## SECTION A

## Question 1

This tests concept of range of a function, continuity, differentiability and integration over a piece-wise polynomial.

The function $f$ is defined by

$$
f(x)=\left\{\begin{array}{c}
x^{2}-9, \quad x<-3 \\
3, x=-3 \\
3 x+9,-3<x<1 \\
x^{3}+11, \quad x \geq 1
\end{array} .\right.
$$

(a) For $x<-3$,

$$
f(x)=x^{2}-9=(-x)^{2}-9>0 .
$$

Also, for $x<-3$,

$$
x^{2}-9>0 \Leftrightarrow x<-3 .
$$

Thus $f$ maps $(-\infty,-3)$ onto $(0,+\infty)$.
(Because for any $y>0$, we can take

$$
x=-\sqrt{9+y} .)
$$

Also,
$-3<x<1$ if and only if $0<3 x+9<12$.
Thus $f$ maps $(-3,1)$ onto $(0,12)$.
Finally for $x \geq 1, f(x)=x^{3}+11 \geq 12$.
And for any $y \geq 12$, we can take

$$
x=\sqrt[3]{y-11} \geq 1
$$

Hence $f$ maps $[1, \infty)$ onto $[12, \infty)$.
Therefore, the range of $f$ is

$$
(0, \infty) \cup\{3\} \cup(0,12) \cup[12, \infty)=(0, \infty)
$$

(b) (i) From part (a) 3 is in the image of $(-\infty,-3)$ under $f$.

Thus, to find the preimage we need to solve the equation $x^{2}-9=3$ for $x<-3$. Solving this gives $x=-\sqrt{12}=-2 \sqrt{3}$.

Obviously $f(-3)=3$. Also 3 is in the image of $(-3,1)$ under $f$. Solving $3 x+9=3$ gives $x=-2$. Thus the desired values of $x$ are

$$
\{-2 \sqrt{3},-3,-2\}
$$

(ii) From part (a) 0 is not in the range of $f$. Thus, there is no value of $x$ for which

$$
f(x)=0
$$

(c) When $x<-3, f(x)=x^{2}-9$, which is a polynomial function, therefore $f$ is
continuous on $(-\infty,-3)$, since any polynomial function is continuous on the real numbers and so is continuous on any interval.

Similarly, $f$ is continuous on the interval $(-3,1)$ and on the interval $(1, \infty)$. Thus it remains to check if $f$ is continuous at $x=-$ 3 or 1 . Consider the left limit of $f$ at $x=-3$,

$$
\lim _{x \rightarrow(-3)^{-}} f(x)=\lim _{x \rightarrow(-3)^{-}} x^{2}-9=0
$$

and the right limit at $x=-3$

$$
\lim _{x \rightarrow(-3)^{+}} f(x)=\lim _{x \rightarrow(-3)^{+}} 3 x+9=0
$$

Thus the limit at $x=-3$ is equal to 0 but not equal to $f(-3)=3$. Therefore $f$ is not continuous at $x=-3$.

Now consider the left limit of $f$ at $x=1$,

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 3 x+9=12
$$

and the right limit at $x=1$,
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{3}+11=1+11=12=f(1)$.

Thus the left and the right limits of $f$ at $x=1$ are the same and is equal to the value of the function $f$ at $x=1$ and so $f$ is continuous at $x=1$.

Hence $f$ is continuous at $x$ for all $x \neq-3$.
(d) $f$ is differentiable at $x=1$. This is seen as follows.

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} \\
& \quad=\lim _{h \rightarrow 0^{-}} \frac{3(1+h)+9-12}{h}=3 \text { and } \\
& \lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(1+h)^{3}+11-12}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{h^{3}+3 h^{2}+3 h}{h}=3 .
\end{aligned}
$$

Thus $f$ is differentiable at $x=1$ and $f^{\prime}(1)=$ 3.
(e) $\int_{-1}^{2} f(x) d x=\int_{-1}^{1} f(x) d x+\int_{1}^{2} f(x) d x$

$$
=\int_{-1}^{1}(3 x+9) d x+\int_{1}^{2}\left(x^{3}+11\right) d x
$$

$$
=\left[3 x^{2}+9 x\right]_{-1}^{1}+\left[\frac{x^{4}}{4}+11 x\right]_{1}^{2}
$$

$$
=18+11+4-\frac{1}{4}=32 \frac{3}{4} .
$$

## Question 2.

(a) $\lim _{x \rightarrow \infty} \frac{7 x^{5}+41 x+5}{14 x^{5}-103 x^{2}+7}=\lim _{x \rightarrow \infty} \frac{7+\frac{41}{x^{4}}+\frac{5}{x^{5}}}{14-\frac{103}{x^{3}}+\frac{7}{x^{5}}}$

