Sequences and Series.

Part I Sequences.

Definition 1. Let P be the set of positive integers. A *sequence* is simply a function from P into the set of real numbers \mathbf{R} .

P is of course the set $\{1, 2, ... \}$. Thus a function $a: P \rightarrow \mathbf{R}$ is a sequence.

The image a(n) is called the *n*-th term of the sequence and is also written as a_n , We also write $(a_1, a_2, ...)$ or simply (a_n) for the sequence. Here we use the round bracket for sequences. One should not confused the sequence $(a_1, a_2, ...)$ with a row vector.

We are interested in the behaviour of the values or points of the sequences. We want to know if they are bunched together like a cluster or they become further and further apart or oscillatory. We focus on whether the points are bunched together or not. We have a technical term of this bunching together.

Definition 2. Let (a_n) be a sequence in **R**. We say (a_n) tends to a real number a in **R** if for any $\varepsilon > 0$, there exists a positive integer N_0 such that for all n in **P** with $n \ge N_0$, $|a_n - a| < \varepsilon$. That is,

$$n \ge N_0 \Longrightarrow |a_n - a| < \varepsilon$$

Notation:

If (a_n) tends to a, we write

 $a_n \rightarrow a \text{ as } n \rightarrow \infty$ or $\lim_{n \rightarrow \infty} a_n = a$ or just simply, $a_n \rightarrow a$.

Definition 3. We say (a_n) converges if there exists a real number a such that $a_n \rightarrow a$, otherwise (a_n) diverges or is divergent.

Example 4.

1. $a_n = c$ for all *n* in P. This is a constant sequence obviously $a_n \rightarrow c$. Given any $\varepsilon > 0$, take any positive integer *N* obviously for any $n \ge N$ $|a_n - c| = |c - c| = 0 < \varepsilon$.

2. $a_n = (-1)^n$. Then (a_n) is divergent. There is a quick way to see this. Observe that the value changes from 1 to -1 and so there is no way it can get close to any value. If you like the following is a proof of this fact.

For any a in **R**, by the triangle inequality,

 $|1-a|+|(-1)-a| \ge |1-a-((-1)-a)| = 2$ Hence, either $|1-a| \ge 1$ or $|(-1)-a| \ge 1$. Take any positive integer N_0 . If $|1-a| \ge 1$, then take any even $n > N_0$ and we have $|a_n - a| = |1 - a| \ge 1$ and if $|(-1) - a| \ge 1$, then take any odd $n > N_0$ and we have $|a_n - a| = |(-1) - a| \ge 1$. Thus (n_n) as a non-transformed to some non-transformed to be indicated by the source of the source of

Thus (a_n) cannot converge to any a and so is divergent.

3. $a_n = 1/n$. Then $a_n \to 0$. For any $\varepsilon > 0$, there exists a positive integer N₀ such that $0 < \frac{1}{N_0} < \varepsilon$ (by the archimedean property of **R**). Thus for $n \ge N_0$, $\frac{1}{n} \le \frac{1}{N_0} < \varepsilon$ and this means $|\frac{1}{n} - 0| < \varepsilon$ and so by definition $a_n \to 0$.

We have already come across the notion of continuity and limit of a function, we shall use this notion to derive the properties of the sequence.

Let P⁻¹ denotes the set $\{1/n ; n \in P\}$. That is P⁻¹ = $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$. Then let K = P⁻¹ \cup $\{0\} = \{0, 1, \frac{1}{2}, \frac{1}{3}, \dots\}$.

Here is an easy result:

Proposition 4. Let (a_n) be a sequence in **R**. Define a function, $f: K = P^{-1} \cup \{0\} \rightarrow \mathbf{R}$, by $f(1/n) = a_n$ for n > 0 and f(0) = a. Then $a_n \rightarrow a$ if and only if f is continuous at 0.

We shall omit the proof. It is sufficient to say that this is just a restatement of the convergence of the sequence to a limit form for function.

