NATIONAL UNIVERSITY OF SINGAPORE

FACULTY OF SCIENCE

SEMESTER 1 EXAMINATION 2002 - 2003

MA1102R CALCULUS

November 2002 – Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **TWO** sections: Section A and Section B. It contains a total of **SIX** questions and comprises **FOUR** printed pages.
- 2. Answer **ALL** questions in **Section A** The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
- Answer not more than TWO questions from Section B. Each question in Section B carries 20 marks.
- 4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

•

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f : \mathbf{R} \to \mathbf{R}$ be defined by

$$f(x) = \begin{cases} x^3 + 1, & x < -1\\ \sin\left(\frac{\pi}{2x}\right), & -1 \le x \le 1 \text{ and } x \ne 0\\ 2x^2 - 1, & x > 1\\ 0, & x = 0 \end{cases}$$

- (a) Find the *range* of the function f.
- (b) Determine if f is surjective.
- (c) Determine all x in **R** at which the function f is *continuous*. Justify your answer.
- (d) Is f differentiable at x = 1? Justify your answer.
- (e) Evaluate $\int_{-1}^{1} f(x) dx$.

Question 2 [20 marks]

Evaluate, if it exists, each of the following limits.

(a)
$$\lim_{x \to +\infty} \frac{7x^3 + x \sin(x^3) + 1}{2x^2 - 21x^3 + 3}.$$

(b)
$$\lim_{x \to +\infty} \left(\cos(\frac{\pi}{x}) \right)^x.$$

(c)
$$\lim_{x \to 0} \frac{\sin(\sin(x))}{x^2 + 2x}.$$

(d)
$$\lim_{x \to +\infty} \sqrt{2 + x + x^2} - \sqrt{2 - x + x^2}.$$

(e)
$$\lim_{x \to 0} \frac{e \sin^2 x}{2x}$$

Question 3 [20 marks]

(a) Evaluate $\int \frac{2e^{2x} - \sin(2x)}{e^{2x} + \cos^2(x) + 1} dx.$ (b) Compute $\int_0^3 (|x - 1| + |x - 2|) dx.$ (c) Compute $\int_1^2 (\ln(5x))^2 dx.$ (d) Evaluate $\int \cos(\tan(x)) \sec^2(x) dx.$ (e) Evaluate $\int \sqrt{x} e^{\sqrt{x}} dx.$

SECTION B

Answer not more than **TWO** (2) questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

- (a) State, but do not prove, the *Mean Value Theorem*.
- (b) Prove that $\cot\left(\frac{\pi}{5}\right) 1 = \frac{\pi}{20}\csc^2(c)$ for some c in $\left(\frac{\pi}{5}, \frac{\pi}{4}\right)$.
- (c) Suppose f is a differentiable function defined on **R** such that 1. f(0) = 0 and

2.
$$f'(x) = \frac{x^2}{1+2x^2}$$
 for all x in **R**.

(i) Show that if x > 0, then there exists *c* in the interval (0, x) such that

$$\frac{f(x)}{x} = \frac{c^2}{1+2c^2}.$$

(ii) Deduce that 0 < f(x) < x for x > 0 and 0 > f(x) > x for x < 0.

(d) Show that the equation

$$x^5 + \frac{9}{1 + \sin^2(x)} = 3$$

has at least one real root.

Question 5 [20 marks]

(a) Differentiate the following functions.

(i)
$$h(x) = (\ln(1+x^2)+1)^{\sin(x)}$$
.
(ii) $j(x) = \int_x^{x^2} \frac{1}{1+2t^2+\sin(t^2)} dt$.

(b) Let the function k be defined on **R** by
$$k(x) = \int_{1}^{x^{3}} e^{-t^{2}} dt.$$

- (i) Without integrating, show that the function k is injective.
- (ii) Determine $(k^{-1})'(0)$.
- (c) Suppose that the function g defined on **R** satisfies
 - 1. g(x+y) = g(x) g(y) for all x and y in **R**,
 - 2. g(0) = 1 and that
 - 3. g is differentiable at x = 0 and g'(0) = 1.

By considering the limit of the difference quotient

$$\frac{g(x+h)-g(x)}{h},$$

show that g is differentiable at x for all x and that g'(x) = g(x).

