
Sequences and Series.

Part I Sequences.

Definition 1.   Let P be the set of positive integers.   A sequence is simply a function from P  

into the set of real numbers R.

P is of course the set {1,2, … }.  Thus a function a: P → R is a sequence.

The image a(n) is called the n-th term of the sequence and is also written as a n ,  

We also write (a1 , a2, … ) or simply  (an) for the sequence.

Here we use the round bracket for sequences.  One should not confused the sequence (a1 , a2,

… ) with a row vector.

We are interested in the behaviour of the values or points of the sequences.  We want to

know if they are bunched together like a cluster or they become further and further

apart or oscillatory.  We focus on whether the points are bunched together or not.  We

have a technical term of this bunching together.

Definition 2.   Let (an ) be a sequence in R.  We say (an ) tends to a real number a in R if for

any ε > 0,  there exists a positive integer N0 such that for all n in P with n ≥ N0 , |an − a| < ε.

That is,

                                                 n ≥ N0 ⇒ |an − a| < ε .

Notation: 

If (an ) tends to a,  we write 

                      an → a  as n→ ∞ 

or                   
nd ∞
lim an = a

or just simply,  an → a .

Definition 3.   We say (an ) converges if there exists a real number a such that an → a,

otherwise (an ) diverges or is divergent.

Example 4.

1.  an = c  for all n in P.   This is a constant sequence obviously an → c .

     Given any  ε > 0 , take any positive integer N obviously for any n ≥ N  

     |an − c| = |c − c| = 0 < ε.

2.   an = (−1) n .    Then (an ) is divergent.   There is a quick way to see this.  Observe that the

value changes from 1 to −1 and so there is no way it can get close to any value. 

If you like the following is a proof of this fact.

For any a in R, by the triangle inequality,

                 |1− a| + |(−1)−a| ≥ |1− a − ((−1)−a)| = 2

Hence, either |1−a| ≥ 1 or |(−1)−a|≥ 1.  
Take any positive integer N0 .  If |1−a| ≥ 1,  then take any even n > N0  and we have



|an − a| = |1− a| ≥ 1 and if |(−1)−a|≥ 1, then take any odd n > N0 and we have |an − a|

=|(−1)−a|≥ 1.

Thus (an ) cannot converge to any a and so is divergent.

3. an = 1/n.   Then an → 0.  

For any ε > 0,  there exists a positive integer N0 such that     (by the archimedean0 < 1
N0

< �

property of R).   Thus for  n ≥ N 0 ,    and this means  and so by
1
n [

1
N0

< � |
1
n − 0| < �

definition an → 0.

We have already come across the notion of continuity and limit of a function, we shall use

this notion to derive the properties of the sequence.

Let P-1 denotes the set {1/n ; n ∈ P}.  That is P-1 = {1, ½, 1/3, ... }.

Then let K = P-1 ∪ {0} = {0, 1, ½, 1/3, ....}.

Here is an easy  result:

Proposition 4.  Let (an ) be a sequence in R.  Define a function,

                f : K = P-1 ∪ {0}→ R ,

by f (1/n) = an  for n > 0 and  f (0) = a.

Then an → a  if and only if  f  is continuous at 0.

We shall omit the proof.  It is sufficient to say that this is just a restatement of the

convergence of the sequence to a limit form for function.

Example 5.

1.   as n → ∞  for all k > 0.
1
nk
d 0

    Consider  f : K = P-1 ∪ {0}→ R, then

     f (1/n) = an =   and f (0) = 0.
1
nk

= 1
n

k

     Thus the function is given by  f (x) = xk  for x ≥ 0..  

     This function is continuous at x = 0 by showing that its limit at 0 is 0.

