
7. Defining Functions and Constants

If you author f (x), DfW will put f x on the screen because it thinks both x and

 f are variables. If you wish to define for example, , you couldf (x) = x2 + 3x + 1

author f (x) := x^2 + 3x +1. Note that we use := for assignments and = for

equations. Alternatively, you can choose Declare/Function and fill in the pop up form

with f (x) for the function name and x^2 +3x +1 for its value. Constants are treated

just like functions except there are no arguments. To set a = 2π, you enter a:=2pi.

Then whenever you simplify an expression containing a, each occurrence of a is

replaced by 2π.

To use variables with more than one letter or symbol, use the technique of

declaring a variable. For example, if we enter x1:= , then x1 will be treated as the

single variable x1. Alternatively, we change DfW to word input mode. We do this by

choosing Declare/Algebra State/Input and then clicking the Word button. In this

mode, variables can have several letters but then we must be careful with spaces. To

get we should enter b x^2 and not bx^2, otherwise bx will be treated as a variable.bx2

Because of this it is best to use the previous method for multi-lettered variables.

8. Recursive Functions

In DfW, we use functional programming. One example is the use of the

IF(test, true, false, unknown) construct. For instance, if n is a non-negative integer,

entering F(n):=IF(n = 0, 1, nF(n-1)) will define n! for n larger or equal to 0. The

following will define the nth Fibonacci number. Enter, G(n):=If(0<n<3, 1,

G(n-1)+G(n-2)) and G(n) will give the nth Fibonacci number for integer n>0. This

NG TZE BENG - 12

way of computing Fibonacci number is very costly in terms of storage. It is better to

use the ITERATES function. For example, the second component in the vector FIB(n)

defined by FIB(n) := ITERATE([v SUB 2, v SUB 1 + v SUB 2], v, [0, 1], n) also

gives the nth Fibonacci number. This is a more efficient definition.

9. Defining Function in a Piecewise Manner

The IF(test, true, false, unknown) construct can be used to define function in a

piecewise manner. For example: to define the function

 f (x) =







2x + 3, x < 1
x2, 1 [x [2

5, 2 < x

we author F(x):=IF(x<1, 2x+3, IF(x<=2, x^2, 5)). Notice how the use of the nested IF

statement includes the condition in the definition of the function. You can have as

many nested IF statements as you want depending on the function. When you

differentiate, DfW will try to differentiate the functions it knows how but it will return

the derivative in the IF format. It does not test for differentiability at the end points of

 the intervals in the definition. For instance, in the above example, it does not test for

the differentiability of f at x=1 and x=2. DfW will give the impression in the form of

the IF statement that it knows the derivative at x= 1 and at x=2. You cannot use DfW

to differentiate any piecewise defined functions at end points of the interval in the

definition. Instead you should use the definition of derivative in terms of limit. DfW

cannot do everything for you.

NG TZE BENG - 13

10. Vectors

Vectors are quite useful in DfW. Square brackets are used in DfW for vectors.

Useful for plotting functions in the same plot window and for plotting points. We use

the VECTOR functions to specify a vector by generating its components. The

VECTOR function has 5 argument. The first is the defining expression of the

component in terms of an index variable specified in the second argument. The third

argument is the first value of the index variable; the fourth is the last value of the

index variable. The last argument is optional; it is to be the step size of the index

variable. The default is 1. This is very useful for generating a table of function

values. For example, if you want to know the behaviour of near x = 0, you
sin(x)

x

plot the function VECTOR([n, nsin(1/n)], n, 1, 20) and you can see the points are

getting closer and closer to 1.

11. Printing and Saving to a Diskette

You can save the expressions in an algebra window to either a floppy disk or

the network hard drive. Unfortunately the plot windows are not saved. Click

File/Save As and save to your desired destination. After the first save you can update

the file by simply clicking on the button. The plots can be put on the clipboard

and saved as graphics files or pasted onto any document right in Windows. You

might want to paste it into your report. You can select a rectangular region by

clicking Edit/Mark and Copy from the menu bar in the plot window and then dragging

NG TZE BENG - 14

your mouse over the desired rectangular region. This region is then copied to the

clipboard and you can paste it into any document opened in Windows.

You can recall the expressions saved previously by simply using File/Open or

File/Load/Math option. The second method is used to add or append expressions to

an existing algebra window. The files are saved with MTH extension. Before saving

you work to a file or before printing your file you should erase unneeded entries and

clean up the file using the three buttons, . You can select several

expressions by dragging the mouse pointer over them with the left button held down.

If you now click the button, the highlighted expressions will be removed.

Clicking the button will undo the last delete. You can move a block of

highlighted expressions to a new location by just holding down the right mouse button

and dragging the block to a new location. You can then renumber the expressions by

clicking the button.

You can print all the expressions in the algebra window by clicking the

button. To print a graph in the plot window do the same. The help button is very

useful. When in doubt, always use the online help.

NG TZE BENG - 15

