1. Do not use the procedure for finding absolute extrema blindly.

a. $g^{\prime}(x)=5 x^{4}-120 x=5 x\left(x-2 \cdot 3^{\frac{1}{3}}\right)\left(x^{2}+2 \cdot 3^{\frac{1}{3}} x+4 \cdot 3^{\frac{2}{3}}\right)$.

Therefore, there are only 2 critical points of g in $(-6,8)$, which is 0 and $2 \cdot 3^{\frac{1}{3}}$. Now $g(0)=3$, $g(-6)=-9933$ and $g\left(2 \cdot 3^{\frac{1}{3}}\right)=3-144 \cdot 3^{\frac{2}{3}} \doteqdot-296.532$ and $g(8)=28931$. Thus the absolute maximum is 28931 and the absolute minimum is -9933.

b. $h(x)=|x-3|+3=\left\{\begin{array}{c}x, 3 \leq x<5 \\ 6-x, 0<x<3\end{array}\right.$. Note that h is continuous on $(0,5)$ and $h^{\prime}(x)=\left\{\begin{array}{r}-1,0<x<3 \\ 1,3<x<5\end{array}\right.$ Therefore, h is decreasing on (0,3] and increasing on [3,5). Thus, $h(3)$ $=3$ is the absolute minimum. Since 0 and 5 are not in (0,5), the absolute maximum of h on $(0,5)$ does not exist.

C. Simplify the given function first. If x is in $(1,2]$, then $k(x)=\left\{\begin{array}{l}2 x+2,1<x<\frac{4}{3} \\ 2 x+3, \frac{4}{3} \leq x<\frac{5}{3} \\ 2 x+4, \frac{5}{3} \leq x<2 \\ 2 x+5=9, x=2\end{array}\right.$. Thus the absolute maximum of k on $(1,2]$ is 9 and the absolute minimum does not exist.
d. $f(x)$ is continuous on $[-5,0]$ and for $x \neq-3$, $f^{\prime}(x)=\frac{2}{3}(3+x)^{-\frac{1}{3}}$. Indeed the derivative of f at -3 does not exist. -3 is the only crtitical point since
$f^{\prime}(x) \neq 0$ for $x \neq-2$. Now $f(-5)=2^{\frac{2}{3}}, f(-3)=0$, $f(0)=3^{\frac{2}{3}}$. Thus, the absolute minimum is 0 and the absolute maximum is $3^{\frac{2}{3}}$.

2. a. $f(x)$ is continuous on $[0,9 / 4] . f^{\prime}(x)=\frac{2(x-2)(x-3)}{(2 x-5)^{2}}$.

Thus f is differentiable on ($0,9 / 4$) and the only critical point in the interval is 2.
Now $f(2)=2, f(0)=6 / 5, f(9 / 4)=15 / 8$.
(Note that f is not defined at $x=5 / 2$ as it is not in the interval $[0,9 / 4]$.)
Therefore, the absolute maximum is 2 and the absolute minimum is $6 / 5$.
b. $\quad g^{\prime}(x)=\left\{\begin{array}{c}3 x^{2}-3,0<x<2 \\ 2 x-5,2<x<3\end{array}\right.$.

Thus when $x=1$ or $x=\frac{5}{2}, g^{\prime}(x)=0 . g(1)=1-3+5=3$.
$\lim _{h \rightarrow 0^{-}} \frac{g(2+h)-g(2)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(2+h)^{3}-3(2+h)+5-7}{h}=\lim _{h \rightarrow 0^{-}} \frac{\left(9 h+6 h^{2}+h^{3}\right)}{h}=9$.
$\lim _{h \rightarrow 0^{+}} \frac{g(2+h)-g(2)}{h}=\lim _{h \rightarrow 0^{+}} \frac{(2+h)^{2}-5(2+h)+13-7}{h}=\lim _{h \rightarrow 0^{+}} \frac{h^{2}-h}{h}=-1$.
Therefore, the left and the right derivatives are not the same. So g is not differentiable at 2 . Hence the critical points of g on $[0,3]$ are $5 / 2,1$ and 2 .
Now $g(0)=5, \quad g\left(\frac{5}{2}\right)=\left(\frac{5}{2}\right)^{2}-5 \cdot\left(\frac{5}{2}\right)+13=6 \frac{3}{4}, g(2)=7, g(1)=3$ and $g(3)=3^{2}-5 \cdot 3+13=7$. Thus the absolute maximum is 7 and the absolute minimum is 3.
3. a. f is continuous on $[0,32]$. Since f is differentiable on $(0, \infty), f$ is differentiable on $(0,32)$. Now $f(0)=f(32)=0$. Thus the conditions for Rolle's Theorem are satisfied. Therefore, by Rolle's Theorem, there exists a point c in $(0,32)$ such that $f^{\prime}(c)=0$. Indeed $f^{\prime}(x)=\frac{3}{5} x^{-\frac{2}{5}}-2 \cdot \frac{2}{5} x^{-\frac{3}{5}}=\frac{1}{5} x^{-\frac{3}{5}}\left(3 x^{\frac{1}{5}}-4\right)=0$ if $x=\left(\frac{4}{3}\right)^{5}$.
b. Note that g is continuous at 1 and so continuous on $[-\sqrt{3}, 7 / 4]$. Note also that $g(-\sqrt{3})=-1 \neq g(7 / 4)=0$. Also g is not differentiable at $x=1$ because $\lim _{h \rightarrow 0^{+}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{+}} \frac{4(1+h)-7-(-3)}{h}=4 \neq \lim _{h \rightarrow 0^{-}} \frac{g(1+h)-g(1)}{h}=\lim _{h \rightarrow 0^{-}} \frac{(1+h)^{2}-4-(-3)}{h}=2$.
Thus g does not satisfy the conditions of Rolle's Theorem for the interval $[-\sqrt{3}, 7 / 4]$.
But the conditions of Rolle's Theorem are satisfied for g on the interval [-1, 1] because