      ,
xd 0+
lim f (x) =

xd 0+
lim xk =

xd 0+
lim ek ln(x) =

xd 0+
lim

1
e−k ln(x) = 0

      since  as .
xd 0+
lim e−k ln(x) = ∞

xd 0+
lim −k ln(x) = ∞

2.  Let .an = 27n2 + 3n − 1
15n2 − 2n − 13

      Then f : K = P-1 ∪ {0}→ R  is given by  f (1/n) =  .an = 27n2 + 3n − 1
15n2 − 2n − 13

=
27 + 3

n − 1

n2

15 − 2
n − 13

n2

      Thus,  f (x) =   This function is continuous at 0 and  .            
27 + 3x − x2

15 − 2x − 13x2 f (0) = 27
15

= 9
5

      Therefore,   .an d
9
5

Below we list the properties for sequences, some of which are easy consequences of

continuity via Proposition 4.
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Properties 8.

1.  If  an → a and bn → b, then an + bn → a + b.

2.  If  an → a, then λan → λa for any real number λ.

3.   If  an → a and bn → b, then an bn → ab.

4.   If  an → a  and a ≠ 0, then .
1
an
d

1
a

5.    If  an → a and bn → b with b ≠ 0 , then  .
an

bn
d

a
b

6.  Comparison Test

If there exists a sequence ( bn ) such that

 (1)  bn → 0 and

 (2)  |an − a| ≤ |bn| ,

then an → a.

Proof.   Given ε > 0, by (1), there exists an integer N such that n ≥ N ⇒ |bn| < ε.   Therefore,

for all  n ≥ N, |an − a| ≤ |bn| < ε.  This means an → a .

Example.

If |a| < 1, then the sequence ( an ) converges to 0.

 

Since |a| < 1,  1/|a| > 1.  Then we can write 1/|a| = 1+ β and β > 0.

Hence  .|an − 0| = 1
(1 + �)n

< 1
n�

The last inequality is because   for positive integer n.(1 + �)n m 1 + n� > n�

Since ,     Thus by the Comparison Test  an
  → 0.

1
n d 0

1
n�
d 0.

7.  If  (an ) converges, then (an ) is bounded.

Proof.  

(an ) converges means there exists an a such that an → a.  Thus by the definition of

convergence, taking ε =1, there exists an integer N such that 

                                             n ≥ N ⇒ |an − a|< ε =1.

Hence, n ≥ N ⇒ |an |< |a|+1.

Let  M = max{|a1|, |a2|, … , |aN−1|, |a|+1}.   Obviously, |an |≤ M for all positive integer n. This

means (an ) is bounded.

8.   If  an → a and bn → b and there exists an integer N such that an ≤ bn for all n ≥ N,                

      then a ≤ b.

9.  Squeeze Theorem.

     If  an → a and bn → a and there exists an integer N such that for all n ≥ N, an ≤ cn ≤ bn ,

     then cn → a.
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Definition 10.  A real sequence (an ) is  increasing if   n > m ⇒ an ≥ am .

                          It is decreasing if n > m ⇒ an ≤ am .

                          It is strictly increasing if n > m ⇒ an > am .

                          It is strictly decreasing if n > m ⇒ an < am .

                          It is a monotone sequence if it is either increasing or decreasing. 

Proposition 11.   Suppose (an ) is a real bounded monotone sequence.  Then (an ) is

convergent.

Proof is omitted.  Actually the statement is equivalent to the completeness of R.

Example.    is a bounded increasing sequence and so is convergent(1 − 1
n )

Another equivalent statement involves the notion of a Cauchy sequence.   This expresses that

when a sequence is somehow "bunched" together then it must be convergent.

Definition 12.    (an ) is a Cauchy sequence, if and only if, given any ε > 0, there exists an

integer N such that for all n, m ≥ N,  |an − am | < ε .

An easy consequence of the definition is

Any Cauchy sequence is bounded.

Theorem 13.  Cauchy Principle of Convergence.

A sequence (an ) is convergent if and only if it is Cauchy.

This is the most important theorem.  The property that every Cauchy sequence is convergent

is equivalent to (order) completeness of R.   This gives a charaterization of completeness for

R and also for Rn .

Definition 14.  The notion of  (an ) tending to + ∞  means 

                           regarding the limit as a limit of a function on P.
nd ∞
lim a(n) = ∞

                         Similarly, limit of (an ) tending to − ∞ means .
nd∞
lim a(n) = −∞

The rules for functions translate to the following:

Useful results for computing limits.

Suppose (an ), (bn ) are  two sequences.

