Sequences and Series.

Part I Sequences.

Definition 1. Let P be the set of positive integers. A sequence is simply a function from P into the set of real numbers \mathbf{R}.
P is of course the set $\{1,2, \ldots\}$. Thus a function $a: \mathrm{P} \rightarrow \mathbf{R}$ is a sequence.
The image $a(n)$ is called the n-th term of the sequence and is also written as a_{n}, We also write $\left(a_{1}, a_{2}, \ldots\right)$ or simply $\left(a_{n}\right)$ for the sequence.
Here we use the round bracket for sequences. One should not confused the sequence $\left(a_{1}, a_{2}\right.$, ...) with a row vector.

We are interested in the behaviour of the values or points of the sequences. We want to know if they are bunched together like a cluster or they become further and further apart or oscillatory. We focus on whether the points are bunched together or not. We have a technical term of this bunching together.

Definition 2. Let $\left(a_{n}\right)$ be a sequence in \mathbf{R}. We say $\left(a_{n}\right)$ tends to a real number a in \mathbf{R} if for any $\varepsilon>0$, there exists a positive integer N_{0} such that for all n in P with $n \geq N_{0},\left|a_{n}-a\right|<\varepsilon$. That is,

$$
n \geq N_{0} \Rightarrow\left|a_{n}-a\right|<\varepsilon .
$$

Notation:

If (a_{n}) tends to a, we write

$$
a_{n} \rightarrow a \text { as } n \rightarrow \infty
$$

or $\quad \lim _{n \rightarrow \infty} a_{n}=a$
or just simply, $a_{n} \rightarrow a$.
Definition 3. We say (a_{n}) converges if there exists a real number a such that $a_{n} \rightarrow a$, otherwise $\left(a_{n}\right)$ diverges or is divergent.

Example 4.

1. $a_{n}=c$ for all n in P. This is a constant sequence obviously $a_{n} \rightarrow c$.

Given any $\varepsilon>0$, take any positive integer N obviously for any $n \geq N$

$$
\left|a_{n}-c\right|=|c-c|=0<\varepsilon .
$$

2. $a_{n}=(-1)^{n}$. Then $\left(a_{n}\right)$ is divergent. There is a quick way to see this. Observe that the value changes from 1 to -1 and so there is no way it can get close to any value.
If you like the following is a proof of this fact.
For any a in \mathbf{R}, by the triangle inequality,

$$
|1-a|+|(-1)-a| \geq|1-a-((-1)-a)|=2
$$

Hence, either $|1-a| \geq 1$ or $|(-1)-a| \geq 1$.
Take any positive integer N_{0}. If $|1-a| \geq 1$, then take any even $n>N_{0}$ and we have
$\left|a_{n}-a\right|=|1-a| \geq 1$ and if $|(-1)-a| \geq 1$, then take any odd $n>N_{0}$ and we have $\left|a_{n}-a\right|$ $=|(-1)-a| \geq 1$.
Thus $\left(a_{n}\right)$ cannot converge to any a and so is divergent.
3. $a_{n}=1 / n$. Then $a_{n} \rightarrow 0$.

For any $\varepsilon>0$, there exists a positive integer N_{0} such that $0<\frac{1}{N_{0}}<\varepsilon$ (by the archimedean property of \mathbf{R}). Thus for $n \geq \mathrm{N}_{0}, \frac{1}{n} \leq \frac{1}{N_{0}}<\varepsilon$ and this means $\left|\frac{1}{n}-0\right|<\varepsilon$ and so by definition $a_{n} \rightarrow 0$.

We have already come across the notion of continuity and limit of a function, we shall use this notion to derive the properties of the sequence.

Let P^{-1} denotes the set $\{1 / n ; n \in \mathrm{P}\}$. That is $\mathrm{P}^{-1}=\{1,1 / 2,1 / 3, \ldots\}$.
Then let $\mathrm{K}=\mathrm{P}^{-1} \cup\{0\}=\{0,1,1 / 2,1 / 3, \ldots$.$\} .$
Here is an easy result:
Proposition 4. Let $\left(a_{n}\right)$ be a sequence in \mathbf{R}. Define a function,

$$
f: \mathrm{K}=\mathrm{P}^{-1} \cup\{0\} \rightarrow \mathbf{R},
$$

by $f(1 / n)=a_{n}$ for $n>0$ and $f(0)=a$.
Then $a_{n} \rightarrow a$ if and only if f is continuous at 0 .
We shall omit the proof. It is sufficient to say that this is just a restatement of the convergence of the sequence to a limit form for function.