Example 5.

1.
$$\frac{1}{n^k} \to 0$$
 as $n \to \infty$ for all $k > 0$.
Consider $f: K = P^{-1} \cup \{0\} \to \mathbf{R}$, then
 $f(1/n) = a_n = \frac{1}{n^k} = \left(\frac{1}{n}\right)^k$ and $f(0) = 0$.
Thus the function is given by $f(x) = x^k$ for $x \ge 0$..
This function is continuous at $x = 0$ by showing that its limit at 0 is 0.
 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^k = \lim_{x \to 0^+} e^{k \ln(x)} = \lim_{x \to 0^+} \frac{1}{e^{-k \ln(x)}} = 0$,
since $\lim_{x \to 0^+} e^{-k \ln(x)} = \infty$ as $\lim_{x \to 0^+} -k \ln(x) = \infty$.

2. Let
$$a_n = \frac{27n^2 + 3n - 1}{15n^2 - 2n - 13}$$
.
Then $f: K = P^{-1} \cup \{0\} \rightarrow \mathbf{R}$ is given by $f(1/n) = a_n = \frac{27n^2 + 3n - 1}{15n^2 - 2n - 13} = \frac{27 + \frac{3}{n} - \frac{1}{n^2}}{15 - \frac{2}{n} - \frac{13}{n^2}}$.
Thus, $f(x) = \frac{27 + 3x - x^2}{15 - 2x - 13x^2}$ This function is continuous at 0 and $f(0) = \frac{27}{15} = \frac{9}{5}$.
Therefore, $a_n \rightarrow \frac{9}{5}$.

Below we list the properties for sequences, some of which are easy consequences of continuity via Proposition 4.

Properties 8.

- 1. If $a_n \rightarrow a$ and $b_n \rightarrow b$, then $a_n + b_n \rightarrow a + b$.
- 2. If $a_n \rightarrow a$, then $\lambda a_n \rightarrow \lambda a$ for any real number λ .
- 3. If $a_n \rightarrow a$ and $b_n \rightarrow b$, then $a_n b_n \rightarrow ab$.
- 4. If $a_n \to a$ and $a \neq 0$, then $\frac{1}{a_n} \to \frac{1}{a}$.
- 5. If $a_n \to a$ and $b_n \to b$ with $b \neq 0$, then $\frac{a_n}{b_n} \to \frac{a}{b}$.

6. Comparison Test

If there exists a sequence (b_n) such that (1) $b_n \rightarrow 0$ and (2) $|a_n - a| \le |b_n|$, then $a_n \rightarrow a$.

Proof. Given $\varepsilon > 0$, by (1), there exists an integer N such that $n \ge N \Longrightarrow |b_n| < \varepsilon$. Therefore, for all $n \ge N$, $|a_n - a| \le |b_n| < \varepsilon$. This means $a_n \to a$.

Example.

If |a| < 1, then the sequence (a^n) converges to 0.

Since |a| < 1, 1/|a| > 1. Then we can write $1/|a| = 1 + \beta$ and $\beta > 0$. Hence $|a^n - 0| = \frac{1}{(1 + \beta)^n} < \frac{1}{n\beta}$. The last inequality is because $(1 + \beta)^n \ge 1 + n\beta > n\beta$ for positive integer *n*. Since $\frac{1}{n} \to 0$, $\frac{1}{n\beta} \to 0$. Thus by the Comparison Test $a^n \to 0$.

7. If (a_n) converges, then (a_n) is bounded. *Proof.*

 (a_n) converges means there exists an *a* such that $a_n \rightarrow a$. Thus by the definition of convergence, taking $\varepsilon = 1$, there exists an integer N such that

$$n \ge N \Longrightarrow |a_n - a| < \varepsilon = 1.$$

Hence, $n \ge N \Longrightarrow |a_n| \le |a|+1$.

