NATIONAL UNIVERSITY OF SINGAPORE
 FACULTY OF SCIENCE
 SEMESTER 2 EXAMINATION 2001 - 2002
 MA1102R CALCULUS

May 2002 - Time Allowed : 2 hours

INSTRUCTIONS TO CANDIDATES

1. This examination paper consists of TWO (2) sections: Section A and Section B. It contains a total of SIX (6) questions and comprises FOUR (4) printed pages.
2. Answer ALL questions in Section A. The marks for questions in Section A are not necessarily the same; marks for each question are indicated at the beginning of the question.
3. Answer not more than TWO (2) questions from Section B. Each question in Section B carries 20 marks.
4. Candidates may use calculators. However, they should lay out systematically the various steps in the calculations.

SECTION A

Answer ALL questions in this section.

Question 1 [20 marks]

Let the function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$
f(x)=\left\{\begin{array}{rr}
x^{2}-14, & x<-3 \\
5, & x=-3 \\
6 x+13, & -3<x<1 \\
2 x^{3}+17, & x \geq 1
\end{array} .\right.
$$

(a) Find the range of the function f.
(b) Determine if f is surjective.
(c) Determine all x in \mathbf{R} at which the function f is continuous.
(d) Find all x in \mathbf{R} at which the function f is differentiable. Justify your answer.
(e) Compute $\int_{-4}^{0} f(x) d x$.

Question 2 [20 marks]
Evaluate, if it exists, each of the following limits.
(a) $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-7\left|x^{5}\right|+9}{49 x^{5}+5 x^{2}+1}$.
(b) $\lim _{x \rightarrow \infty}\left(1+x^{2}\right)^{\frac{1}{x^{2}}}$.
(c) $\lim _{x \rightarrow 0} \frac{\sin \left(\sin \left(x^{3}\right)\right)}{\sin \left(3 x^{2}\right)+x^{2}}$.
(d) $\lim _{x \rightarrow 4} \frac{\sqrt{20+x^{2}}-6}{x-4}$.
(e) $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{2}\right)\right)^{\sin \left(x^{2}\right)}$.

Question 3 [20 marks]
(a) Evaluate $\int \frac{15 x^{2} e^{5 x^{3}}+\sin (2 x)}{e^{5 x^{3}}+\sin ^{2}(x)+3} d x$.
(b) Compute $\int_{-1}^{1} \sin (|x|+3) d x$.
(c) Find an antiderivative of $g(x)$, which is defined by

$$
g(x)=\left\{\begin{array}{r}
2 x^{3}+4, x \geq 1 \\
x^{4}+5, x<1
\end{array}\right.
$$

(d) Evaluate $\int_{0}^{2} \frac{x+3}{x^{2}+4 x+4} d x$.
(e) Evaluate $\int x^{2} \cos (2 x) d x$.

SECTION B

Answer not more than TWO (2) questions from this section. Each question in this section carries 20 marks.

Question 4 [20 marks]

(a) Suppose g: [0, 5] $\rightarrow \mathbf{R}$ is a real valued function defined on the interval $[0,5]$ by $g(x)=x^{3}-6 x^{2}+9 x+12$. Determine the absolute maximum and absolute minimum of the function g.
(b) Differentiate the following functions.
(i) $h(x)=\cos ^{-1}(\sin (2 x))$.
(ii) $j(x)=\ln \left(\frac{x^{2}+e^{x}}{1+e^{\left(x^{2}\right)}}\right)$.
(iii) $k(x)=\ln \left(\ln \left(e^{x}+2\right)+x^{2}\right)$.
(c) Suppose f is a continuous function defined on the closed interval $[1,3]$ such that

$$
1 \leq f(x) \leq 3 \text { for all } x \text { in }[1,3]
$$

Prove that there exists a point c in $[1,3]$ such that $f(c)=c$.

Question 5 [20 marks]
Let the function f be defined on \mathbf{R} by

$$
f(x)=x^{5}-10 x^{2}+1 .
$$

(a) Find the intervals on which f is (i) increasing, and (ii) decreasing.
(b) Find the intervals on which the graph of f is concave upward or concave downward.
(c) Find the relative extrema of f.
(d) Find the points of inflection of the graph of f.
(e) Sketch the graph of f.