Example 5.

1. $\frac{1}{n^{k}} \rightarrow 0$ as $n \rightarrow \infty$ for all $k>0$.

Consider $f: \mathrm{K}=\mathrm{P}^{-1} \cup\{0\} \rightarrow \mathbf{R}$, then
$f(1 / n)=a_{n}=\frac{1}{n^{k}}=\left(\frac{1}{n}\right)^{k}$ and $f(0)=0$.
Thus the function is given by $f(x)=x^{k}$ for $x \geq 0$..
This function is continuous at $x=0$ by showing that its limit at 0 is 0 .
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x^{k}=\lim _{x \rightarrow 0^{+}} e^{k \ln (x)}=\lim _{x \rightarrow 0^{+}} \frac{1}{e^{-k \ln (x)}}=0$,
since $\lim _{x \rightarrow 0^{+}} e^{-k \ln (x)}=\infty$ as $\lim _{x \rightarrow 0^{+}}-k \ln (x)=\infty$.
2. Let $a_{n}=\frac{27 n^{2}+3 n-1}{15 n^{2}-2 n-13}$.

Then $f: \mathrm{K}=\mathrm{P}^{-1} \cup\{0\} \rightarrow \mathbf{R}$ is given by $f(1 / n)=a_{n}=\frac{27 n^{2}+3 n-1}{15 n^{2}-2 n-13}=\frac{27+\frac{3}{n}-\frac{1}{n^{2}}}{15-\frac{2}{n}-\frac{13}{n^{2}}}$.
Thus, $f(x)=\frac{27+3 x-x^{2}}{15-2 x-13 x^{2}}$ This function is continuous at 0 and $f(0)=\frac{27}{15}=\frac{9}{5}$. Therefore, $a_{n} \rightarrow \frac{9}{5}$.

Below we list the properties for sequences, some of which are easy consequences of continuity via Proposition 4.

Properties 8.

1. If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, then $a_{n}+b_{n} \rightarrow a+b$.
2. If $a_{n} \rightarrow a$, then $\lambda a_{n} \rightarrow \lambda a$ for any real number λ.
3. If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, then $a_{n} b_{n} \rightarrow a b$.
4. If $a_{n} \rightarrow a$ and $a \neq 0$, then $\frac{1}{a_{n}} \rightarrow \frac{1}{a}$.
5. If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ with $b \neq 0$, then $\frac{a_{n}}{b_{n}} \rightarrow \frac{a}{b}$.

6. Comparison Test

If there exists a sequence $\left(b_{n}\right)$ such that
(1) $b_{n} \rightarrow 0$ and
(2) $\left|a_{n}-a\right| \leq\left|b_{n}\right|$,
then $a_{n} \rightarrow a$.
Proof. Given $\varepsilon>0$, by (1), there exists an integer N such that $n \geq \mathrm{N} \Rightarrow\left|b_{n}\right|<\varepsilon$. Therefore, for all $n \geq \mathrm{N},\left|a_{n}-a\right| \leq\left|b_{n}\right|<\varepsilon$. This means $a_{n} \rightarrow a$.

Example.

If $|a|<1$, then the sequence (a^{n}) converges to 0 .
Since $|a|<1,1 /|a|>1$. Then we can write $1 /|a|=1+\beta$ and $\beta>0$.
Hence $\left|a^{n}-0\right|=\frac{1}{(1+\beta)^{n}}<\frac{1}{n \beta}$.
The last inequality is because $(1+\beta)^{n} \geq 1+n \beta>n \beta$ for positive integer n.
Since $\frac{1}{n} \rightarrow 0, \frac{1}{n \beta} \rightarrow 0$. Thus by the Comparison Test $a^{n} \rightarrow 0$.
7. If $\left(a_{n}\right)$ converges, then $\left(a_{n}\right)$ is bounded.