Let $M = \max\{|a_1|, |a_2|, ..., |a_{N-1}|, |a|+1\}$. Obviously, $|a_n| \le M$ for all positive integer *n*. This means (a_n) is bounded.

8. If $a_n \rightarrow a$ and $b_n \rightarrow b$ and there exists an integer N such that $a_n \leq b_n$ for all $n \geq N$, then $a \leq b$.

9. Squeeze Theorem.

If $a_n \rightarrow a$ and $b_n \rightarrow a$ and there exists an integer N such that for all $n \ge N$, $a_n \le c_n \le b_n$, then $c_n \rightarrow a$.

Definition 10. A real sequence (a_n) is *increasing* if $n > m \Rightarrow a_n \ge a_m$. It is *decreasing* if $n > m \Rightarrow a_n \le a_m$. It is *strictly increasing* if $n > m \Rightarrow a_n > a_m$. It is *strictly decreasing* if $n > m \Rightarrow a_n < a_m$. It is *a monotone sequence* if it is either increasing or decreasing.

Proposition 11. Suppose (a_n) is a real bounded monotone sequence. Then (a_n) is convergent.

Proof is omitted. Actually the statement is equivalent to the completeness of **R**.

Example. $(1 - \frac{1}{n})$ is a bounded increasing sequence and so is convergent

Another equivalent statement involves the notion of a Cauchy sequence. This expresses that when a sequence is somehow "bunched" together then it must be convergent.

Definition 12. (a_n) is a Cauchy sequence, if and only if, given any $\varepsilon > 0$, there exists an integer N such that for all $n, m \ge N$, $|a_n - a_m| < \varepsilon$.

An easy consequence of the definition is

Any Cauchy sequence is bounded.

Theorem 13. Cauchy Principle of Convergence. A sequence (a_n) is convergent if and only if it is Cauchy.

This is the most important theorem. The property that every Cauchy sequence is convergent is equivalent to (order) completeness of **R**. This gives a characterization of completeness for **R** and also for \mathbf{R}^n .

Definition 14. The notion of (a_n) tending to $+\infty$ means $\lim_{n \to \infty} a(n) = \infty$ regarding the limit as a limit of a function on P. Similarly, limit of (a_n) tending to $-\infty$ means $\lim_{n \to \infty} a(n) = -\infty$.

The rules for functions translate to the following:

Useful results for computing limits.

Suppose (a_n) , (b_n) are two sequences. 1. If $a_n \to +\infty$ or $a_n \to -\infty$, then $\frac{1}{a_n} \to 0$. 2. If $a_n \to +\infty$ and $b_n \to a$, *a* finite, then $a_n + b_n \to +\infty$ 3. If $a_n \to -\infty$ and $b_n \to a$, *a* finite, then $a_n + b_n \to -\infty$ 4. If $a_n \to +\infty$ and $b_n \to a > 0$ *a* finite, then $a_n b_n \to +\infty$ 5. If $a_n \to +\infty$ and $b_n \to a < 0$ *a* finite, then $a_n b_n \to -\infty$

These rules are particular useful when a_n is a rational function of n.

Example

- 1. (n + 1/n) tends to $+\infty$.
- 2. $5 n + 1/2^n$ tends to $-\infty$.

3.
$$\frac{n+1}{n^2+1} = \frac{\frac{1}{n} + \frac{1}{n^2}}{1 + \frac{1}{n^2}} \to 0$$
.

4.
$$\frac{n^2 + 1}{2n^2 + n + 1} = \frac{1 + \frac{1}{n^2}}{2 + \frac{1}{n} + \frac{1}{n^2}} \to \frac{1}{2}.$$

Part II Series.

Definition 1. Suppose (a_n) is a sequence. We can form the series

 $a_1 + a_2 + a_3 + \dots$

More specifically, an (infinite) series consists of

(1) a sequence (a_n)

(2) the sequence
$$(s_n)$$
 of partial sums, where $s_n = \sum_{k=1}^n a_k$

 a_n is called the *n*-th term of the series and s_n the *n*-th partial sum of the series.

