2005/2006 Semester 2

MA1102R Calculus

Solution to Tutorial 3

See <u>Guide and Comment for Tutorial Assignment</u> in the web-page for the learning objective of Tutorial 3.

For Questions 1 and 2. Be aware of the techniques and consideration used to evaluate each of the limit. (See Example Sessions page on Prof. Ng Calculus web site.)

1. a.
$$\lim_{x \to 2} \frac{9x^2 + 5x - 2}{x - 4} = -22.$$

b.
$$\lim_{x \to 1} \frac{x^3 + 4x^2 - 4x - 1}{x - 1} = 7.$$

c.
$$\lim_{x \to 4} \frac{3\sqrt{x^2 + 1} - 3\sqrt{17}}{x - 4} = \lim_{x \to 4} \frac{(^3\sqrt{x^2 + 1} - ^3\sqrt{17})((^3\sqrt{x^2 + 1})^2 + (^3\sqrt{x^2 + 1})(^3\sqrt{17}) + (^3\sqrt{17})^2)}{(x - 4)((^3\sqrt{x^2 + 1})^2 + (^3\sqrt{x^2 + 1})(^3\sqrt{17}) + (^3\sqrt{17})^2)}$$

$$= \lim_{x \to 4} \frac{x^2 + 1 - 17}{(x - 4)((^3\sqrt{x^2 + 1})^2 + (^3\sqrt{x^2 + 1})(^3\sqrt{17}) + (^3\sqrt{17})^2)}$$

$$= \lim_{x \to 4} \frac{(x - 4)(x + 4)}{(x - 4)((^3\sqrt{x^2 + 1})^2 + (^3\sqrt{x^2 + 1})(^3\sqrt{17}) + (^3\sqrt{17})^2)}$$

$$= \lim_{x \to 4} \frac{(x - 4)(x + 4)}{((^3\sqrt{x^2 + 1})^2 + (^3\sqrt{x^2 + 1})(^3\sqrt{17}) + (^3\sqrt{17})^2)} = \frac{8}{3(^3\sqrt{17})^2} = \frac{8}{51}(^3\sqrt{17})$$

d.
$$\lim_{x \to 5} \frac{\sqrt{x^2 + 1} - \sqrt{26}}{x - 5} = \frac{5}{\sqrt{26}} = \frac{5\sqrt{26}}{26}.$$

e.
$$\lim_{t \to 0} \frac{(k+t)^3 - k^3}{t} = \lim_{t \to 0} \frac{k^3 + 3k^2 t + 3kt^2 + t^3 - k^3}{t} = \lim_{t \to 0} (3k^2 + 3kt + t^2) = 3k^2.$$

2. a.
$$\lim_{x \to 7^+} \frac{x-6}{1-\sqrt{x-7}} = \frac{\lim_{x \to 7^+} (x-6)}{\lim_{x \to 7^+} (1-\sqrt{x-7})} = \frac{1}{1-0} = 1.$$

b. The main point is to rewrite the function on the left of the point 5 in a form that we know its limit. Start with an open interval (small enough) on the left of 5, say (4,5). If we can obtain a polynomial then we are done. If not take an even smaller interval say (41/2, 5). If after several trials, it looks as if nothing familiar can be obtained in this way, then other properties of the function would have to be used. Observe that $4 < x < 5 \Rightarrow |x-7| - |x-2| = -(x-7) - (x-2) = 9 - 2x$. Therefore, $\lim_{x\to 5^-} (|x-7| - |x-2|) = \lim_{x\to 5^-} (9 - 2x) = 9 - 10 = -1$.

Exercise. Try to work out $\lim_{x \to \pm^+} (|x - 7| - |x - 2|)$. You may use Derive to check your answer.

- **Remark:** If $\lim_{x \to a} f(x) = L$, then $\lim_{x \to a} |f(x)| = |L|$. Use this result and part b would be an easy consequence. **Try proving this.** (Use the Epsilon-Delta definition of limit and the property (15) of inequality, page 25, Calculus, An introduction.)
- 3. As in 2(b), work on suitable open intervals to simplify the function.

a. We begin by observing that
$$2 < x < 3 \Rightarrow 1 < x/2 < 1.5 \Rightarrow [x/2] = 1$$

and $2 < x < 3 \Rightarrow -1.5 < -x/2 < -1 \Rightarrow [-x/2] = -2$.
Hence, $2 < x < 3 \Rightarrow g(x) = 1 + [2x] + [-2x] = 1 + 1 - 2 = 0$. Therefore,
 $\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} 0 = 0$.
b. Now $1 < x < 2 \Rightarrow 0.5 < x/2 < 1 \Rightarrow [x/2] = 0$ and
 $1 < x < 2 \Rightarrow -1 < -x/2 < -0.5 \Rightarrow [x/2] = -1$
Thus, $1 < x < 2 \Rightarrow g(x) = 1 + [x/2] + [-x/2] = 1 + 0 - 1 = 0$.
MAT3©NGTB

Therefore, $\lim_{x \to \infty} g(x) = \lim_{x \to \infty} 0 = 0.$

c. Since the left and the right limits at x = 2 exist and are both equal to 0, $\lim_{x \to 2} g(x) = 0$.