1.  If   an → +∞ or  an → − ∞ , then 
1
an
d 0.

2.  If   an → +∞ and  bn → a,  a finite, then an +bn→ +∞
3.  If   an → −∞ and  bn → a,  a finite, then an +bn→ −∞
4.  If   an → +∞ and  bn → a > 0  a finite, then an bn→ +∞
5.  If   an → +∞ and  bn → a < 0  a finite, then an bn→ −∞

These rules are particular useful when an is a rational function of n.

4



Example

1.   ( n + 1/n )  tends to + ∞ .

2.    5 − n + 1/2n  tends to − ∞ .

3.   .
n + 1
n2 + 1

=
1
n + 1

n2

1 + 1

n2

d 0

4.   .n2 + 1
2n2 + n + 1

=
1 + 1

n2

2 + 1
n + 1

n2

d
1
2

Part II Series.

Definition 1.  Suppose (an ) is a sequence.

We can form the series  

                                  a1 + a2 + a3 +   …
More specifically, an (infinite) series consists of

(1) a sequence (an )

(2) the sequence (sn ) of partial sums, where sn = �
k=1

n

ak

an  is called the n-th term of the series and sn the n-th partial sum of the series.

If (sn ) converges to a real number S, then we say the series converges to S and we write

                  .� an = S or �
n=1

∞

an = S or a1 + a2 +£ = S

We usually write ∑ an  or a1 + a2 + a3 +   …   for the series.

Example 2.   The series  c + c + c +   …  converges, if and only if,  c = 0.

Example 3.  The series  .�
n=1

∞
1

n(n + 1)
Here  .   Thus the n-th partial sum,an = 1

n(n + 1) = 1
n − 1

n + 1

         sn =   a1 + a2 + a3 + … + an 

            .= ( 1
1

− 1
2

) + ( 1
2

− 1
3

) +£ + ( 1
n − 1

n + 1
) = 1 − 1

n + 1
d 1 − 0 = 1

Therefore,  .�
n=1

∞
1

n(n + 1) = 1

Example 4.  Geometric Series.   

               �
n=0

∞

an = 1 + a + a2 +£

converges to   if  |a| < 1 .
1

1 − a

We begin by letting cn = an   and sn = c0 + c1 + … + cn  .

Then    if  a ≠ 1sn = 1 + a + a2 +£ + an =
(1 + a + a2 +£ + an)(1 − a)

1 − a

                if  |a| < 1.= 1 − an+1

1 − a
= 1 − an+1

1 − a
d

1
1 − a

− 0 = 1
1 − a

If  |a|  > 1, then sn  will be unbounded and so is divergent.
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if  a = 1, then sn  will be unbounded and so is divergent.

If  a = −1, then   and so ( sn ) is divergent.sn =
 

 
 

0, n odd

1, neven

Properties for sequences can now be translated into properties for series .

Properties 7.

(1)  If ∑ an converges then its sum is unique.

(2)  If ∑ an = a  and  ∑ bn = b, then ∑ (an + bn ) = a + b.

(3)  If ∑ an = a, then   ∑ λan = λa.

Definition 8.  ∑ an  is a Cauchy series if the partial sum ( sn ) is a Cauchy sequence.

I.e., if given ε > 0, there exists an integer N such that

              m>n ≥ N  ⇒  |sn − sm | < ε  e �
k=n+1

m

ak < �

This is equivalent to saying that there exists an integer N such that for all n ≥ N  and for all

positive integer p,  .�
n+1

n+p

ak < �

Then we have the principle convergence for series.

Theorem 9.   ∑ an is convergent if and only if  ∑ an is Cauchy.

The next theorem is a  quick way of telling if certain series is divergent.

Proposition 10.   If  ∑ an  converges, then an → 0.

Proof.   If  ∑ an  converges, then ∑ an is Cauchy.  Then definition 8, with p =1, shows that an

→ 0.

Exanple 

∑ an  is divergent if  |a| ≥1 since (an ) does not converge to 0.

Converse of Proposition 10 is false.