Proof.
$\left(a_{n}\right)$ converges means there exists an a such that $a_{n} \rightarrow a$. Thus by the definition of convergence, taking $\varepsilon=1$, there exists an integer N such that

$$
n \geq \mathrm{N} \Rightarrow\left|a_{n}-a\right|<\varepsilon=1 .
$$

Hence, $n \geq \mathrm{N} \Rightarrow\left|a_{n}\right|<|a|+1$.
Let $\mathrm{M}=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{\mathrm{N}-1}\right|,|a|+1\right\}$. Obviously, $\left|a_{n}\right| \leq \mathrm{M}$ for all positive integer n. This means (a_{n}) is bounded.
8. If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ and there exists an integer N such that $a_{n} \leq b_{n}$ for all $n \geq \mathrm{N}$, then $a \leq b$.

9. Squeeze Theorem.

If $a_{n} \rightarrow a$ and $b_{n} \rightarrow a$ and there exists an integer N such that for all $n \geq \mathrm{N}, a_{n} \leq c_{n} \leq b_{n}$, then $c_{n} \rightarrow a$.

Definition 10. A real sequence $\left(a_{n}\right)$ is increasing if $n>m \Rightarrow a_{n} \geq a_{m}$.
It is decreasing if $n>m \Rightarrow a_{n} \leq a_{m}$.
It is strictly increasing if $n>m \Rightarrow a_{n}>a_{m}$.
It is strictly decreasing if $n>m \Rightarrow a_{n}<a_{m}$.
It is a monotone sequence if it is either increasing or decreasing.
Proposition 11. Suppose $\left(a_{n}\right)$ is a real bounded monotone sequence. Then $\left(a_{n}\right)$ is convergent.

Proof is omitted. Actually the statement is equivalent to the completeness of \mathbf{R}.
Example. ($1-\frac{1}{n}$) is a bounded increasing sequence and so is convergent
Another equivalent statement involves the notion of a Cauchy sequence. This expresses that when a sequence is somehow "bunched" together then it must be convergent.

Definition 12. $\left(a_{n}\right)$ is a Cauchy sequence, if and only if, given any $\varepsilon>0$, there exists an integer N such that for all $n, m \geq \mathrm{N},\left|a_{n}-a_{m}\right|<\varepsilon$.

An easy consequence of the definition is

Any Cauchy sequence is bounded.

Theorem 13. Cauchy Principle of Convergence.
A sequence $\left(a_{n}\right)$ is convergent if and only if it is Cauchy.
This is the most important theorem. The property that every Cauchy sequence is convergent is equivalent to (order) completeness of \mathbf{R}. This gives a charaterization of completeness for \mathbf{R} and also for $\mathbf{R}^{\mathbf{n}}$.

Definition 14. The notion of $\left(a_{n}\right)$ tending to $+\infty$ means $\lim _{n \rightarrow \infty} a(n)=\infty$ regarding the limit as a limit of a function on P . Similarly, limit of $\left(a_{n}\right)$ tending to $-\infty$ means $\lim _{n \rightarrow \infty} a(n)=-\infty$.

The rules for functions translate to the following:
Useful results for computing limits.
Suppose $\left(a_{n}\right),\left(b_{n}\right)$ are two sequences.

1. If $a_{n} \rightarrow+\infty$ or $a_{n} \rightarrow-\infty$, then $\frac{1}{a_{n}} \rightarrow 0$.
2. If $a_{n} \rightarrow+\infty$ and $b_{n} \rightarrow a, a$ finite, then $a_{n}+b_{n} \rightarrow+\infty$
3. If $a_{n} \rightarrow-\infty$ and $b_{n} \rightarrow a, a$ finite, then $a_{n}+b_{n} \rightarrow-\infty$
4. If $a_{n} \rightarrow+\infty$ and $b_{n} \rightarrow a>0 a$ finite, then $a_{n} b_{n} \rightarrow+\infty$
5. If $a_{n} \rightarrow+\infty$ and $b_{n} \rightarrow a<0 \quad a$ finite, then $a_{n} b_{n} \rightarrow-\infty$

These rules are particular useful when a_{n} is a rational function of n.

