National University of Singapore

Department of Mathematics

level 1000 (2005/2006) Semester 2 MA1102R Calculus

Tutorial set 7

Definition 1. We say a function f is *increasing* on the interval I if for any x, y in I, $x < y \Rightarrow f(x) < f(y)$. Likewise, we say f is *decreasing* on I if for any x, y in I, $x < y \Rightarrow f(x) > f(y)$ f is said to be *monotonic* on I if f is either *increasing* or *decreasing* on I.

Activity 1. Show that the function $f(x) = \frac{1}{x^2}$ is a decreasing function on $(0, \infty)$. (Do not use derivative. Start with 0 < x < y, try to argue and arrive at f(x) > f(y), using properties of positive real numbers.)

Theorem 1. Suppose f is continuous on [a, b] with a < b and differentiable on (a, b).

1. If f'(x) > 0 for all x in (a, b), then f is increasing on [a, b].

2. If f'(x) < 0 for all x in (a, b), then f is decreasing on [a, b].

[Here is a proof of part (2) of this without using the Mean Value Theorem, as a consequence of Theorem 3 of Http://www.math.nus.edu.sg/~matngtb/Calculus/whymean/whymean.htm :

Do we need Mean Value Theorem to prove f'(x) = 0 on (a, b) implies that f = constant on (a, b)? Theorem 3 there says if f'(x) < 0 for all x in (a, b), then f is decreasing on (a, b). Then for any k > a in (a, b), f(x) > f(k) for all x with a < x < k. Therefore, by continuity of f at x = a, $f(a) = \lim_{x \to a^+} f(x) \ge f(k') > f(k)$, by choosing any k' such that a < k' < k. Therefore f is decreasing on [a, b). Likewise for any j < b in [a, b), f(j) > f(x) for all x with j < x < b. Thus by the continuity of f at x = b, $f(b) = \lim_{x \to b^-} f(x) \le f(j') < f(j)$, by choosing j' such that j < j' < b. Hence f is decreasing on [a, b]. Part (1) can be proven by a similar argument. We have avoided the use of the notion of supremum and infimum here]

Caution. The notion of 'increasing' is one involving a non-trivial interval. A local information like derivative of f at a point a is positive does not guarantee that the function is increasing upto and including a or after a and including a or in any interval containing a.

[For instance take the function $f(x) = \begin{cases} x + 4x^2 \cos(\frac{1}{x}), x \neq 0\\ 0, x = 0 \end{cases}$. Then f'(0) = 1 > 0 but f is neither

increasing nor decreasing on any interval containing 0. This is because for any integer n > 0, $1/(2n\pi + \pi) > 1/(2n\pi + 2\pi)$ but $f(1/(2n\pi + \pi)) = 1/(2n\pi + \pi) - 4/(2n\pi + \pi)^2 < 1/(2n\pi + 2\pi) + 4/(2n\pi + 2\pi)^2 = f(1/(2n\pi + 2\pi))$ and that when $1/(2n\pi + \pi/2) > 1/(2n\pi + 3\pi/2)$, $f(1/(2n\pi + \pi/2)) = 1/(2n\pi + \pi/2) > 1/(2n\pi + 3\pi/2) = f(1/(2n\pi + 3\pi/2))$.

Remark. The domain [a, b] above may be replaced by any unbounded interval of the type $(-\infty, b]$, $[a, \infty)$, $(-\infty, \infty)$ or the bounded interval of the type [a, b), (a, b] or (a, b) and the conclusion is still valid with the corresponding statement.

Activity 2. Let $f : \mathbf{R} \to \mathbf{R}$ be given by $f(x) = x^4$. Show that f is decreasing on $(-\infty, 0]$ and increasing on $[0, \infty)$. Hence deduce that f(0) = 0 is the absolute minimum. (Is there any easier way to obtain the absolute minimum?)

Theorem 2 (First Derivative Test for Relative Extrema). Suppose f is continuous on the open interval (a, b) containing x_0 and that f is differentiable at all points of (a, b) except possibly at x_0 .

1. If there exists $\delta > 0$ such that or all x with $x_0 - \delta < x < x_0$, f'(x) > 0 and for all x with $x_0 < x < x_0 + \delta$,

f'(x) < 0, then f has a relative maximum value at x_0 .

2. If there exists $\delta > 0$ such that or all *x* with $x_0 - \delta < x < x_0$, f'(x) < 0 and for all *x* with $x_0 < x < x_0 + \delta$, f'(x) > 0, *f* has a relative minimum value at x_0 .

Definition 2. The graph of a function f is said to be *concave upward* (respectively. *concave downward*) at a point (c, f(c)) if (1) f'(c) exists and (2) if there is an open interval I containing c such that, for all $x \neq c$ in I, the point (x, f(x)) on the graph is above (respectively below) the tangent line to the graph at (c, f(c)).

Theorem 3. Let f be a function differentiable on an open interval containing x_0 . Then

- 1. if $f''(x_0) > 0$, the graph of f is concave upward at $(x_0, f(x_0))$,
- 2. if $f''(x_0) < 0$, the graph of f is concave downward at $(x_0, f(x_0))$.