If (s_n) converges to a real number S, then we say the series converges to S and we write $\sum a_n = S \text{ or } \sum_{n=1}^{\infty} a_n = S \text{ or } a_1 + a_2 + \dots = S.$ We usually write $\sum a_n$ or $a_1 + a_2 + a_3 + \dots$ for the series.

Example 2. The series $c + c + c + \dots$ converges, if and only if, c = 0.

Example 3. The series
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
.
Here $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Thus the *n*-th partial sum,
 $s_n = a_1 + a_2 + a_3 + \dots + a_n$
 $= (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1}) = 1 - \frac{1}{n+1} \to 1 - 0 = 1$.
Therefore, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Example 4. Geometric Series.

$$\sum_{n=0}^{\infty} a^n = 1 + a + a^2 + \cdots$$

converges to $\frac{1}{1-a}$ if $|a| < 1$.

We begin by letting
$$c_n = a^n$$
 and $s_n = c_0 + c_1 + ... + c_n$.
Then $s_n = 1 + a + a^2 + \dots + a^n = \frac{(1 + a + a^2 + \dots + a^n)(1 - a)}{1 - a}$ if $a \neq 1$
 $= \frac{1 - a^{n+1}}{1 - a} = 1 - \frac{a^{n+1}}{1 - a} \rightarrow \frac{1}{1 - a} - 0 = \frac{1}{1 - a}$ if $|a| < 1$.
If $|a| > 1$, then s_n will be unbounded and so is divergent.

if a = 1, then s_n will be unbounded and so is divergent. If a = -1, then $s_n = \begin{cases} 0, n \text{ odd} \\ 1, n \text{ even} \end{cases}$ and so (s_n) is divergent.

Properties for sequences can now be translated into properties for series .

Properties 7.

If ∑ a_n converges then its sum is unique.
 If ∑ a_n = a and ∑ b_n = b, then ∑ (a_n + b_n) = a + b.
 If ∑ a_n = a, then ∑ λa_n = λa.

Definition 8. $\sum a_n$ is a Cauchy series if the partial sum (s_n) is a Cauchy sequence. I.e., if given $\varepsilon > 0$, there exists an integer N such that

$$m \ge n \ge N \implies |s_n - s_m| < \varepsilon \implies \left|\sum_{k=n+1}^m a_k\right| < \varepsilon$$

This is equivalent to saying that there exists an integer N such that for all $n \ge N$ and for all positive integer p, $\left|\sum_{n+1}^{n+p} a_k\right| < \varepsilon$.

Then we have the principle convergence for series.

Theorem 9. $\sum a_n$ is convergent if and only if $\sum a_n$ is Cauchy.

The next theorem is a quick way of telling if certain series is divergent.

Proposition 10. If $\sum a_n$ converges, then $a_n \rightarrow 0$.

Proof. If $\sum a_n$ converges, then $\sum a_n$ is Cauchy. Then definition 8, with p = 1, shows that $a_n \rightarrow 0$.

Exanple

 $\sum a^n$ is divergent if $|a| \ge 1$ since (a^n) does not converge to 0.

Converse of Proposition 10 is false.

Counter Example $\sum_{n=1}^{\infty} \frac{1}{n} \text{ is divergent as the observation about its } n\text{-th partial sums will reveal}$ $s_{1} = 1, s_{2} = 1 + 1/2, s_{4} = 1 + 1/2 + (1/3 + 1/4) > 1 + 1/2 + 1/2$ $s_{8} = 1 + 1/2 + (1/3 + 1/4) + (1/2 + 1/6 + 1/7 + 1/8) > 1 + 1/2 + 1/2 + 1/2$

and so (s_n) is unbounded and so is divergent.

Now we have some nice result, a consequence of the monotone convergence theorem.

Proposition 11. Suppose $\sum a_n$ is a series of real non-negative terms. Then $\sum a_n$ is convergent, if and only if, (s_n) is bounded.