Question 6 [20 marks]
(a) State the Fundamental Theorem of Calculus.

Use it ,or otherwise, to differentiate the function

$$
g(x)=\int_{\ln (x)}^{x^{2}} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t .
$$

(b) Let the function k be defined on \mathbf{R} by

$$
k(x)=\int_{1}^{x} \frac{1}{1+t^{3}+t^{6}} d t .
$$

(i) Without integrating, show that the function k is injective.
(ii) Determine $\left(k^{-1}\right)^{\prime}(0)$.
(c) Find the following limit.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \cdot \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right) .
$$

END OF PAPER

Answer To MA1102 Calculus

SECTION A (Compulsory)

1. The function f is defined by $f(x)=\left\{\begin{array}{c}x^{2}-14, \quad x<-3 \\ 5, \quad x=-3 \\ 6 x+13, \quad-3<x<1 \\ 2 x^{3}+17, \quad x \geq 1\end{array}\right.$.
(a) For $x<-3, f(x)=x^{2}-14>-5$. Also, for $x<-3, x^{2}-14>-5 \Leftrightarrow x<-3$.

Thus f maps $(-\infty,-3)$ onto $(-5, \infty)$. (Because for any $y>-5$, we can take

$$
x=-\sqrt{y+14}(<-3) \text { so that } f(x)=y) \text { Also, for }-3<x<1, f(x)=6 x+13 .
$$

Therefore, $-5<f(x)<19$. This is because $-3<x<1 \Leftrightarrow-5<6 x+13<19$. For any y with $-5<y<19$ we can take $x=\frac{y-13}{6}$ and for this value of $x,-3<x<1$. It follows that f maps $(-3,1)$ onto $(-5,19)$. Now for $x \geq 1, f(x)=2 x^{3}+17 \geq 19$. Also for any $y \geq 19$, we can take $x=\sqrt[3]{\frac{y-17}{2}} \geq 1$. Therefore, f maps $[1, \infty)$ onto $[19, \infty)$.
Hence the range of f is $f((-\infty,-3)) \cup\{f(-3)\} \cup f((-3,1)) \cup f([1, \infty))=(-5$, $\infty) \cup\{5\} \cup(-5,19) \cup[19, \infty)=(-5, \infty)$.
(b) By part (a) Range $(f)=(-5, \infty) \neq \mathbf{R}=$ codomain of f. Therefore, f is not surjective.
(c) and (d)

When $x<-3, f(x)=x^{2}-14$, which is a polynomial function. Therefore, f is differentiable on ($-\infty,-3$), since any polynomial function is differentiable on the real numbers and so is differentiable on any open interval. When $-3<x<1, f(x)=6 x+$ 13 and is a polynomial function and so f is differentiable on ($-3,1$). Likewise f is differentiable on $(1, \infty)$ since $f(x)=2 x^{3}+17$, a polynomial function. Thus we can conclude that f is differentiable at x for $x \neq-3$, 1 . Since differentiability implies continuity we conclude that f is continuous at x in \mathbf{R} for $x \neq-3,1$. Thus it remains to check if f is continuous at $x=-3$ or 1 . Consider the left limit at $x=-3$,
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} x^{2}-14=-5$ and the right limit at $x=-3$

$$
\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} 6 x+13=-5 .
$$

Thus, since $\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{+}} f(x), \lim _{x \rightarrow-3} f(x)=-5$. But $f(-3)=5$ and so $\lim _{x \rightarrow-3} f(x) \neq f(-3)$ and it follows that f is not continuous at $x=-3$. Now consider the left limit of f at $x=1$,
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 6 x+13=19$ and the right limit at $x=1$,

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2 x^{3}+17=19=f(1) .
$$

Therefore, $\lim _{x \rightarrow 1} f(x)=f(1)$ and so f is continuous at $x=1$.
Hence f is continuous at x for all $x \neq-3$.
(d) From above since f is not continuous at $x=-3, f$ is not differentiable at $x=-3$. Since we have already shown that f is differentiiable everywhere except for $x=-3$ or