Definition 3. A point (c, f(c)) is a *point of inflection* of the graph of the function f if f is continuous at c and there is an open interval containing c such that the graph of f changes from concave upward before c to concave downward after c or from concave downward before c to concave upward after c.

This means that *either* there is a small interval before c, $(c-\delta, c)$ such that the graph of f is concave upward and a small interval after c, $(c, c + \delta)$ on which the graph of f is concave downward **or** there is a small interval before c, $(c-\delta, c)$ such that the graph of f is concave downward and a small interval after c, $(c, c + \delta)$ on which the graph of f is concave upward.

Activity 3. Let $f(x) = x^5$. Show that the graph of f is concave upward on the interval $(0, \infty)$ and concave downward on the interval $(-\infty, 0)$. Hence deduce that the point (0, 0) is a point of inflection.

Theorem 4. Suppose f is differentiable on some open interval containing c and (c, f(c)) is a point of inflection of the graph of f. If f''(c) exists, then f''(c) = 0.

Theorem 5 (Second Derivative Test for Relative Extremum). Let x_0 be a stationary point of a function f, i.e., $f'(x_0) = 0$. Suppose f'(x) exists for all values of x in some open interval I containing x_0 . Suppose $f''(x_0)$ exists.

1. If $f''(x_0) < 0$, then *f* has a relative maximum value at x_0 .

2. If $f''(x_0) > 0$, then *f* has a relative minimum value at x_0 .

Activity 4. Sketch the graph of a function that satisfies all of the given conditions:

 $f(1) = f'(1) = 0, \lim_{x \to 2^+} f(x) = \infty, \lim_{x \to 2^-} f(x) = -\infty, \lim_{x \to 0} f(x) = -\infty, \lim_{x \to -\infty} f(x) = \infty, \lim_{x \to \infty} f(x) = 0,$ f''(x) > 0 for x > 2, f''(x) < 0 for x < 0 and for 0 < x < 2.

Read Definition of antiderivative, indefinite integral and its properties.

Definition 4. A function F is called an antiderivative of f on an open interval I, if F'(x) = f(x) for all x in I.

Activity 5.

Show that an antiderivative of $f(x) = 4x^3 - 8x + \cos(5x)$ is given by $F(x) = x^4 - 4x^2 + \frac{1}{5}\sin(5x) - 2001$.

Assignment 7

- 1. For each of the function f given below in (i) and (ii),
 - a. find the relative extrema of f;
 - b. determine the intervals on which f is increasing and decreasing;
 - c. find the intervals on which the graph of f is concave upward;
 - d. find the *x*-coordinate of the point of inflection (if there is);
 - e. sketch the graph of the function.

i.
$$f(x) = (x-3)(x-4)(x-5)$$
.
ii. $f(x) = \begin{cases} 3(x-3)^2, & x \le 3\\ (3-x)^3, & x > 3 \end{cases}$

2. Sketch the graph of each of the following functions

i.
$$f(x) = \frac{x+4}{x-4}$$
; domain = **R**-{4}. ii. $f(x) = \begin{cases} 2-x^3+3x, x \le 0\\ \sqrt[3]{x+8}, x > 0 \end{cases}$

(You may use DfW to *help* you with the answer.)

- 3. Given that f'(x) = x(x-1)(x+2), sketch a possible graph of *f*.
- 4. Let $f(x) = x^7 + r x + 7$. Prove that if r < 0, then f has both a relative maximum value and a relative minimum value. If r > 0, how many relative extrema does f have?
- 5. Find the most general anti-derivative of each of the following:
 - (a) $107x^9 + 5x^5 51x^3 3x + 29$ (b) $\frac{3x}{\sqrt{2x+5}}$ (c) $\sqrt[7]{x} + \frac{9}{\sqrt{x}}$ (e) $x^3\sqrt{7-x}$
- 6. If f(x) = x + |x 3| and $F(x) = \begin{cases} 3x 9/2, x < 3 \\ x^2 3x + 9/2, x \ge 3 \end{cases}$. Show that *F* is an antiderivative of *f* on **R**. Hence, deduce $\int f(x) dx$.
- 7. Evaluate, by the change of variable (substitution), each of the following integrals (antiderivatives).

a.
$$\int (x^9 - 5x^4) \sqrt{x^5 + 5} \, dx$$
. b. $\int \frac{\tan^2(\sqrt{t})}{\sqrt{t}} dt$

- 8. Evaluate $\int (7 \cot^2(\theta) 6 \tan^2(\theta) + \theta) d\theta$
- **9.** (**Optional**) Show that if *f* is a function differentiable on the open interval (a, b) with a < b and if the derivative *f*' is increasing on (a, b), then the graph of *f* is concave upward at (x, f(x)) for all *x* in (a, b).

(If you are having difficulty in this question check out the following article

Http://www.math.nus.edu.sg/~matngtb/Calculus/Concavity_line/concave.htm)