frac{1}{1+2 t^{2}+\sin \left(t^{2}\right)} d t$
Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$
j^{\prime}(x)=\frac{2 x}{1+2 x^{4}+\sin \left(x^{4}\right)}-\frac{1}{1+2 x^{2}+\sin \left(x^{2}\right)}
$$

(b) Now $k(x)=\int_{1}^{x^{3}} e^{-t^{2}} d t$.
(i) Thus by the Fundamental Theorem of Calculus and the Chain Rule,

$$
k^{\prime}(x)=3 x^{2} e^{-x^{6}} \text {. Note that } k \text { is continuous since it is differentiable on } \mathbf{R} \text {. Also for } x
$$ $\neq 0, k^{\prime}(x)>0$. Therefore, k is (strictly)increasing on $(-\infty, 0]$ and also on $[0, \infty)$. This means k is (strictly) increasing on \mathbf{R}. Therefore, k is injective.

(ii) Note that $k(1)=0$ and so $k^{-1}(0)=1$. Thus since $k^{`}(1)=3 \mathrm{e}^{-1} \neq 0$,

$$
\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(1)}=\frac{e}{3}
$$

(c) Note that g satisfies the following three properties.

1. $\mathrm{g}(x+y)=\mathrm{g}(x) \mathrm{g}(y)$ for all x and y in \mathbf{R},
2. $\mathrm{g}(0)=1$ and that 3 . g is differentiable at $x=0$ and $\mathrm{g}^{\prime}(0)=1$.

For $h \neq 0, \quad \frac{g(x+h)-g(x)}{h}=\frac{g(x) g(h)-g(x)}{h}$ by property 1 , $=g(x) \frac{g(h)-1}{h}=g(x) \frac{g(h)-g(0)}{h}$ by property 2.
Therefore,
$\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=\lim _{h \rightarrow 0} g(x) \frac{g(h)-g(0)}{h}=g(x) \lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=g(x) g^{\prime}(0)$ since g is differentiable at $x=0$ by Property 3
$=\mathrm{g}(x) 1=\mathrm{g}(x)$
Hence g is differentiable at x for all x and that $\mathrm{g}^{\prime}(x)=\mathrm{g}(x)$.

Question 6

$$
\begin{equation*}
f(x)=\frac{1+x-x^{2}}{(x-1)^{2}}=-1-\frac{1}{x-1}+\frac{1}{(x-1)^{2}} . \tag{*}
\end{equation*}
$$

Note that f is continuous and differentiable on $\mathbf{R}-\{1\}$ since it is a rational function.
(a) Therefore, $\quad f^{\prime}(x)=\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}=\frac{x-3}{(x-1)^{3}}$ \qquad and so

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{-2}{(x-1)^{3}}+\frac{6}{(x-1)^{4}}=\frac{2(4-x)}{(x-1)^{4}}- \tag{1}
\end{equation*}
$$

(b) For $x<1$, by (1), $f^{\prime}(x)>0$. Therefore, f is increasing on the interval $(-\infty, 1)$. For $1<x<$ 3, again by (1), $f^{\prime}(x)<0$. Therefore, f is decreasing on the interval (1,3]. Then for $x>3, f$ ' $(x)>0$ again by (1). Thus f is increasing on the interval $[3, \infty$).
(c) From (2), for $x>4, f^{\prime \prime}(x)<0$. Thus the graph of f is concave downward on the interval (4, ∞). Also from (2) for $x<4$ and $x \neq 1, f "(x)>0$ and so the graph of f is concave upward on the interval $(-\infty, 1)$ and on the interval $(1,4)$.
(d) From part (b), $f(3)=-5 / 4$ is a relative minimum and there is no relative maximum.
(e) From $\left(^{*}\right.$), we see that for $x<1, f(x)>-1$. From part (d), $f(3)=-5 / 4$ is the absolute minimum of f on $(1, \infty)$. Thus - $5 / 4$ is the absolute minimum value of f. And there is no absolute maximum for f.
(f) By part (c), since f is continuous at $x=4$ and that the graph of f has a change in concavity before and after $x=4,(4, f(4))=(4,-11 / 9)$ is a point of inflection.
(g) Note that the limit, $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty}-1-\frac{1}{x-1}+\frac{1}{(x-1)^{2}}=-1$ Therefore, the line $y=-1$ is a horizontal asymptote. Note also that $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{1+x-x^{2}}{(x-1)^{2}}=+\infty$ since $\lim _{x \rightarrow 1^{-}} \frac{1}{(x-1)^{2}}=+\infty$ and $\lim _{x \rightarrow 1-} 1+x-x^{2}=1>0$ Similarly $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1+x-x^{2}}{(x-1)^{2}}=+\infty$ Hence the line $x=1$ is a vertical asymptote.