Counter Example 

     is divergent as the observation about its n-th partial sums will reveal�
n=1

∞
1
n

  s1 = 1, s2 = 1+ 1/2 , s4 = 1 + 1/2 + ( 1/3+1/4) > 1 + 1/2 + 1/2

  s8 =  1 + 1/2 + ( 1/3+1/4) + (1/2+1/6+1/7+1/8) > 1 + 1/2 + 1/2 + 1/2

   ....................

and so (sn ) is unbounded and so is divergent.

Now we have some nice result, a consequence of the monotone convergence theorem.

Proposition 11.  Suppose ∑ an is a series of real non-negative terms.  Then ∑ an is

convergent, if and only if, (sn ) is bounded.
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Proposition 12 (Comparison Test)

Let ∑ an  and  ∑ bn be two series of real non-negative terms such that 

                   an  ≤ bn.

Then (1)  ∑ an  converges if ∑ bn is convergent

         (2)  ∑ bn diverges if ∑ an is divergent.

Example 13.     is convergent.� 1
n2

Since   and   is convergent, so by the Comparison Test,
1

(n + 1)2 [
1

n(n + 1) � 1
n(n + 1)

  is convergent .  Therefore,  is convergent.�
n=1

∞
1

(n + 1)2 �
n=1

∞
1
n2 = 1 +�

n=1

∞
1

(n + 1)2

Proposition 14.  Suppose  ∑ |an| is convergent.  Then  ∑ an  converges.

Proof is just simply observing that if ∑ |an| is Cauchy, then so is   ∑ an  .

This follows from the following inequality and Definition 8 :

                          .�
n+1

n+p

ak [ �
n+1

n+p

|ak| < �

The converse is not true.

Definition 15.  We say the series ∑ an  converges absolutely if ∑ |an| is convergent

Example 16.   is convergent but not absolutely.  (It converges by Alternating series�
n=1

∞ (−1)n

n

test.)

Proposition 17.  Suppose  (an ) is a bounded sequence.  Then   converges.�
n=1

∞ an

n2

Example 18.     is absolutely convergent for any x.�
n=1

∞ sin(nx)
n2

Proposition 20 (Alternating Series Test, Leibnitz's Test)

If (an ) is a monotone decreasing, non-negative sequence and an → 0, then ∑ (−1)n+1an is

convergent.

The proof consists in showing that ∑ (−1)n+1an is Cauchy and is omitted.   There is also a

proof making use of the fact that s2n = s2n−1 − a2n , both (s2n ) and (s2n-1) are bounded and

monotone and so are convergent and that a2n → 0.

Theorem 21 (Ratio Test, D'Alembert's Test)

Suppose the series ∑ an is such that  exists and is equal to α.
nd∞
lim

an+1

an

Then we have:

 (i) α < 1 implies that ∑ an is absolutely convergent (hence convergent).

(ii) α > 1 implies that ∑ an is divergent.

(iii) If α = 1, then  ∑ an may converge or diverge.  No inference can be made.  The

convergence may be investigated by other methods.

7



Proof is omitted.

Example   ∑ 1/n is divergent and ∑ 1/n2  is convergent.  Ratio test for both gives α as 1.

Example 22.  

1.     is convergent as   .�
n=1

∞
1
n! nd∞

lim
an+1

an
=

nd∞
lim

1/(n + 1)!
1/n!

= 1
n + 1

d 0 < 1

2.     for x > 0.  Let an = n2xn . Then  .�
n=1

∞

n2xn
nd∞
lim

an+1

an
=

nd∞
lim

(n + 1)2xn+1

n2xn = x

       Thu s  is convergent for 0 < x < 1.   It is divergent for x > 1. For x =1 it is�
n=1

∞

n2xn

       divergent.

3.       (s > 0).�
n=1

∞
1
ns

       This series converges if  s > 1, diverges if s ≤ 1.

Example 23.        is convergent .�
n=1

∞
n
en

This is because  for n > 0 ,  en > 1+ n + n2 /2 + n3 / 6 > n3 / 6  and so 

                        .
n
en < 6

n2

Therefore by the Comparison Test  is convergent because   is convergent by (3)�
n=1

∞
n
en �

n=1

∞
6
n2

above.
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