1, it remains now to check the differentiability of f at $x=1$.
$\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{2 x^{3}+17-19}{x-1}=\lim _{x \rightarrow 1^{+}} 2\left(x^{2}+x+1\right)=6$
$\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{-}} \frac{6 x+13-19}{x-1}=\lim _{x \rightarrow 1^{-}} 6=6$.
Therefore, f is differentiable at $x=1$ since $\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$.
Hence, f is differentiable at x for x not equal to -3 .
e) $\quad \int_{-4}^{0} f(x) d x=\int_{-4}^{-3} f(x) d x+\int_{-3}^{0} f(x) d x$

$$
\begin{aligned}
& \left.=\int_{-4}^{-3}\left(x^{2}-14\right)\right) d x+\int_{-3}^{0}(6 x+13) d x \\
& =\left[\frac{x^{3}}{3}-14 x\right]_{-4}^{-3}+\left[3 x^{2}+13 x\right]_{-3}^{0} \\
& =\left[\frac{4^{3}-3^{3}}{3}-14\right]-27+39=101 / 3 .
\end{aligned}
$$

2. (a) $\lim _{x \rightarrow-\infty} \frac{3 x^{3}-7\left|x^{5}\right|+9}{49 x^{5}+5 x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{3 x^{3}+7 x^{5}+9}{49 x^{5}+5 x^{2}+1}$

$$
=\lim _{x \rightarrow-\infty} \frac{3 / x^{2}+7+9 / x^{5}}{49+5 / x^{3}+1 / x^{5}}=\frac{0+7+0}{49+0+0}=\frac{1}{7} .
$$

(b) $\lim _{x \rightarrow \infty}\left(1+x^{2}\right)^{1 / x^{2}}$. Let $y=\left(1+x^{2}\right)^{1 / x^{2}}$. Since
$\lim _{x \rightarrow \infty} \ln (y)=\lim _{x \rightarrow \infty} \frac{1}{x^{2}} \ln \left(1+x^{2}\right)=\lim _{x \rightarrow \infty} \frac{2 x /\left(1+x^{2}\right)}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{1+x^{2}}=0$ by L' Hôpital's
Rule.
Therefore,

$$
\lim _{x \rightarrow \infty} y=e^{\lim \operatorname{lin} \ln (y)}=e^{0}=1 .
$$

(c) $\lim _{x \rightarrow 0} \frac{\sin \left(\sin \left(x^{x}\right)\right)}{\sin \left(3 x^{2}\right)+x^{2}}=\lim _{x \rightarrow 0} \frac{\cos \left(\sin \left(x^{3}\right)\right) \cos \left(x^{3}\right) 3 x^{2}}{6 x \cos \left(3 x^{2}\right)+2 x}=\lim _{x \rightarrow 0} \frac{\cos \left(\sin \left(x^{3}\right)\right) \cos \left(x^{3}\right) 3 x}{6 \cos \left(3 x^{2}\right)+2}=\frac{0}{8}=0$ by L' Hôpital's Rule.
(d) $\lim _{x \rightarrow 4} \frac{\sqrt{20+x^{2}}-6}{x-4}=\lim _{x \rightarrow 4} \frac{\frac{1}{2}\left(20+x^{2}\right)^{-1 / 2} 2 x}{1}=\frac{4}{\sqrt{36}}=\frac{2}{3}$ by L' Hôpital's rule.
(e)
$\lim _{x \rightarrow 0^{+}} \sin \left(x^{2}\right) \ln \left(\sin \left(x^{2}\right)\right)=\lim _{x \rightarrow 0^{+}} \frac{\ln \left(\sin \left(x^{2}\right)\right)}{\csc \left(x^{2}\right)}=\lim _{x \rightarrow 0^{+}}-\frac{\cot \left(x^{2}\right) 2 x}{\csc \left(x^{2}\right) \cot \left(x^{2}\right) 2 x}=\lim _{x \rightarrow 0^{+}}-\sin \left(x^{2}\right)=0$ by L' Hôpital's rule and the last equality is because $\lim _{x \rightarrow 0^{+}} \sin \left(x^{2}\right)=\sin (0)=0$.
Therefore, $\lim _{x \rightarrow 0^{+}}\left(\sin \left(x^{2}\right)\right)^{\sin \left(x^{2}\right)}=e^{\lim _{x \rightarrow \infty} \sin \left(x^{2}\right) \ln \left(\sin \left(x^{2}\right)\right)}=e^{0}=1$.
3. (a) $\int \frac{15 x^{2} e^{5 x^{3}}+\sin (2 x)}{e^{5 x^{3}}+\sin ^{2}(x)+3} d x=\int \frac{1}{e^{5 x^{3}}+\sin ^{2}(x)+3} \frac{d y}{d x} d x$,