$$
=\frac{7+0+0}{14-0+0}=\frac{1}{2} .
$$

(b) $\lim _{x \rightarrow 0} \frac{\sqrt{17 x+49}-7}{4 x}$

$$
\begin{aligned}
=\lim _{x \rightarrow 0} & \frac{(\sqrt{17 x+49}-7)(\sqrt{17 x+49}+7)}{4 x(\sqrt{17 x+49}+7)} \\
& =\lim _{x \rightarrow 0} \frac{17 x+49-49}{4 x(\sqrt{17 x+49}+7)} \\
& =\lim _{x \rightarrow 0} \frac{17}{4(\sqrt{17 x+49}+7)}=\frac{17}{56} .
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{x^{3}}{7 x}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{\ln (7) 7^{x}}=\lim _{x \rightarrow \infty} \frac{6 x}{(\ln (7))^{2} 7^{x}}$
$=\lim _{x \rightarrow \infty} \frac{6}{(\ln (7))^{37 x}}=0$ by L' Hopital's rule.
(d) $\lim _{x \rightarrow \infty} \frac{\cos \left(e^{x}+1\right)}{x}$.

For $x>0, \quad\left|\frac{\cos \left(e^{x}+1\right)}{x}\right| \leq\left|\frac{1}{x}\right|$.
Thus, for $x>0,-\left|\frac{1}{x}\right| \leq \frac{\cos \left(e^{x}+1\right)}{x} \leq\left|\frac{1}{x}\right|$.
Since $\lim _{x \rightarrow \infty}\left|\frac{1}{x}\right|=0$, by the Squeeze Theorem,

$$
\lim _{x \rightarrow \infty} \frac{\cos \left(e^{x}+1\right)}{x}=0 .
$$

(e) For $0<x<\pi / 2,0<\sin (x)<1$ and so $[\sin (x)]=0$.

Also for $-\pi / 2<x<0,-1<\sin (x)<0$
so that $[\sin (x)]=-1$. Hence,

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}}[\sin (x)]=0 \text { and } \\
& \lim _{x \rightarrow 0^{-}}[\sin (x)]=-1 .
\end{aligned}
$$

Thus the limit $\lim _{x \rightarrow 0}[\sin (x)]$ does not exist.

## Question 3

(a) $\int \frac{d x}{(x+5)(x+6)}=\int\left(\frac{1}{x+5}-\frac{1}{x+6}\right) d x$

$$
=\ln \left(\frac{|x+5|}{|x+6|}\right)+C .
$$

(b) $\int x^{5} \sqrt{x^{6}+8} d x=\frac{1}{6} \int y^{\frac{1}{2}} \frac{d y}{d x} d x=\frac{1}{6} \int y^{\frac{1}{2}} d y$

$$
=\frac{1}{9} \cdot y^{\frac{3}{2}}+C=\frac{1}{9}\left(x^{6}+8\right)^{\frac{3}{2}}+C,
$$

where $y=\left(x^{6}+8\right)$.
(c) $\int_{0}^{2} \sqrt{3+|x-1|} d x$

$$
\begin{aligned}
& =\int_{0}^{1} \sqrt{3+|x-1|} d x+\int_{1}^{2} \sqrt{3+|x-1|} d x \\
& =\int_{0}^{1} \sqrt{4-x} d x+\int_{1}^{2} \sqrt{2+x} d x \\
& =-\frac{2}{3}\left[(4-x)^{\frac{3}{2}}\right]_{0}^{1}+\frac{2}{3}\left[(2+x)^{\frac{3}{2}}\right]_{1}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{3}\left\{\left(-3^{\frac{3}{2}}+4^{\frac{3}{2}}\right)+\left(4^{\frac{3}{2}}-3^{\frac{3}{2}}\right)\right\} \\
& =\frac{32}{3}-4 \sqrt{3} .
\end{aligned}
$$

$$
\text { (d) } \begin{aligned}
& \int_{0}^{\ln (4)} e^{x}\left(5+e^{x}\right)^{2} d x=\left[\frac{\left(5+e^{x}\right)^{3}}{3}\right]_{0}^{\ln (4)} \\
& \quad=\frac{1}{3}\left(9^{3}-6^{3}\right)=81+36+54=171 .
\end{aligned}
$$

## Question 4.

(a) $g(x)=\frac{x^{3}+3 x^{2}+2 x+1}{x+1}$ on $[0,1]$. The
function $g$ is continuous on $[0,1]$ and
$g^{\prime}(x)=\frac{2 x^{3}+6 x^{2}+6 x+1}{(x+1)^{2}} \neq 0$ on the open interval $(0,1)$.