4. (THE MAIN IDEA IS TO CHOOSE A SUITABLE OPEN INTERVAL ON THE LEFT OF 3)

To evaluate $\lim_{x\to 3^-} [x^2 - 3]$, we look at $[x^2 - 3]$, on (2,3). For 2 < x < 3, we have $1 < x^2 - 3 < 6$. Thus, possible values for $[x^2 - 3]$ are 1, 2, 3, 4, 5. We note that $[x^2 - 3] = 5 \iff 5 \le x^2 - 3 < 6 \iff 8 \le x^2 < 9$(1) This suggests that it is enough to consider $x \in (\sqrt{8}, 3)$. For $x \in (\sqrt{8}, 3), [x^2 - 3] = 5$ (by (1)). Hence $\lim_{x\to 3^-} [x^2 - 3] = 5$.

Work out $\lim_{x\to 3^+} [x^2 - 3]$ as an exercise, by choosing a suitable open interval on the right of 3.

- 5. a. Now $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (7x 5) = 21 5 = 16$ and $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (x^{2} + x - 5) = 9 + 3 - 5 = 7$. Thus $\lim_{x \to 3^{-}} f(x) \neq \lim_{x \to 3^{+}} f(x)$. Therefore, $\lim_{x \to 3} f(x)$ does not exist.
- 6. It is important to state the reason of obtaining equations relating *a* and *b*. (The existence of limit at a point requires the existence and the equality of the left and the right limits.)
 - a lim_{x→-2⁻} f(x) = lim_{x→-2⁻} (5x + a) = -10 + a and lim_{x→-2⁺} f(x) = lim_{x→-2⁻} (ax² + 4b) = 4a + 4b. For the limit lim_{x→2} f(x) to exist, lim_{x→-2⁻} f(x) = lim_{x→-2⁺} f(x). Hence, we must have -10 + a = 4a + 4b, i.e., 3a + 4b = -10 (1)
 Also lim_{x→3⁻} f(x) = lim_{x→3⁻} (ax² + 4b) = 9a + 4b and lim_{x→3⁺} f(x) = lim_{x→3⁺} (4b - 12x) = 4b - 36. For the limit at x = 3 to exist, the left and the right limits must be the same. So we must have 9a + 4b = 4b - 36, i.e., 9a = -36 so that a = -4. Hence from equation (1) we have 4b = -3a - 10 = 12 - 10 = 2. Thus b = 1/2.
 b. With the found values of a and b above we have lim_{x→-2} f(x) = -10 + a = -10 - 4 = -14 and lim_{x→3} f(x) = 4b - 36 = 2 - 36 = -34.
 - c. Now f(-2) = -14. So $\lim_{x \to -2} f(x) = -14 = f(-2)$. Also $f(3) = -11 \neq \lim_{x \to 3} f(x)$.
- 7. False. Take f(x) = |x| or $f(x) = x^2$.

8. (OPTIONAL) (a) Given $\varepsilon > 0, \exists \delta > 0$ such that $0 < |x-3| < \delta \Rightarrow |f(x)-5| < \varepsilon/2 \Rightarrow 2|f(x)-5| < \varepsilon.$ Thus, $0 < |x-3| < \delta \Rightarrow |2f(x)-10| = 2|f(x)-5| < \varepsilon.$ This says then $\lim_{x \to 3} 2f(x) = 10.$

(b) (i)
$$|x^2 - 1| = |x - 1| \cdot |x + 1| < |x - 1| \cdot 5$$

 < 0.1 if $|x + 1| < 5$
 < 0.1 if $5|x - 1| < 0.1$.
Now $|x + 1| < 5 \Leftrightarrow -6 < x < 4$ and
 $5|x - 1| < 0.1 \Leftrightarrow 1 - 0.02 < x < 1 + 0.02 \Leftrightarrow 0.98 < x < 1.02$.
Taking intersection gives $0.98 < x < 1.02$ I.e. $|x - 1| < 0.02$

MAT3©NGTB

Choose $\delta = 0.02$. Need to check that this choice does work: $|x-1| < 0.02 \iff 0.98 < x < 1.02 \iff 1.98 < x+1 < 2.02$ Thus, $|x-1| < 0.02 \Rightarrow |x^2 - 1| = |x-1|.|x+1| < 2.02 \times 0.02 < 0.1$.

(ii) Given $\varepsilon > 0$, you want to find a $\delta > 0$, such that $|x^2 - 1| = |x - 1||x + 1| < \varepsilon$. Notice that for x near x = 1, x+1 cannot be large and would lie in a small interval. Start with 0 < x < 2 (i.e. |x-1| < 1), then 1 < x+1 < 3 and so |x+1| = x+1 < 3And so when |x - 1| < 1, $|x^2 - 1| = |x - 1||x + 1| < 3|x - 1|$ ------- (1) Now given $\varepsilon > 0$, if $|x - 1| < \varepsilon / 3$, then $3 |x - 1| < \varepsilon$ ------ (2) Choose $\delta = \min(1, \frac{\varepsilon}{3})$. Then $\delta \le 1, \varepsilon/3$. Thus both (1) and (2) holds when $|x-1| < \delta$. $|x-1| < \delta \Longrightarrow |x-1| < 1$ and $|x-1| < \frac{\varepsilon}{3}$ $\Rightarrow |x^2 - 1| = |x - 1|.|x + 1| < 3|x - 1|$ by (1) $< \varepsilon$ by (2)

Here is another way to get δ for part (i). Take $\delta = \min(1, (0.1)/3) = 1/30$.