$$
\text { where } y=e^{5 x^{3}}+\sin ^{2}(x)+3, \frac{d y}{d x}=15 x^{2} e^{5 x^{3}}+\sin (2 x) \text {, }
$$

$$
\begin{aligned}
& =\int \frac{1}{y} d y \text { by substitution or change of variable } \\
& =\ln |y|+C=\ln \left(e^{5 x^{3}}+\sin ^{2}(x)+3\right)+C
\end{aligned}
$$

(b) $\quad \int_{-1}^{1} \sin (|x|+3) d x=\int_{-1}^{0} \sin (-x+3) d x+\int_{0}^{1} \sin (x+3) d x$

$$
\begin{aligned}
& =[\cos (-x+3)]_{-1}^{0}+[-\cos (x+3)]_{0}^{1} \\
& =2(\cos (3)-\cos (4)) .
\end{aligned}
$$

(c)

$$
g(x)=\left\{\begin{array}{c}
2 x^{3}+4, x \geq 1 \\
x^{4}+5, x<1
\end{array} .\right.
$$

Note that $\lim _{x \rightarrow 1^{+}} g(x)=\lim _{x \rightarrow 1^{+}}\left(2 x^{3}+4\right)=6=g(1)$ and

$$
\lim _{x \rightarrow 1^{-}} g(x)=\lim _{x \rightarrow 1^{-}}\left(x^{4}+5\right)=6 .
$$

Therefore, $\lim _{x \rightarrow 1} g(x)=g(1)$ and so g is continuous at $x=1$. Since g is a polynomial function on the open interval $(-\infty, 1)$ and also on $(1, \infty), g$ is continuous on these two intervals. Thus g is continuous on the whole of \mathbf{R}. Therefore, we can use the Fundamental Theorem of Calculus to obtain an antiderivative. By the FTC, $G(x)=\int_{1}^{x} g(t) d t$ is an antiderivative of $g(x)$.
Now $\quad G(x)=\int_{1}^{x} g(t) d t=\left\{\begin{array}{l}\int_{1}^{x} g(t) d t, x \geq 1 \\ \int_{1}^{x} g(t) d t, x<1\end{array}=\left\{\begin{array}{c}\int_{1}^{x}\left(2 t^{3}+4\right) d t, x \geq 1 \\ \int_{1}^{x}\left(t^{4}+5\right) d t, x<1\end{array}\right.\right.$

$$
=\left\{\begin{array}{l}
{\left[\frac{t^{4}}{2}+4 t\right]_{1}^{x}, x \geq 1} \\
{\left[\frac{t^{5}}{5}+5 t\right]_{1}^{x}, x<1}
\end{array}=\left\{\begin{array}{c}
\frac{x^{4}}{2}+4 x-\frac{9}{2}, x \geq 1 \\
\frac{x^{5}}{5}+5 x-\frac{26}{5}, x<1
\end{array} .\right.\right.
$$

(Any antiderivative of $\mathrm{g}(x)$ of the form $\mathrm{G}(x)+C$ is acceptable.).
(d)

$$
\int_{0}^{2} \frac{x+3}{x^{2}+4 x+4} d x=\int_{0}^{2} \frac{1}{x+2} d x+\int_{0}^{2} \frac{1}{(x+2)^{2}} d x=[\ln (x+2)]_{0}^{2}+\left[\frac{-1}{x+2}\right]_{0}^{2}=\ln (2)+\frac{1}{4} .
$$

(e) $\int x^{2} \cos (2 x) d x=x^{2} \frac{1}{2} \sin (2 x)-\int x \sin (2 x) d x$ by integration by parts

$$
=\frac{1}{2} x^{2} \sin (2 x)-\left(x\left(-\frac{1}{2} \cos (2 x)\right)+\int \frac{1}{2} \cos (2 x) d x\right)
$$

by integration by parts applied to $\int x^{2} \sin (x) d x$

$$
=\frac{1}{2}\left(x^{2} \sin (2 x)+x \cos (2 x)\right)-\frac{1}{4} \sin (2 x)+C
$$

Question 4.

