National University of Singapore

Department of Mathematics

Level 1000 Semester 2 (2005/06) MA1102R Calculus
 Tutorial set 2

Dirichlet: y is a function of x when to each value of x in a given interval there corresponds a unique value of y. It does not matter whether throughout this interval y depends upon x according to one law or more or whether the dependence of y on x can be expressed by mathematical operations.

Definition 1. A function $f: A \rightarrow B$ from A to B is a rule which assigns to each element $a \in A$ one and only one element b of B. We write $f(a)$ for b. The set A is called the domain of f and the set B is called the codomain of f.
Discuss: In your opinion, Dirichlet's definition and the definition above are the same. Are they precise enough? If not, where do they fail to be precise?
The set $\{b \in B$: there exists $a \in A$ such that $f(a)=b\}=\{f(a): a \in A\}$ is called the range of f. We say b $=f(a)$ is the image of a under f. We may write for a subset $U \subseteq A, f(U)=\{f(x): x \in U\}$ and call this the image of U under f. Thus the range of f is equal to $f(A)$ the image of A.

Activity 1. Consider the expression $f(x)=x^{2}+1$. What is the largest subset of \mathbf{R} for which the expression determines a function with it as the domain? What would you take as the codomain for such a function? For what values of y can we solve the equation $f(x)=y$ for x in the domain of f ? Note that this is preciselly the range of f. How would you describe the range of f ? Is it sufficient to plot the graph of f and make a deduction for the range of f ? What is wrong in doing this ?

Definition 2. A function $f: A \rightarrow B$ is said to be injective (or one-one) if and only if the following statement is true:

$$
\text { If } f(a)=f(b) \text {, then } a=b
$$

Activity 2. 1. Take the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=3 x$. Explain why it is injective.
2. Explain why the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{2}+1$ is not injective.

Definition 3. A function $f: A \rightarrow B$ is said to be surjective (or onto) if for each element b in B, there exists an element a in A such that $f(a)=b$, equivalently if $f(A)=B$.

Activity 3. Explain why the function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=3 x$ is surjective. (Take any y in \mathbf{R}. Show that we can find an x in \mathbf{R} with $f(x)=y$). Why is it inadequate to plot the graph of f for a finite interval on a piece of paper and deduce from the graph that f is surjective ?

Definition 4. A function $f: A \rightarrow B$ is said to be bijective if and only if f is both injective and surjective.
Activity 4. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=3 x$ is bijective.
Definition 5. Let $f: B \rightarrow C$ and $g: A \rightarrow B$ be functions. Then their composition (or composite) is a function $f \circ g: A \rightarrow C$ defined by $f \circ g(x)=f(g(x))$ for each $x \in A$.

Activity 5. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=2 x+3$ and $g(x)=5 x^{2}$ respectively. Find $f \circ g(x)$ and $g \circ f(x)$.
Definition 6. Suppose $f: A \rightarrow B$ is a bijection. Then it has an inverse function $f^{-1}: B \rightarrow A$ defined as follows. Take any b in B. Since f is surjective, there is an element a in A such that $f(a)=b$. We define $f^{-1}(b)=a . f^{-1}$ assigns only one value to b and f^{-1} is a function with domain B and codomain A.

Activity 6. Take $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x+8$ which is bijective. Show that its inverse function $f^{-1}: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f^{-1}(y)=y-8$.

Definition 7. A function $f: D \rightarrow \mathbf{R}$ is said to be even if $f(-x)=f(x)$ for all x in D. It is said to be odd if $f(-x)=-f(x)$ for all x in D.

Activity 7. Give an example of an odd function and an example of an even function.
Definition 8. A rational function is a function h defined by $h(x)=\frac{f(x)}{g(x)}$, where f and g are polynomial functions and the domain of h is given by $\operatorname{Domain}(h)=\{x \in \mathbf{R}: g(x) \neq 0\}$.

Activity 8. What is the domain of the rational function $g(x)=\frac{2 x+7}{\left(x^{2}+4 x+3\right)}$?

Inequalities.

Activity 9. Write the following subsets of \mathbf{R} in interval notation.

1. $\{x: 1<x \leq 6\}$
2. $\{x: 3<x<7\}$
3. $\{x:-4<x\}$
4. $\{x: x \leq 9\}$

Properties 9. The real numbers \mathbf{R} is the only complete totally ordered field (upto isomorphism). It has exactly one linear ordering determined by \mathbf{R}_{+}which contains the positive rational numbers.

Note that \mathbf{R}_{+}is a distinguished subset of \mathbf{R} that does not contain 0 and satisfies the following (1) Any real number x is either in \mathbf{R}_{+}or its reflection $-\mathbf{R}_{+}=\left\{-x: x \in \mathbf{R}_{+}\right\}$or is equal to 0 and (2) a, b in \mathbf{R}_{+}implies that $a+b \in \mathbf{\mathbf { R } _ { + }}$ and $a b$ $\in \mathbf{R}_{+}$. We define $a>b$ if and only if $a-b \in \mathbf{R}_{+}$. Using this definition of " $>$" and the properties of \mathbf{R}_{+}, convince yourself the truth of the following statements.