Question 6 [20 marks]

Let the function f be defined on **R** by

$$f(x) = \frac{1 + x - x^2}{(x - 1)^2}$$

(a) Show that if $x \neq 1$, then

$$f'(x) = \frac{x-3}{(x-1)^3}$$
 and $f''(x) = \frac{2(4-x)}{(x-1)^4}$.

- (b) Find the intervals on which f is (i) *increasing*, and (ii) *decreasing*.
- (c) Find the intervals on which the graph of *f* is (i) *concave upward*, and (ii) *concave downward*.
- (d) Find the *relative extrema* of f, if any.
- (e) Find the *absolute extrema* of f, if any.
- (f) Find the *points of inflection* of the graph of f.

(g) Find the horizontal and vertical asymptotes of the graph of f and sketch the graph of f.

END OF PAPER

Answer To MA1102 Calculus

Question 1

The function f is defined by
$$f(x) = \begin{cases} x^3 + 1, & x < -1 \\ \sin\left(\frac{\pi}{2x}\right), & -1 \le x \le 1 \text{ and } x \ne 0 \\ 2x^2 - 1, & x > 1 \\ 0, & x = 0 \end{cases}$$

For x < -1, $f(x) = x^3 + 1 < 0$. Also, for x < -1, $x^3 + 1 < 0 \Leftrightarrow x < -1$ (a) Thus f maps $(-\infty, -1)$ onto $(-\infty, 0)$. (Because for any y < 0, we can take $x = \sqrt[3]{y-1} (<-1)$ so that f(x) = y For $-1 \le x \le 1$ and $x \ne 0$, $|f(x)| = \left|\sin\left(\frac{\pi}{2x}\right)\right| \le 1$. Now since $\frac{1}{2} \le x \le 1$ if and only if $\frac{\pi}{2} \le \frac{\pi}{2x} \le \pi$, the image of [1/2, 1] under f is the image of $[\pi/2, \pi]$ under the sine function and so f([1/2, 1]) = [0, 1]. Similarly the image of [-1, 1]-1/2] under f is the image of $[-\pi, -\pi/2]$ under the sine function and so f ([-1, -1/2]) = [-1, -1/2]) 0]. This is because $-1 \le x \le -\frac{1}{2}$ if and only if $-\pi \le \frac{\pi}{2x} \le -\frac{\pi}{2}$. Thus, with f(0) = 0, we conclude that f([-1, 1]) = [-1, 1]. Another easier way to show this is as follows. For $-1 \le x \le 1$, we observe as above that -1 $\leq f(x) \leq 1$. This means the image of [-1, 1] under f is contained in [-1, 1]. Next observe that $f(1/3) = \sin(3\pi/2) = -1$ and $f(1) = \sin(\pi/2) = 1$. Note that f on the interval [1/3, 1] is given by $\sin(\pi/(2x))$ and so is continuous on [1/3, 1] because of the fact that the function $\pi/(2x)$ is continuous on [1/3, 1] and sine is a continuous function implying that the composite $\sin(\pi/(2x))$ is continuous on [1/3, 1]. Therefore, by the Intermediate Value Theorem any y with $-1 = f(1/3) \le y \le 1 = f(1)$ is in the image of [1/3, 1] under f. This means f([-1, 1]) contains [-1, 1]. Therefore, f([-1, 1]) = [-1, 1]. Now for x > 1, $f(x) = 2x^2 - 1 > 1$. Also for any y > 1, we can take $x = \sqrt{\frac{y+1}{2}} > 1$ such that f(x) = y. Therefore, f maps $(1, \infty)$ onto $(1, \infty)$. Hence the range of f is $f((-\infty, -\infty))$. $(-1)) \cup f([-1, 1]) \cup f((1,\infty)) = (-\infty, 0) \cup [-1, 1] \cup (1, \infty) = (-\infty, \infty) = \mathbf{R}.$

(b) By part (a) Range(f) = **R** =codomain of f. Therefore, f is surjective.