(a) Note that g , being defined by a polynomial, is continuous on the closed interval $[0,5]$. Therefore, the Extreme value Theorem says that g has an absolute maximum value and an absolute minimum value.
Since $g(x)=x^{3}-6 x^{2}+9 x+12$, its derivative is given by $g^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)$.
Thus $g^{\prime}(x)=0$ if and only if $x=1$, and $x=3$. Therefore, the critical points of g in (0 , $5)$ are 1 and 3 . Now $g(0)=12, g(1)=16, g(3)=12$ and $g(5)=32$. Therefore, the absolute maximum value of g is 32 and the absolute minimum value of g is 12 .
(b) (i) $h(x)=\cos ^{-1}(\sin (2 x))$. Therefore, for x such that $\sin (2 x) \neq \pm 1$, that is for $2 x$ $\neq 2 n \pi \pm \pi / 2$ or equivalently $x \neq n \pi \pm \pi / 4$ any integer n,

$$
\begin{aligned}
h^{\prime}(x) & =\left(\cos ^{-1}\right)^{\prime}(\sin (2 x)) 2 \cos (2 x)=\frac{-2 \cos (2 x)}{\sqrt{1-\sin ^{2}(2 x)}} \\
& =\frac{1}{\sqrt{\cos ^{2}(2 x)}}(-2 \cos (2 x))=-2 \frac{\cos (2 x)}{|\cos (2 x)|}=-2 \operatorname{sign}(\cos (2 x)) .
\end{aligned}
$$

The left and right limits of $h^{\prime}(x)$ at $x=n \pi+\pi / 4$ or $n \pi-\pi / 4$ exist but are not the same by the above (one is 2 and the other -2 or the other way round). Therefore, h is not differentiable at these points. (For the reason for this see the artcle derived function and derivative.)
(ii) $j(x)=\ln \left(\frac{e^{x}+x^{2}}{1+e^{\left(x^{2}\right)}}\right)=\ln \left(e^{x}+x^{2}\right)-\ln \left(1+e^{\left(x^{2}\right)}\right)$.

Therefore, $j^{\prime}(x)=\ln ^{\prime}\left(e^{x}+x^{2}\right)\left(e^{x}+2 x\right)-\ln ^{\prime}\left(1+e^{\left(x^{2}\right)}\right) 2 x e^{\left(x^{2}\right)}=\frac{e^{x}+2 x}{e^{x}+x^{2}}-\frac{2 x e^{\left(x^{2}\right)}}{1+e^{\left(x^{2}\right)}}$.

$$
=\frac{e^{x^{2}+x}(1-2 x)+2 x e^{x^{2}}\left(1-x^{2}\right)+e^{x}+2 x}{\left(e^{x}+x^{2}\right)\left(1+e^{\left(x^{2}\right)}\right)}
$$

(iii) $k(x)=\ln \left(\ln \left(e^{x}+2\right)+x^{2}\right)$.

Therefore, $k(x)=\ln ^{\prime}\left(\ln \left(e^{x}+2\right)+x^{2}\right) \cdot\left(\ln ^{\prime}\left(e^{x}+2\right) e^{x}+2 x\right)$.

$$
\begin{aligned}
& =\frac{1}{\ln \left(e^{x}+2\right)+x^{2}} \cdot\left(\frac{e^{x}}{\left(e^{x}+2\right)}+2 x\right) \\
& =\frac{e^{x}+2 x e^{x}+4 x}{\left(\ln \left(e^{x}+2\right)+x^{2}\right)\left(e^{x}+2\right)} .
\end{aligned}
$$