Thus there are no critical points in $(0,1)$.

$$
g(0)=1, g(1)=7 / 2 .
$$

Thus the absolute minimum value of $g$ on $[0$, 1] is 1 and the absolute maximum value of $g$ on $[0,1]$ is $7 / 2$.
(b) (i) For $h(x)=x^{4}-4 x^{3}+2 x^{2}-12 x+2, h(0)$
$=2$ and $h(1)=1-4+2-12+2=-11<0$.

Since $h$ is a polynomial function on [0,1], $h$ is continuous on $[0,1]$. Therefore, by the Intermediate Value Theorem, there is a point $k$ in $(0,1)$ such that
$h(k)=0$. It follows that there is a point $k$ in
$(0,3)$ such that $h(k)=0$.
(ii) For $x$ in $\mathbf{R}$,
$h^{\prime}(x)=4 x^{3}-12 x^{2}+4 x-12=4\left(x^{2}+1\right)(x-3)$.
If $h$ has two distinct roots in $(-\infty, 3)$, then
since $h$ is differentiable on the whole of
$(-\infty, 3)$ by Rolle's theorem, there is a point $c$ in $(-\infty, 3)$ with $h^{\prime}(c)=0$. But for any $c$ in
$(-\infty, 3), c<3$ so that $c-3<0$ and so
$h^{\prime}(c)=4\left(c^{2}+1\right)(c-3)<0$, i.e. $h^{\prime}(c) \neq 0$.
This contradiction shows that $h$ can
have only one root. Thus by (i) $h$ has exactly one such root $k$ in $(-\infty, 3)$.

Alternatively, since $h^{\prime}(x)<0$ for $x<3, h$ is decreasing on $(-\infty, 3$ ] and so $h$ is injective on $(-\infty, 3]$. Therefore by part (i) there is exactly one root $k$ in $(-\infty, 3)$.
(c) Consider the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}
$$

If this limit exists, then so is the following limit

$$
\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right| .
$$

Therefore, if $\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right|$ does not exist, then
$\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ does not exist.

Now by property 2 , for $x \neq 0$,

$$
\left|\frac{f(x)}{x}\right|=\frac{|f(x)|}{|x|} \geq \frac{\sqrt{|x|}}{|x|}=\frac{1}{\sqrt{|x|}} .
$$

Since $\lim _{x \rightarrow 0} \frac{1}{\sqrt{|x|}}=+\infty$, the limit $\lim _{x \rightarrow 0}\left|\frac{f(x)}{x}\right|$ dose not exist.

Thus $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x}$ does not exist. Therefore, $f$ is not differentiable at $x=$ 0.

## Question 5

Since $f(x)=\left\{\begin{array}{c}x^{3}-1, x \leq 1 \\ 4 x-x^{2}-3, x>1\end{array}\right.$, we note that $f$ is continuous on $\mathbf{R}$ because $f$ is a polynomial function on $(-\infty, 1)$ and also on $(1, \infty)$ and that

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=0=f(1) .
$$

Then $\quad f^{\prime}(x)=\left\{\begin{array}{c}3 x^{2}, x<1 \\ 4-2 x, x>1\end{array}\right.$
$f^{\prime \prime}(x)=\left\{\begin{array}{cc}6 x, & x<1 \\ -2, & x>1\end{array}\right.$
(a) Deducing from (1):
for $x<0, x^{2}>0$ and $3 x^{2}>0$ so that
$f^{\prime}(x)>0$. Since $f$ is continuous at $x=0, f$ is increasing on the interval $(-\infty, 0]$.

For $0<x<1,3 x^{2}>0$ so that $f^{\prime}(x)>0$. Hence $f$ is increasing on $[0,1]$ since $f$ is continuous at $x=0$ and at $x=1$.
For $1<x<2,(4-2 x)>0$ so that $f^{\prime}(x)>0$.
Thus we have that
$f$ is increasing on $[1,2]$ since $f$ is
continuous at $x=2$.
Therefore, $f$ is increasing on $(-\infty, 2]$.
Finally for $x>2,4-2 x<0$ and so by (1)
$f^{\prime}(x)<0$ and we conclude that $f$ is
decreasing on $[2, \infty)$.
(b) From (2) when $x<0, f^{\prime \prime}(x)<0$. Hence the graph of $f$ is concave downward on the interval $(-\infty, 0)$. Also from (2), when $1>x>0, f^{\prime \prime}(x)>0$. Thus the graph of $f$ is concave upward on the interval ( 0,1 ). Again from (2), for $x>1$, $f^{\prime \prime}(x)=-2<0$ and so the graph of $f$ is concave downward on $(1, \infty)$.
(c) Now $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}-(x-2)^{2}+1=-\infty$.