1. $g(-1)=g(1)=-3$,
2. g is continuous on $[-1,1]$ and
3. g is differentiable on $(-1,1)$.

Therefore, by Rolle's Theorem, there is a point c in $(-1,1)$ such that $g^{\prime}(c)=0$.
Indeed $g^{\prime}(x)=\left\{\begin{array}{c}2 x, x<1 \\ 4, x>1\end{array}\right.$ and $g^{\prime}(0)=0$.
4. Let $f(x)=\sqrt[3]{x}$ for $x \in[27,28]$. Then $f^{\prime}(x)=\frac{1}{3}(x)^{-2 / 3}$. Thus by the Mean Value Theorem, there is a point c in the open interval $(27,28)$ such that

$$
\frac{\sqrt[3]{28}-\sqrt[3]{27}}{28-27}=f^{\prime}(c)=\frac{1}{3}(c)^{-2 / 3}
$$

Therefore, using the fact that $27<c<28$, we have $27^{2 / 3}<c^{2 / 3}<28^{2 / 3}$.
Thus, $\quad \frac{1}{3} 28^{-2 / 3}<\frac{1}{3} c^{-2 / 3}=f^{\prime}(c)<\frac{1}{3} 27^{-2 / 3}$. , i.e.

$$
\frac{1}{3 \cdot(\sqrt[3]{28})^{2}}<\sqrt[3]{28}-3<\frac{1}{3 \cdot(\sqrt[3]{27})^{2}}=\frac{1}{27} .
$$

But, $\frac{1}{3 \cdot(\sqrt[3]{28})^{2}}>\quad \frac{1}{\sqrt[3]{28} \cdot(\sqrt[3]{28})^{2}}=\frac{1}{28}$

Thus, $\frac{1}{28}<\sqrt[3]{28}-3<\frac{1}{27}$.
5. Let $g(x)=\frac{x^{6}}{6}-\frac{x^{5}}{5}+\frac{x^{4}}{2}-\frac{2 x^{3}}{3}+\frac{x^{2}}{2}-x-4=0$. Then $g^{\prime}(x)=x^{5}-x^{4}+2 x^{3}-2 x^{2}+x-1$. Then $g^{\prime}(x)=(x-1)\left(x^{2}+1\right)^{2}$.
(a) If g has two zeros, say a and b (assuming $a<b$), in the interval (3/2,2), then by Rolle's Theorem there would be a point $c \in(a, b) \subseteq(3 / 2,2)$ with $g^{\prime}(c)=0$ which contradicts $g^{\prime}(x)>0$ for all $x>1$.
(b) Now g is continuous on [3/2, 2], as it is a polynomial function, $g(3 / 2)=--\frac{2377}{640}<0$, $g(2)=\frac{44}{15}>0$ so that by the Intermediate Value Theorem, there exists a c in $(3 / 2,2)$ such that $g(c)=0$.
(c) From parts (a) and $(b), g(x)=0$ has exactly one root in $(3 / 2,2)$.
6. Suppose f is a differentiable function on \mathbf{R} and $f(0)=-1, f(2)=4$. Then f is continuous on \mathbf{R}. Now, by the Mean Value Theorem applied to f on $[0,2]$, there is a real number $c \in(0,2)$ such that $\frac{f(2)-f(0)}{2-0}=f^{\prime}(c)$, i.e. $f^{\prime}(c)=5 / 2$, contradicting the given hypothesis that $f^{\prime}(x) \leq 2$ for all real numbers x.

Therefore, there is no such function.

7. Since $f^{\prime}(x)=4$ for all x in \mathbf{R}, f is continuous on \mathbf{R}.

We consider two cases (i) $x>1$ and (ii) $x<1$.
Case (i) $x>1$. Consider f on $[1, x]$, then f is continuous on $[1, x]$ and differentiable on $(1, x)$.
Thus by the Mean Value Theorem, we have $\frac{f(x)-f(1)}{x-1}=f^{\prime}(c)$, for some c in $(1, x)$;
I.e. $\frac{f(x)-f(1)}{x-1}=4$. This gives $f(x)-3=4 x-4$ and so $f(x)=4 x-1$

Case (ii) $x<1$. Consider f on $[x, 1]$, then f is continuous on [$x, 1$] and differentiable on $(x, 1)$. Thus by the Mean Value Theorem, we have $\frac{f(1)-f(x)}{1-x}=f^{\prime}(c)$, for some c in $(x, 1)$;
I.e. $\frac{f(1)-f(x)}{1-x}=4$. This gives gain $f(x)=4 x-1$

Note that when $x=1,4 x-1=3$.
Therefore, $f(x)=4 x-1$ for all real numbers x.