(c) Let $g(x)=f(x)-x$. Then g is a continuous function on the interval [1,3] since f is continuous on $[1,3]$ and x is a continuous function and that we know that the difference of two continuous function is a continuous function.
Because $1 \leq f(x) \leq 3$ for all x in [1,3], $f(3)-3 \leq 0$ and $f(1)-1 \geq 0$.
I.e. $g(3)=f(3)-3 \leq 0 \leq f(1)-1=g(1)$. Therefore, by the Intermediate

Value Theorem, there exists a point c in $[1,3]$ such that $g(c)=0$. That is, $f(c)=c$.
5. $f(x)=x^{5}-10 x^{2}+1$. Note that f is continuous and differentiable on \mathbf{R}.

$$
f^{\prime}(x)=5 x^{4}-20 x=5 x\left(x^{3}-4\right)=5 x\left(x-4^{(1 / 3)}\right)\left(x^{2}+4^{(1 / 3)} x+4^{(2 / 3)}\right)
$$

Now we know that the cubic $g(x)=x^{3}-4=0$ has a real root. We have used the identy
$\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$ to obtain the above factorisation Notice that $\left.x^{2}+4^{(1 / 3)} x+4^{(2 / 3)}=\left(x+4^{(1 / 3)} / 2\right)^{2}+4^{(2 / 3)}-\frac{1}{4} 4^{(2 / 3)}\right)>0$.

Thereofore,

$$
\begin{align*}
& f^{\prime}(x)=5 x\left(x-4^{(1 / 3)}\right)\left(\left(x+4^{(1 / 3)} / 2\right)^{2}+\frac{3}{4} 4^{(2 / 3)}\right) \tag{1}\\
& f^{\prime \prime}(x)=20 x^{3}-20=20\left(x^{3}-1\right)=20(x-1)\left(x^{2}+x+1\right)=20(x-1)\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)--
\end{align*}
$$

So f " is given by a cubic polynomial function. Again we know it must have a real root. The root is easily obtained by the above factorisation.
a.

From (1), $f^{\prime}(x)=0$ if and only if $x=0$ and $x=4^{(1 / 3)}$. From (1) the sign of $f^{\prime}(x)$ is the same as the sign of $x\left(x-4^{(1 / 3)}\right)$ because $\left(x+4^{(1 / 3)} / 2\right)^{2}+\frac{3}{4} 4^{(2 / 3)}>0$. Thus we have: $x<0 \Rightarrow x<4^{(1 / 3)} \Rightarrow x-4{ }^{(1 / 3)}<0 \Rightarrow x\left(x-4^{(1 / 3)}\right)>0 \Rightarrow f^{\prime}(x)>0$ so that f is increasing on $(-\infty, 0]$. Now $0<x<4^{(1 / 3)} \Rightarrow x-4^{(1 / 3)}<0 \Rightarrow x\left(x-4^{(1 / 3)}\right)<0 \Rightarrow f^{\prime}(x)<0$ so that f is decreasing on $\left[0,4{ }^{(1 / 3)}\right]$ and $x>4{ }^{(1 / 3)} \Rightarrow x\left(x-4{ }^{(1 / 3)}\right)>0 \Rightarrow f^{\prime}(x)>0$ so that f is increasing on $\left[4^{(1 / 3)}, \infty\right)$. Now that the end points of the interval are included by virtue of continuity there.
b. From (2), $f^{\prime \prime}(x)=0 \Leftrightarrow x=1$ and that the sign of $f^{\prime \prime}(x)$ is the same as that of $x-1$. Now $x<1 \Rightarrow x-1<0 \Rightarrow f^{\prime \prime}(x)<0$. Therefore, the graph of f is concave downward on the interval $(-\infty, 1)$. Likewise from (2), $x>1 \Rightarrow x-1>0$ so that $f^{\prime \prime}(x)>0$ when $x>1$. Thus the graph of f is concave upward on $(1, \infty)$.
c. From part a, by the first derivative test, $f(0)=1$ is a relative maximum and $f\left(4^{(1 / 3)}\right)=1-12 * 2^{(1 / 3)}$ is a relative minimum.
d. From part b, since at $x=1$, there is a change of concavity before and after $x=1$, $(1, f(1))=(1,-8)$ is a point of inflection of the graph of f. There are no other points of inflection.
e.
(18)
6. (a)

Fundamental Theorem of Calculus.