Proposition 12 (Comparison Test)

Let $\sum a_n$ and $\sum b_n$ be two series of real non-negative terms such that $a_n \leq b_n$.

Then (1) $\sum a_n$ converges if $\sum b_n$ is convergent (2) $\sum b_n$ diverges if $\sum a_n$ is divergent.

Example 13. $\sum \frac{1}{n^2}$ is convergent. Since $\frac{1}{(n+1)^2} \le \frac{1}{n(n+1)}$ and $\sum \frac{1}{n(n+1)}$ is convergent, so by the Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ is convergent. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ is convergent.

Proposition 14. Suppose $\sum |a_n|$ is convergent. Then $\sum a_n$ converges.

Proof is just simply observing that if $\sum |a_n|$ is Cauchy, then so is $\sum a_n$. This follows from the following inequality and Definition 8 : $\left|\sum_{n+1}^{n+p} a_k\right| \le \sum_{n+1}^{n+p} |a_k| < \varepsilon.$

The converse is not true.

Definition 15. We say the series $\sum a_n$ converges absolutely if $\sum |a_n|$ is convergent

Example 16. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ is convergent but not absolutely. (It converges by Alternating series test.)

Proposition 17. Suppose (a_n) is a bounded sequence. Then $\sum_{n=1}^{\infty} \frac{a_n}{n^2}$ converges.

Example 18. $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$ is absolutely convergent for any *x*.

Proposition 20 (Alternating Series Test, Leibnitz's Test)

If (a_n) is a monotone decreasing, non-negative sequence and $a_n \rightarrow 0$, then $\sum (-1)^{n+1} a_n$ is convergent.

The proof consists in showing that $\sum (-1)^{n+1}a_n$ is Cauchy and is omitted. There is also a proof making use of the fact that $s_{2n} = s_{2n-1} - a_{2n}$, both (s_{2n}) and (s_{2n-1}) are bounded and monotone and so are convergent and that $a_{2n} \rightarrow 0$.

Theorem 21 (Ratio Test, D'Alembert's Test)

Suppose the series $\sum a_n$ is such that $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists and is equal to α . Then we have:

(i) $\alpha < 1$ implies that $\sum a_n$ is absolutely convergent (hence convergent).

(ii) $\alpha > 1$ implies that $\sum a_n$ is divergent.

(iii) If $\alpha = 1$, then $\sum a_n$ may converge or diverge. No inference can be made. The convergence may be investigated by other methods.

Proof is omitted.

Example $\sum 1/n$ is divergent and $\sum 1/n^2$ is convergent. Ratio test for both gives α as 1. Example 22.

- 1. $\sum_{n=1}^{\infty} \frac{1}{n!} \text{ is convergent as } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1/(n+1)!}{1/n!} = \frac{1}{n+1} \to 0 < 1 .$ 2. $\sum_{n=1}^{\infty} n^2 x^n \text{ for } x > 0. \text{ Let } a_n = n^2 x^n \text{ . Then } \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 x^{n+1}}{n^2 x^n} = x .$ Thu s $\sum_{n=1}^{\infty} n^2 x^n \text{ is convergent for } 0 < x < 1. \text{ It is divergent for } x > 1. \text{ For } x = 1 \text{ it is divergent.}$
- 3. $\sum_{n=1}^{\infty} \frac{1}{n^s}$ (s > 0).

This series converges if s > 1, diverges if $s \le 1$.

Example 23. $\sum_{n=1}^{\infty} \frac{n}{e^n}$ is convergent. This is because for n > 0, $e^n > 1 + n + n^2/2 + n^3/6 > n^3/6$ and so $\frac{n}{e^n} < \frac{6}{n^2}$.

Therefore by the Comparison Test $\sum_{n=1}^{\infty} \frac{n}{e^n}$ is convergent because $\sum_{n=1}^{\infty} \frac{6}{n^2}$ is convergent by (3) above.