1. Given $a, b \in \mathbf{R}$ exactly one of the following is true: $a>b, a=b, a<b$.
2. $a>b$ and $b>c \Rightarrow a>c$. 3. For any c in $\mathbf{R}, a>b \Rightarrow a+c>b+c$. 4. $a>b$ and $c>0 \Rightarrow a c>b c$
3. $a>b$ and $c<0 \Rightarrow a c<b c$. 6. $a>b$ and $c>0 \Rightarrow \frac{a}{c}>\frac{b}{c}$. 7. $a>b$ and $c<0 \Rightarrow \frac{a}{c}<\frac{b}{c}$.
4. $a b>0 \Leftrightarrow(a>0$ and $b>0)$ or $(a<0$ and $b<0)$.
5. $a b<0 \Leftrightarrow(a>0$ and $b<0)$ or $(a<0$ and $b>0)$.
6. If $a>b>0$ and $n \in N$, then $a^{n}>b^{n}$. 11. If $a>b>0$ and $n \in N$, then $a^{\frac{1}{n}}>b^{\frac{1}{n}}$.

Definition 10. We say a is greater than or equal to b if $a>b$ or $a=b$. We write $a \geq b$ (or $b \leq a$).
Definition 11. Define the modulus function, $|\quad|: \mathbf{R} \rightarrow \mathbf{R}_{+} \cup\{0\}$ by $|x|=\left\{\begin{array}{r}x \text { if } x \geq 0 \\ -x \text { if } x<0\end{array}\right.$.
Activity 10. Explain $|x| \geq 0$ and $-x, x \leq|x|$ for any real number x.

Properties 9 (Continued).

12. Suppose $a \geq 0$, then $|b| \leq a \Leftrightarrow b \leq a$ and $-b \leq a \Leftrightarrow-a \leq b \leq a$.
13. $|b| \geq a \Leftrightarrow b \geq a$ or $-b \geq a \Leftrightarrow b \geq a$ or $b \leq-a$.

Activity 11. 1. Show that $|a| \leq|a-b|+|b|$ and $|b| \leq|a-b|+|a|$ and deduce that $\| a|-|b|| \leq|a-b|$ 2. Show that $|x-3|<2 \Leftrightarrow 1<x<5$.

MA1102R Calculus Tutorial 2 Assignment

1. Let $f(x)$ be the expression $\frac{5 x-19}{3 x-6}$.
a. Find the largest subset $D \subseteq \mathbf{R}$ so that $f(x)$ does determine a function $f: D \rightarrow \mathbf{R}$ with domain D and codomain \mathbf{R}.
b. With the domain D as given in part a, find the range of f.
c. Let E be the range of f found in part b. Let f^{\prime} be the function obtained from f by replacing the codomain of f with its range E, i.e., $f^{\prime}: D \rightarrow E$ is given by $f^{\prime}(x)=f(x)$ for all x in D. Show that f^{\prime} is bijective and find an inverse to f^{\prime}.
2. Let $g: \mathbf{R}-\left\{\frac{2}{9}\right\} \rightarrow \mathbf{R}$ be the function given by $g(x)=\frac{1}{9 x-2}$.
a. Find the range of g.
b. Show that, when considered as a function $g: \mathbf{R}-\left\{\frac{2}{9}\right\} \rightarrow$ Range g, g is a bijection and find its
inverse.
3. For each of the following expressions, determine the largest domain on which it defines a function with values in the real numbers \mathbf{R} (= its codomain) and its range. Sketch their graphs.
a. $f(x)=\sqrt{25-x^{2}}$.
b. $g(x)=|x-3|+|x+2|$.
4. For each of the following functions $f: \mathbf{R} \rightarrow \mathbf{R}$, determine whether it is injective, surjective or bijective.
a. $f(x)=7 x+5$.
b. $f(x)=x^{2}-6 x+5$.
5. Let $g: A \rightarrow B$ and $h: B \rightarrow C$ be functions. Show that
a. if $h \circ g$ is surjective, then h is surjective.
b. if $h \circ g$ is injective, then g is injective.
6. Find the solution set of each of the following inequalities:
a. $x^{2}-x-6>0$.
b. $\frac{4 x+1}{x-3}<1$.
c. $\frac{5}{x}-4 \geq \frac{3}{x}-10$.
d. $|x+2|+|x-5| \geq 6$.
7. If $b, d>0$ and $\frac{a}{b}<\frac{c}{d}$, then show that $\frac{a}{b}<\frac{a+101 c}{b+101 d}<\frac{c}{d}$.
8. Solve the following inequalities for x in \mathbf{R}.
a. $\left|5 x^{2}+9\right|>4$.
b. $\left|\frac{2}{X}\right| \geq 7$.
9. Prove that if a_{1}, a_{2} and a_{3} are positive and $a_{1} a_{2} a_{3}=1$ then $\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \geq 8$.
10. (Optional) Show that if P is a subset of \mathbf{Q} satisfying 1. $\mathbf{Q}=P \cup\{0\} \cup(-P), 0 \notin P,-P=\{-a: a \in P\}$, $P \cap(-P)=\varnothing$ and 2. $a, b \in P$ implies that $a+b, a b \in P$, then \boldsymbol{P} is precisely the set of positive rational numbers. Show then that Properties 1 to 10 listed under the Inequalities heading hold for rational numbers. [Hint for the first part: Start by showing $1 \in P$.]
