National University of Singapore

Department of Mathematics

Level 1000 (2005/2006) Semester 2 MA1102R Calculus
Tutorial 10

1. Find the following integrals.
a. $\int \frac{x^{2}}{\sqrt{25-x^{2}}} d x$.
b. $\int \frac{x^{2}}{\sqrt{9+x^{2}}} d x$.
c. $\int \frac{\sqrt{x^{2}-25}}{x} d x$.
d. $\int \frac{x^{5}+x^{4}+x^{3}+x^{2}+x+1}{x^{3}-x} d x$.
e. $\int \frac{x^{2}+3}{x\left(x^{2}+x+1\right)} d x$.
f. $\int \frac{x^{2}+3 x+5}{\left(x^{2}+2 x+5\right)^{2}} d x$.
g. $\int \sqrt{9-\sqrt{x}} d x$
2. (i) Find the arc length of the curve $y^{2}=x^{3}$ from $(0,0)$ to $(1,1)$.
(ii) Find the arc length of the curve $y=\ln (x)$ from $x=1 / 2$ to $x=2$.
(iii) The area bounded by $y=e^{-x}$ the axes, and the line $x=2$ is revolved about the x-axis. Find the volume generated.
(iv) The area bounded by the parabola $y=\frac{x^{2}}{a}$ the x-axis, and the line $x=\mathrm{b}$ is revolved about the x-axis. Find the volume generated.
(v) Find the areas of the surface obtained by revolving the part of the curve $y=\sqrt{x}$ that lies between $x=2$ and $x=6$ around the x axis.
(vi) Find the areas of the surface obtained by revolving the part of the curve $y=x^{3}$ that lies between $x=0$ and $x=2 / 3$ around the x axis.
3. Evaluate, if it exists, each of the following limits.
a. $\lim _{x \rightarrow \pi} \frac{\sin ^{2}(2 x)}{1+\cos (5 x)}$.
b. $\lim _{x \rightarrow 0} \frac{2 x-\ln (2 x+1)}{1-\cos (3 x)}$.
c. $\lim _{x \rightarrow 1}\left(\frac{1}{\ln (x)}-\frac{1}{x-1}\right)$
d. $\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{1}{e^{x-2}-1}\right)$.
e. $\lim _{x \rightarrow 0} \frac{\int_{0}^{x} \sin \left(t^{2}+t\right) d t}{\tan \left(x^{2}\right)}$.
f. $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(x^{2}\right)}{x^{3}}$.
g. $\lim _{x \rightarrow 0^{+}} x^{\sin \left(x^{3}\right)}$.
h. $\lim _{x \rightarrow 0}\left(e^{x}+7 x\right)^{\frac{1}{x}}$.
4. Evaluate the following limits.
a. $\lim _{x \rightarrow+\infty} \frac{x^{7}}{e^{x}}$.
b. $\lim _{x \rightarrow+\infty} \frac{(\ln (x))^{7}}{x}$.
c. $\lim _{x \rightarrow 0^{+}} \tan \left(x^{3}\right) \ln (x)$.
d. $\lim _{x \rightarrow 0^{+}}(\sin (x))^{x^{3}}$.
5. Use the Maclaurin polynomial for the function $f(x)=\ln (1+x)$ to compute the value of $\ln (1.2)$ accurate to three decimal places.
6. Find the following limits
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n}{n+1}$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n+1}{n^{3}+4}$.
7. Use Squeeze Theorem or the Comparison test to prove
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{\sin (n)}{n}=0$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n!}{n^{n}}=0$
8. Use Comparison test or otherwise determine the convergence of the following series
(i) $\sum_{1}^{\infty} \frac{1}{1+n^{2}}$
(ii) $\sum_{1}^{\infty} \frac{n+1}{n(n+2)}$
(iii) $\sum_{1}^{\infty} \frac{\ln (n)}{\sqrt{n+1}}$
9. Use the Ratio Test to determine the convergence of the following series.
(i) $\sum_{1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
(ii) $\sum_{1}^{\infty} \frac{n!}{n^{n}}$
(iii) $\sum_{1}^{\infty} \frac{n^{2}}{2^{n}}$