Let f be a continuous function defined on $[a, b]$. For the function F defined on $[a, b]$ by $F(x)=\int_{a}^{x} f(t) d t, F$ is differentiable at each x in $[a, b]$ and $F^{\prime}(x)=f(x)$. I.e. F is a special anti-derivative of f given via the definition of Riemann integral. Moreover, for any anti-derivative G of $f, \int_{a}^{b} f(t) d t=G(b)-G(a)$.

$$
\begin{gathered}
g(x)=\int_{\ln (x)}^{x^{2}} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t=\int_{0}^{x^{2}} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t+\int_{\ln (x)}^{0} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t \\
=\int_{0}^{x^{2}} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t-\int_{0}^{\ln (x)} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t
\end{gathered}
$$

$$
=F\left(x^{2}\right)-F(\ln (x)) \quad \text { where } F(x)=\int_{0}^{x} \frac{1}{1+e^{3 t}+\sin ^{2}(t)} d t
$$

Therefore,

$$
\begin{aligned}
g^{\prime}(x) & =F^{\prime}\left(x^{2}\right) \cdot 2 x-F^{\prime}(\ln (x)) \cdot\left(\frac{1}{x}\right) \text { by the Chain Rule } \\
& =\frac{2 x}{1+e^{3 x^{2}}+\sin ^{2}\left(x^{2}\right)}-\frac{1}{x\left(1+x^{3}+\sin ^{2}(\ln (x))\right)} \text { by the FTC. }
\end{aligned}
$$

(b) (i) Since $k(x)=\int_{1}^{x} \frac{1}{1+t^{3}+t^{6}} d t$, by the FTC,

$$
k^{\prime}(x)=\frac{1}{1+x^{3}+x^{6}}>0 \text { since } 1+x^{3}+x^{6}=\left(x^{3}+\frac{1}{2}\right)^{2}+\frac{3}{4}>0
$$

Therefore, k is increasing on the whole of \mathbf{R}. Thus k is injective.
(ii) $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}$. So we need to know the value of $k^{-1}(0)$. Now $k^{-1}(0)=x \Leftrightarrow k(x)=0 \Leftrightarrow \int_{1}^{x} \frac{1}{1+t^{3}+t^{6}} d t=0$. Since $k(1)=\int_{1}^{1} \frac{1}{1+t^{3}+t^{6}} d t=0$ and k is injective, $x=1$.
Therefore, $\left(k^{-1}\right)^{\prime}(0)=\frac{1}{k^{\prime}\left(k^{-1}(0)\right)}=\frac{1}{k^{\prime}(1)}=\frac{1}{\frac{1}{3}}=3$.
(c) Try to write the following as a Riemann sum

$$
\sum_{i=1}^{n} \frac{i}{n^{2}} \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right)=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $x_{0}<x_{1}<\cdots<x_{n}$ is a regular partition and $\Delta x=\Delta x_{i}=x_{i}-x_{i-1}$.
Therefore, we can take $x_{i}=\frac{i}{n}$ so that $\Delta x=\frac{1}{n}, x_{0}=0$ and $x_{n}=1$. Thus by comparing $f\left(x_{i}\right) \Delta x$ with $\frac{i}{n^{2}} \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right)=\frac{i}{n} \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right) \cdot \frac{1}{n}$ we would want $f\left(x_{i}\right)=f\left(\frac{i}{n}\right)=\frac{i}{n} \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right)$. Thus $f(x)=x \sin \left(2+4 x^{2}\right)$.
Therefore, $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i}{n^{2}} \sin \left(2+4\left(\frac{i}{n}\right)^{2}\right)=\int_{0}^{1} x \sin \left(2+4 x^{2}\right) d x=\frac{1}{8}\left[-\cos \left(2+4 x^{2}\right)\right]_{0}^{1}$

$$
=\frac{1}{8}(\cos (2)-\cos (6)) .
$$