(c) When x < -1, $f(x) = x^3 + 1$, is a polynomial function and so f is continuous on $(-\infty, -1)$, since any polynomial function is continuous on **R** and so is continuous on any open interval. When -1 < x < 0, $f(x) = \sin\left(\frac{\pi}{2x}\right)$ and since sine is a continuous function and the function $\frac{\pi}{2x}$ is a continuous function on x > 0, f on (-1, 0) being the composite of these two continuous functions is therefore continuous on (-1, 0). Similarly, f is continuous on the interval (0, 1). f is continuous on $(1, \infty)$ since $f(x) = 2x^2 - 1$, a polynomial function. Thus we can conclude that f is continuous at x for $x \neq -1$, 0, 1. Thus it remains to check if f is continuous at x = -1, 0 or 1. Consider the left limit at x = -1,

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} x^{3} + 1 = 0 \text{ and the right limit at } x = -1$$
$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \sin\left(\frac{\pi}{2x}\right) = -1.$$

Thus, since $\lim_{x \to -1^{-}} f(x) \neq \lim_{x \to -1^{+}} f(x)$, $\lim_{x \to -1} f(x)$ does not exist. It follows that f is not continuous at x = -1. Now consider the left limit of f at x = 1, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \sin\left(\frac{\pi}{2x}\right) = 1$ and the right limit at x = 1, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2x^{2} - 1 = 1 = f(1)$ Therefore, $\lim_{x \to 1} f(x) = f(1)$ and so f is continuous at x = 1. Now we claim that the limit of f at x = 0 cannot be equal to f(0) = 0. We shall show that we can find a $\varepsilon > 0$ such that for any $\delta > 0$, we can find a x_{δ} such that $|x_{\delta} - 0| < \delta$ but $|f(x_{\delta}) - f(0)| = |f(x_{\delta})| \ge \varepsilon$. We shall take $\varepsilon = 1$. For any $\delta > 0$, since $\lim_{N \to \infty} \frac{1}{2N+1} = 0$, three exists a positive integer N > 1 such that $\frac{1}{2N+1} < \delta$. So we take $0 < x_{\delta} = \frac{1}{2N+1} < \delta$ Then $|f(x_{\delta}) - f(0)| = |f(x_{\delta})| = |\sin((2N+1)\frac{\pi}{2})| = 1 \ge \varepsilon$. Thus f is not continuous at x = 0. Therefore, f is continuous at x for all x except for x = -1 or 0. To check the differentiability of f at x = 1 consider the following limits. $\lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{2x^{2} - 1 - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{\cos(\frac{\pi}{2x}) \cdot (-\frac{\pi}{2x^{2}})}{1} = 0$

ov L' Hôpital's Rule.

Therefore, f is not differentiable at x = 1 since $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} \neq \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$. (e) f is Riemann integrable on [-1,1] since the restriction of f is continuous on [-1, 1] except for x = 0. Note that f is an odd function on [-1, 1], i.e. f(-x) = -f(x) for all x in [-1, 1] because $f(-x) = \sin(\pi/(-2x)) = -\sin(\pi/(2x)) = -f(x)$ for $x \neq 0$ and for x = 0, obviously f(-0) = f(0) = 0 = -0 = -f(0). $\int_{-1}^{0} f(x) dx = \int_{-1}^{0} -f(x) \frac{du}{dx} dx$ where u = -x so that $\frac{du}{dx} = -1$

 $= -\int_{1}^{0} f(-u)du$ by the Change of Variable formula, $= \int_{1}^{0} f(u)du$ since *f* is an odd function, $= -\int_{0}^{1} f(u)du = -\int_{0}^{1} f(x)dx$ by renaming the variable. Therefore, $\int_{-1}^{1} f(x)dx = \int_{-1}^{0} f(x)dx + \int_{0}^{1} f(x)dx = -\int_{0}^{1} f(x)dx + \int_{0}^{1} f(x)dx = 0$

Question 2

(a)
$$\lim_{x \to +\infty} \frac{7x^3 + x\sin(x^3) + 1}{2x^2 - 21x^3 + 3} = \lim_{x \to +\infty} \frac{7 + \frac{1}{x^2}\sin(x^3) + \frac{1}{x^3}}{\frac{2}{z} - 21 + \frac{3}{x^3}} = \frac{7}{-21} = -\frac{1}{3}$$

This is because $\lim_{x \to \infty} \frac{\sin(x^2)}{x^2} = 0$ by the Squeeze Theorem since

$$-\frac{1}{x^2} \le \frac{\sin(x^3)}{x^2} \le \frac{1}{x^2} \text{ for } x > 0 \text{ and } \lim_{x \to \infty} \frac{1}{x^2} = 0$$

(b)
$$\lim_{x \to \infty} \left(\cos(\frac{\pi}{x})\right)^x. \text{ Let } y = \left(\cos(\frac{\pi}{x})\right)^x. \text{ Since}$$

