National University of Singapore

 Department of Mathematics

 Department of Mathematics}
level 1000 (2005/2006) Semester 2
MA1102R Calculus
Tutorial set 7
Definition 1. We say a function f is increasing on the interval I if for any x, y in $I, x<y \Rightarrow f(x)<f(y)$. Likewise, we say f is decreasing on I if for any x, y in $I, x<y \Rightarrow f(x)>f(y) f$ is said to be monotonic on I if f is either increasing or decreasing on I.

Activity 1. Show that the function $f(x)=\frac{1}{x^{2}}$ is a decreasing function on $(0, \infty)$. (Do not use derivative. Start with $0<x<y$, try to argue and arrive at $f(x)>f(y)$, using properties of positive real numbers.)

Theorem 1. Suppose f is continuous on $[a, b]$ with $a<b$ and differentiable on (a, b).

1. If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on $[a, b]$.
2. If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on $[a, b]$.
[Here is a proof of part (2) of this without using the Mean Value Theorem, as a consequence of Theorem 3 of Http://www.math.nus.edu.sg/~matngtb/Calculus/whymean/whymean.htm :

Do we need Mean Value Theorem to prove $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{0}$ on (a, b) implies that $\boldsymbol{f}=$ constant on (a, b) ? Theorem 3 there says if $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on (a, b). Then for any $k>a$ in $(a, b), \quad f(x)>f(k)$ for all x with $a<x<k$. Therefore, by continuity of f at $x=a$, $f(a)=\lim _{x \rightarrow a^{+}} f(x) \geq f\left(k^{\prime}\right)>f(k)$, by choosing any k^{\prime} such that $a<k^{\prime}<k$. Therefore f is decreasing on [a,b). Likewise for any $j<b$ in $[a, b), f(j)>f(x)$ for all x with $j<x<b$. Thus by the continuity of f at $x=b$ $f(b)=\lim _{x \rightarrow b^{-}} f(x) \leq f\left(j^{\prime}\right)<f(j)$, by choosing j^{\prime} such that $j<j^{\prime}<b$.. Hence f is decreasing on [a, b]. Part (1) can be proven by a similar argument. We have avoided the use of the notion of supremum and infimum here]
Caution. The notion of 'increasing' is one involving a non-trivial interval. A local information like derivative of f at a point a is positive does not guarantee that the function is increasing upto and including a or after a and including a or in any interval containing a.
[For instance take the fiunction $f(x)=\left\{\begin{array}{c}x+4 x^{2} \cos \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$. Then $f^{\prime}(0)=1>0$ but f is neither increasing nor decreasing on any interval containing 0 . This is because for any integer $n>0,1 /(2 n \pi+\pi)$ $>1 /(2 n \pi+2 \pi)$ but $f(1 /(2 n \pi+\pi))=1 /(2 n \pi+\pi)-4 /(2 n \pi+\pi)^{2}<1 /(2 n \pi+2 \pi)+4 /(2 n \pi+2 \pi)^{2}=f(1 /(2 n \pi+2 \pi))$ and that when $1 /(2 n \pi+\pi / 2)>1 /(2 n \pi+3 \pi / 2), f(1 /(2 n \pi+\pi / 2))=1 /(2 n \pi+\pi / 2)>1 /(2 n \pi+3 \pi / 2)=f(1 /(2 n \pi+3 \pi / 2))$.]

Remark. The domain [a, b] above may be replaced by any unbounded interval of the type $(-\infty, b],[a, \infty),(-\infty$, $\infty)$ or the bounded interval of the type $[a, b),(a, b]$ or (a, b) and the conclusion is still valid with the corresponding statement.

Activity 2. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be given by $f(x)=x^{4}$. Show that f is decreasing on $(-\infty, 0]$ and increasing on $[0, \infty)$. Hence deduce that $f(0)=0$ is the absolute minimum. (Is there any easier way to obtain the absolute minimum?)

Theorem 2 (First Derivative Test for Relative Extrema). Suppose f is continuous on the open interval (a, b) containing x_{0} and that f is differentiable at all points of (a, b) except possibly at x_{0}. 1. If there exists $\delta>0$ such that or all x with $x_{0}-\delta<x<x_{0}, f^{\prime}(x)>0$ and for all x with $x_{0}<x<x_{0}+\delta$, $f^{\prime}(x)<0$, then f has a relative maximum value at x_{0}.
2. If there exists $\delta>0$ such that or all x with $x_{0}-\delta<x<x_{0}, f^{\prime}(x)<0$ and for all x with $x_{0}<x<x_{0}+\delta$, $f^{\prime}(x)>0, f$ has a relative minimum value at x_{0}.

Definition 2. The graph of a function f is said to be concave upward (respectively. concave downward) at a point $\left(c, f(c)\right.$) if (1) $f^{\prime}(c)$ exists and (2) if there is an open interval I containing c such that, for all x $\neq c$ in I, the point $(x, f(x)$) on the graph is above (respectively below) the tangent line to the graph at (c, $f(c)$).

Theorem 3. Let f be a function differentiable on an open interval containing x_{0}. Then

1. if $f^{\prime \prime}\left(x_{0}\right)>0$, the graph of f is concave upward at $\left(x_{0}, f\left(x_{0}\right)\right)$,
2. if $f^{\prime \prime}\left(x_{0}\right)<0$, the graph of f is concave downward at $\left(x_{0}, f\left(x_{0}\right)\right.$).