Thus $f$ has no absolute minimum. From part
(a), $f$ is increasing on $(-\infty, 2$ ] and decreasing
on $[2, \infty)$. Therefore

$$
f(2)=1
$$

is the absolute maximum of $f$.
(d) From part (b),

$$
(0, f(0))=(0,-1) \text { and }(1, f(1))=(1,0)
$$

are the points of inflection of the graph of $f$ since at $x=0$ and at $x=1$ respectively, there is a change of concavity before and after the point $x$.
[4] (e)


The graph of $f$ (not drawn to scale)

## Question 6

(a) (i)
$g(x)=\int_{-x}^{x^{2}} \frac{1}{2+t^{2}+\sin (2 t)} d t$

$$
\begin{aligned}
& =\int_{0}^{x^{2}} \frac{1}{2+t^{2}+\sin (2 t)} d t+\int_{-x}^{0} \frac{1}{2+t^{2}+\sin (2 t)} d t \\
& =\int_{0}^{x^{2}} \frac{1}{2+t^{2}+\sin (2 t)} d t-\int_{0}^{-x} \frac{1}{2+t^{2}+\sin (2 t)} d t \\
& =F\left(x^{2}\right)-F(-x)
\end{aligned}
$$

$$
\text { where } F(x)=\int_{0}^{x} \frac{1}{2+t^{2}+\sin (2 t)} d t .
$$

Therefore,

$$
g^{\prime}(x)=F^{\prime}\left(x^{2}\right) \cdot 2 x-F^{\prime}(-x) \cdot(-1)
$$

by the Chain Rule

$$
=\frac{2 x}{2+x^{4}+\sin \left(2 x^{2}\right)}+\frac{1}{2+x^{2}-\sin (2 x)}
$$

(ii) Since $h(x)=5^{x^{2}}\left(x^{3}+1\right)$,

$$
\ln (h(x))=x^{2} \ln (5)+\ln \left(x^{3}+1\right)
$$

Thus, differentiating the above on both sides gives

$$
\frac{h^{\prime}(x)}{h(x)}=\ln (5)(2 x)+\frac{3 x^{2}}{x^{3}+1} .
$$

Therefore,

$$
\begin{aligned}
h^{\prime}(x)= & 5^{x^{2}}\left(x^{3}+1\right)\left(\ln (5)(2 x)+\frac{3 x^{2}}{x^{3}+1}\right) \\
& =5^{x^{2}}\left(2 \ln (5) x\left(x^{3}+1\right)+3 x^{2}\right) .
\end{aligned}
$$

(b) (i)

Since $f(x)=\int_{1}^{x} \sqrt{1+3 t^{2}+t^{4}} d t$, by the FTC,

$$
f^{\prime}(x)=\sqrt{1+3 x^{2}+x^{4}} \geq 1>0 .
$$

Therefore, $f$ is increasing on the whole of $\mathbf{R}$. Thus $f$ is injective.
(ii) $\left(f^{-1}\right)^{\prime}(0)=\frac{1}{f^{\prime}\left(f^{-1}(0)\right)}$. So we need to know the value of $f^{-1}(0)$. Now

$$
\begin{aligned}
f^{-1}(0)=x & \Leftrightarrow f(x)=0 \\
& \Leftrightarrow \int_{1}^{x} \sqrt{1+3 t^{2}+t^{4}} d t=0 .
\end{aligned}
$$

Since
$f(1)=\int_{1}^{1} \sqrt{1+3 t^{2}+t^{4}} d t=0$ and $f$ is injective, $x=1$.

Therefore,

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(0) & =\frac{1}{f^{\prime}\left(f^{-1}(0)\right)} \\
& =\frac{1}{f^{\prime}(1)}=\frac{1}{\sqrt{1+3+1}}=\frac{1}{\sqrt{5}} .
\end{aligned}
$$

(c)

$$
\begin{equation*}
|x|+4>|x-1| \tag{1}
\end{equation*}
$$

For $x<0$, the inequality (1) becomes

$$
-x+4>-(x-1)
$$

That is $4>1$ which is true.
So the solution set is $(-\infty, 0)$ for this part.
For $0 \leq x<1$, the inequality (1) becomes

$$
x+4>-(x-1)
$$

That is

$$
2 x>-3 \text { or } x>-3 / 2 . \text { Hence the }
$$

solution set is $[0,1)$.
For $x \geq 1$, the inequality becomes $x+4>x-1$ which is always true.
Therefore the solution set to (1) is $\mathbf{R}$.
Alternatively,

$$
|x-1|-|x| \leq|(x-1)-x|=1<4
$$