(d)

$$\lim_{x \to \infty} \ln(y) = \lim_{x \to \infty} x \ln\left(\cos(\frac{\pi}{x})\right) = \lim_{x \to \infty} \frac{\ln(\cos(\frac{\pi}{x}))}{\frac{1}{x}} = \lim_{x \to \infty} \frac{-\frac{\sin(\frac{\pi}{x})}{\cos(\frac{\pi}{x})} \cdot \left(-\frac{\pi}{x^2}\right)}{-\frac{1}{x^2}} \quad \text{by L' Hôpital's}$$
Rule,

$$=\lim_{x\to\infty}-\pi\tan(\frac{\pi}{x})=0,$$

 $\lim_{x \to \infty} y = e^{\lim_{x \to \infty} \ln(y)} = e^0 = 1.$

.

(c)
$$\lim_{x \to 0} \frac{\sin(\sin(x))}{x^2 + 2x} = \lim_{x \to 0} \frac{\cos(\sin(x))\cos(x)}{2x + 2} = \frac{1}{2}$$
 by L' Hôpital's Rule.

(d)
$$\lim_{x \to +\infty} \sqrt{2 + x + x^2} - \sqrt{2 - x + x^2} = \lim_{x \to +\infty} \frac{2x}{\sqrt{2 + x + x^2} + \sqrt{2 - x + x^2}}$$
$$\lim_{x \to +\infty} \frac{2}{\sqrt{\frac{2}{x^2} + \frac{1}{x} + 1} + \sqrt{\frac{2}{x^2} - \frac{1}{x} + 1}} = \frac{2}{2} = 1$$

(e)
$$\lim_{x \to 0} \frac{5\sin^{-1}(x)}{2x} = \lim_{x \to 0} \frac{5\frac{1}{\sqrt{1 - x^2}}}{2} = \frac{5}{2}$$
 by L' Hôpital's rule.

Question 3

(a)
$$\int \frac{2e^{2x} - \sin(2x)}{e^{2x} + \cos^2(x) + 1} dx. = \int \frac{1}{e^{2x} + \cos^2(x) + 1} \frac{dy}{dx} dx,$$

where $y = e^{2x} + \cos^2(x) + 1$, $\frac{dy}{dx} = 2e^{2x} - \sin(2x)$,
 $= \int \frac{1}{y} dy$ by substitution or change of variable
 $= \ln|y| + C = \ln(e^{2x} + \cos^2(x) + 1) + C.$
(b) $\int_0^3 (|x - 1| + |x - 2|) dx + \int_1^2 (|x - 1| + |x - 2|) dx + \int_2^3 (|x - 1| + |x - 2|) dx.$
 $= \int_0^1 (3 - 2x) dx + \int_1^2 1 dx + \int_2^3 (2x - 3) dx.$
 $= [3x - x^2]_0^1 + 1 + [x^2 - 3x]_2^3 = 2 + 1 + 2 = 5..$
(c) $\int (\ln(5x))^2 dx = x(\ln(5x))^2 - \int 2 \ln(5x) dx = x(\ln(5x))^2 - 2x \ln(5x) + \int 2dx$
by integration by parts
 $= x(\ln(5x))^2 - 2x \ln(5x) + 2x + C.$
Therefore, $\int_1^2 (\ln(5x))^2 dx = [x(\ln(5x))^2 - 2x \ln(5x) + 2x]_1^2$
 $= 2(\ln(10))^2 - 4 \ln(10) + 4 - (\ln(5))^2 + 2 \ln(5) - 2$
 $= 2(\ln(5))^2 + 2(\ln(2))^2 + 4 \ln(5)(\ln(2) - 4 \ln(10) - (\ln(5))^2 + 2 \ln(5) + 2$
.
(d) $\int \cos(\tan(x)) \sec^2(x) dx = \int \cos(\tan(x)) \frac{du}{dx} dx$, where $u = \tan(x)$
 $= \int \cos(u) du = \sin(u) + C = \sin(\tan(x)) + C$ by substitution or change of variable.