Definition 3. A point ($c, f(c)$) is a point of inflection of the graph of the function f if f is continuous at c and there is an open interval containing c such that the graph of f changes from concave upward before c to concave downward after c or from concave downward before c to concave upward after c.

> This means that either there is a small interval before $c,(c-\delta, c)$ such that the graph of f is concave upward and a small interval after $c,(c, \mathrm{c}+\delta)$ on which the graph of f is concave downward or there is a small interval before $c,(c-\delta, c)$ such that the graph of f is concave downward and a small interval after $c,(c, \mathrm{c}+$ δ) on which the graph of f is concave upward.

Activity 3. Let $f(x)=x^{5}$. Show that the graph of f is concave upward on the interval $(0, \infty)$ and concave downward on the interval $(-\infty, 0)$. Hence deduce that the point $(0,0)$ is a point of inflection.

Theorem 4. Suppose f is differentiable on some open interval containing c and $(c, f(c))$ is a point of inflection of the graph of f. If $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.

Theorem 5 (Second Derivative Test for Relative Extremum). Let x_{0} be a stationary point of a function f, i.e., $f^{\prime}\left(x_{0}\right)=0$. Suppose $f^{\prime}(x)$ exists for all values of x in some open interval I containing x_{0}. Suppose f " $\left(x_{0}\right)$ exists.

1. If $f^{\prime \prime}\left(x_{0}\right)<0$, then f has a relative maximum value at x_{0}.
2. If $f "\left(x_{0}\right)>0$, then f has a relative minimum value at x_{0}.

Activity 4. Sketch the graph of a function that satisfies all of the given conditions:

$$
\begin{aligned}
& f(1)=f^{\prime}(1)=0, \lim _{x \rightarrow 2^{+}} f(x)=\infty, \lim _{x \rightarrow 2^{-}} f(x)=-\infty, \lim _{x \rightarrow 0} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=\infty, \lim _{x \rightarrow \infty} f(x)=0, \\
& f^{\prime \prime}(x)>0 \text { for } x>2, f^{\prime \prime}(x)<0 \text { for } x<0 \text { and for } 0<x<2 .
\end{aligned}
$$

Read Definition of antiderivative, indefinite integral and its properties.
Definition 4. A function F is called an antiderivative of f on an open interval I, if $F^{\prime}(x)=f(x)$ for all x in I.

Activity 5.

Show that an antiderivative of $f(x)=4 x^{3}-8 x+\cos (5 x)$ is given by $F(x)=x^{4}-4 x^{2}+\frac{1}{5} \sin (5 x)-2001$.

Assignment 7

1. For each of the function f given below in (i) and (ii),
a. find the relative extrema of f;
b. determine the intervals on which f is increasing and decreasing;
c. find the intervals on which the graph of f is concave upward;
d. find the x-coordinate of the point of inflection (if there is);
e. sketch the graph of the function.
i. $f(x)=(x-3)(x-4)(x-5)$.
ii. $f(x)=\left\{\begin{array}{c}3(x-3)^{2}, x \leq 3 \\ (3-x)^{3}, x>3\end{array}\right.$.
2. Sketch the graph of each of the following functions
i. $f(x)=\frac{x+4}{x-4}$; domain $=\mathbf{R}-\{4\}$.
ii. $f(x)=\left\{\begin{array}{c}2-x^{3}+3 x, x \leq 0 \\ \sqrt[3]{x+8}, x>0\end{array}\right.$.
(You may use DfW to help you with the answer.)
3. Given that $f^{\prime}(x)=x(x-1)(x+2)$, sketch a possible graph of f.
4. Let $f(x)=x^{7}+r x+7$. Prove that if $r<0$, then f has both a relative maximum value and a relative minimum value. If $r>0$, how many relative extrema does f have?
5. Find the most general anti-derivative of each of the following:
(a) $107 x^{9}+5 x^{5}-51 x^{3}-3 x+29$
(b) $\frac{3 x}{\sqrt{2 x+5}}$
(c) $\sqrt[7]{x}+\frac{9}{\sqrt[9]{X}}$
(e) $x^{3} \sqrt{7-x}$
6. If $f(x)=x+|x-3|$ and $F(x)=\left\{\begin{array}{c}3 x-9 / 2, x<3 \\ x^{2}-3 x+9 / 2, x \geq 3\end{array}\right.$. Show that F is an antiderivative of f on \mathbf{R}. Hence, deduce $\int f(x) d x$.
7. Evaluate, by the change of variable (substitution), each of the following integrals (antiderivatives).
a. $\int\left(x^{9}-5 x^{4}\right) \sqrt{x^{5}+5} d x$.
b. $\int \frac{\tan ^{2}(\sqrt{t})}{\sqrt{t}} d t$.
8. Evaluate $\int\left(7 \cot ^{2}(\theta)-6 \tan ^{2}(\theta)+\theta\right) d \theta$
9. (Optional) Show that if f is a function differentiable on the open interval (a, b) with $a<b$ and if the derivative f^{\prime} is increasing on (a, b), then the graph of f is concave upward at $(x, f(x)$) for all x in (a, b).
(If you are having difficulty in this question check out the following article
Http://www.math.nus.edu.sg/~matngtb/Calculus/Concavity_line/concave.htm)