(e) Evaluate $\int \sqrt{x} e^{\sqrt{x}} dx$. Let $u = \sqrt{x}$. Then $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$.

$$\int 2xe^{\sqrt{x}} \frac{1}{2\sqrt{x}} dx = \int 2xe^{\sqrt{x}} \frac{du}{dx} dx = 2 \int u^2 e^u du$$
 by substitution
= $2u^2 e^u - 2 \int 2ue^u du$ by integration by parts
= $2u^2 e^u - 4ue^u + \int 4e^u du$ by integration by parts

$$= 2u^{2}e^{u} - 4ue^{u} + 4e^{u} + C = 2xe^{\sqrt{x}} - 4\sqrt{x}e^{\sqrt{x}} + 4e^{\sqrt{x}} + C$$

Question 4.

(a) Mean Value Theorem states that if $f : [a, b] \to \mathbf{R}$ is a function such that 1. f is continuous on [a, b] and 2. f is differentiable on (a, b),

then there exists c in (a, b), such that $\frac{f(b) - f(a)}{b - a} = f'(c)$.

(b) Note that cot(^π/₄) = 1. Since cot is continuous on [^π/₅, ^π/₄] and differentiable on (^π/₅, ^π/₄), by the Mean Value Theorem, there exists c in (^π/₅, ^π/₄) such that

cot (^π/₅) - cot(^π/₄)
^π/₅ - ^π/₄
- csc²(c).

Therefore, cot (^π/₅) - cot(^π/₄) = (^π/₅ - ^π/₄) · (-csc²(c)) = ^π/₂₀ csc²(c).
(c) (i) Since f is differentiable on **R**, by the Mean Value Theorem, for x > 0,

^{f(x) - f(0)}/_{x - 0} = f'(c) for some c such that 0 < c < x
Therefore, since it is given that f(0) = 0 by condition (1)
and f'(c) = ^{c²}/_{1 + 2c²}, by Condition 2, we have that ^{f(x)}/_x = ^{c²}/_{1 + 2c²}.
(ii) Thus for x > 0, we have then by (i) that 0 < ^{f(x)}/_x = ^{c²}/_{1 + 2c²} < 1 and so multiplying

- (ii) Thus for x > 0, we have then by (i) that $0 < \frac{f(x)}{x} = \frac{c^2}{1+2c^2} < 1$ and so multiplying by x(>0) we get 0 < f(x) < x. Similarly for x < 0, by the Mean Value Theorem we have that for some d such that x < d < 0, $0 < \frac{f(x)}{x} = \frac{d^2}{1+2d^2} < 1$. Thus, multiplying this inequality by x (<0), we have that 0 > f(x) > xLet $g(x) = x^5 + \frac{9}{1+2d^2} = 3$. Then g is a continuous function on **R**
- have that 0 > f(x) > x(d) Let $g(x) = x^5 + \frac{9}{1 + \sin^2(x)} - 3$. Then g is a continuous function on **R**. $g(-2) = -32 - 3 + \frac{9}{1 + \sin^2(-2)} \le -26 < 0$ and g(0) = 6 > 0. Thus g(-2) < 0 < g(0). Thus since g is continuous on [-2, 0], by the Interme

Thus g(-2) < 0 < g(0). Thus since g is continuous on [-2, 0], by the Intermediate Value Theorem, there exists *c* in (-2, 0) such that g(c) = 0. That is to say, *c* is a root of the equation

$$x^5 + \frac{9}{1 + \sin^2(x)} = 3$$

Question 5.

(a) (i)
$$h(x) = (\ln(1+x^2)+1)^{\sin(x)}$$

Taking logarithm on both sides we get $\ln(h(x)) = \sin(x)\ln(\ln(1+x^2)+1)$. Differentiating both sides we get, 2x

$$\frac{h'(x)}{h(x)} = \cos(x)\ln(\ln(1+x^2)+1) + \sin(x)\frac{\frac{1}{1+x^2}}{\ln(1+x^2)+1}$$
$$= \cos(x)\ln((\ln(1+x^2)+1) + \frac{2x\sin(x)}{(1+x^2)(\ln(1+x^2)+1)})$$

Therefore,

$$h'(x) = \left(\cos(x)\ln(\ln(1+x^2)+1) + \frac{2x\sin(x)}{(1+x^2)(\ln(1+x^2)+1)}\right)\ln(1+x^2) + 1)^{\sin(x)}$$

(ii) $j(x) = \int_x^{x^2} \frac{1}{1+2t^2+\sin(t^2)}dt.$
Therefore, $j(x) = \int_0^{x^2} \frac{1}{1+2t^2+\sin(t^2)}dt - \int_0^x \frac{1}{1+2t^2+\sin(t^2)}dt$

Hence by the Fundamental Theorem of Calculus and the Chain Rule,

$$j'(x) = \frac{2x}{1 + 2x^4 + \sin(x^4)} - \frac{1}{1 + 2x^2 + \sin(x^2)}$$

(b) Now $k(x) = \int_{1}^{x^3} e^{-t^2} dt$.

(i) Thus by the Fundamental Theorem of Calculus and the Chain Rule,

 $k'(x) = 3x^2 e^{-x^6}$. Note that k is continuous since it is differentiable on **R**. Also for $x \neq 0$, k'(x) > 0. Therefore, k is (strictly)increasing on $(-\infty, 0]$ and also on $[0, \infty)$. This means k is (strictly) increasing on **R**. Therefore, k is injective.

- (ii) Note that k(1) = 0 and so $k^{-1}(0) = 1$. Thus since $k'(1) = 3e^{-1} \neq 0$, $(k^{-1})'(0) = \frac{1}{k'(k^{-1}(0))} = \frac{1}{k'(1)} = \frac{e}{3}$
- (c) Note that g satisfies the following three properties.
 - 1. g(x + y) = g(x) g(y) for all x and y in **R**,
 - 2. g(0) = 1 and that 3. g is differentiable at x = 0 and g'(0) = 1.

For
$$h \neq 0$$
, $\frac{g(x+h)-g(x)}{h} = \frac{g(x)g(h)-g(x)}{h}$ by property 1,
= $g(x)\frac{g(h)-1}{h} = g(x)\frac{g(h)-g(0)}{h}$ by property 2.

Therefore,

$$\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = \lim_{h \to 0} g(x) \frac{g(h) - g(0)}{h} = g(x) \lim_{h \to 0} \frac{g(h) - g(0)}{h} = g(x)g'(0)$$

since g is differentiable at $x = 0$ by Property 3

 $= g(x) \ 1 = g(x)$

Hence g is differentiable at x for all x and that g'(x) = g(x).

Question 6

$$f(x) = \frac{1+x-x^2}{(x-1)^2} = -1 - \frac{1}{x-1} + \frac{1}{(x-1)^2} - \dots$$
(*)

Note that f is continuous and differentiable on \mathbf{R} -{1} since it is a rational function.

(a) Therefore,
$$f'(x) = \frac{1}{(x-1)^2} - \frac{2}{(x-1)^3} = \frac{x-3}{(x-1)^3}$$
 (1)
and so $f''(x) = \frac{-2}{(x-1)^3} + \frac{6}{(x-1)^4} = \frac{2(4-x)}{(x-1)^4}$ (2)

- (b) For x < 1, by (1), f'(x) > 0. Therefore, f is increasing on the interval $(-\infty, 1)$. For 1 < x < 3, again by (1), f'(x) < 0. Therefore, f is decreasing on the interval (1, 3]. Then for x > 3, f'(x) > 0 again by (1). Thus f is increasing on the interval $[3, \infty)$.
- (c) From (2), for x > 4, f ''(x) < 0. Thus the graph of f is concave downward on the interval (4, ∞). Also from (2) for x < 4 and x ≠ 1, f ''(x) > 0 and so the graph of f is concave upward on the interval (-∞, 1) and on the interval (1, 4).
- (d) From part (b), f(3) = -5/4 is a relative minimum and there is no relative maximum.
- (e) From (*), we see that for x < 1, f(x) > -1. From part (d), f (3) = -5/4 is the absolute minimum of f on (1,∞). Thus 5/4 is the absolute minimum value of f. And there is no absolute maximum for f.
- (f) By part (c), since f is continuous at x = 4 and that the graph of f has a change in concavity before and after x = 4, (4, f(4)) = (4, -11/9) is a point of inflection.

(g) Note that the limit, $\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} -1 - \frac{1}{x-1} + \frac{1}{(x-1)^2} = -1$ Therefore, the line y = -1 is a horizontal asymptote. Note also that $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1+x-x^2}{(x-1)^2} = +\infty$ since

$$\lim_{x \to 1^-} \frac{1}{(x-1)^2} = +\infty \text{ and } \lim_{x \to 1^-} 1 + x - x^2 = 1 > 0 \text{ Similarly}$$
$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{1 + x - x^2}{(x-1)^2} = +\infty \text{ Hence the line } x = 1 \text{ is a vertical asymptote.}$$