Example

1. $(n+1 / n)$ tends to $+\infty$.
2. $5-n+1 / 2^{n}$ tends to $-\infty$.
3. $\frac{n+1}{n^{2}+1}=\frac{\frac{1}{n}+\frac{1}{n^{2}}}{1+\frac{1}{n^{2}}} \rightarrow 0$.
4. $\frac{n^{2}+1}{2 n^{2}+n+1}=\frac{1+\frac{1}{n^{2}}}{2+\frac{1}{n}+\frac{1}{n^{2}}} \rightarrow \frac{1}{2}$.

Part II Series.

Definition 1. Suppose (a_{n}) is a sequence.
We can form the series

$$
a_{1}+a_{2}+a_{3}+\ldots
$$

More specifically, an (infinite) series consists of
(1) a sequence $\left(a_{n}\right)$
(2) the sequence (s_{n}) of partial sums, where $s_{n}=\sum_{k=1}^{n} a_{k}$
a_{n} is called the n-th term of the series and s_{n} the n-th partial sum of the series.
If $\left(s_{n}\right)$ converges to a real number S, then we say the series converges to S and we write

$$
\sum a_{n}=S \text { or } \sum_{n=1}^{\infty} a_{n}=S \text { or } a_{1}+a_{2}+\cdots=S
$$

We usually write $\sum a_{n}$ or $a_{1}+a_{2}+a_{3}+\ldots$ for the series.
Example 2. The series $c+c+c+\ldots$ converges, if and only if, $c=0$.
Example 3. The series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
Here $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$. Thus the n-th partial sum,

$$
\begin{aligned}
& s_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n} \\
& \quad=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{n+1} \rightarrow 1-0=1 .
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$.

Example 4. Geometric Series.

$$
\sum_{n=0}^{\infty} a^{n}=1+a+a^{2}+\cdots
$$

converges to $\frac{1}{1-a}$ if $|a|<1$.
We begin by letting $c_{n}=a^{n}$ and $s_{n}=c_{0}+c_{1}+\ldots+c_{n}$.
Then $s_{n}=1+a+a^{2}+\cdots+a^{n}=\frac{\left(1+a+a^{2}+\cdots+a^{n}\right)(1-a)}{1-a}$ if $a \neq 1$

$$
=\frac{1-a^{n+1}}{1-a}=1-\frac{a^{n+1}}{1-a} \rightarrow \frac{1}{1-a}-0=\frac{1}{1-a} \text { if }|a|<1 .
$$

If $|a|>1$, then s_{n} will be unbounded and so is divergent.
if $a=1$, then s_{n} will be unbounded and so is divergent.
If $a=-1$, then $s_{n}=\left\{\begin{array}{l}0, n \text { odd } \\ 1, n \text { even }\end{array}\right.$ and so $\left(s_{n}\right)$ is divergent.
Properties for sequences can now be translated into properties for series .

Properties 7.

(1) If $\sum a_{n}$ converges then its sum is unique.
(2) If $\sum a_{n}=a$ and $\sum b_{n}=b$, then $\sum\left(a_{n}+b_{n}\right)=a+b$.
(3) If $\sum a_{n}=a$, then $\sum \lambda a_{n}=\lambda a$.

Definition 8. $\sum a_{n}$ is a Cauchy series if the partial sum $\left(s_{n}\right)$ is a Cauchy sequence.
I.e., if given $\varepsilon>0$, there exists an integer N such that

$$
m>n \geq \mathrm{N} \Rightarrow\left|s_{n}-s_{m}\right|<\varepsilon \Rightarrow\left|\sum_{k=n+1}^{m} a_{k}\right|<\varepsilon
$$

This is equivalent to saying that there exists an integer N such that for all $n \geq \mathrm{N}$ and for all positive integer $p,\left|\sum_{n+1}^{n+p} a_{k}\right|<\varepsilon$.

Then we have the principle convergence for series.
Theorem 9. $\sum a_{n}$ is convergent if and only if $\sum a_{n}$ is Cauchy.
The next theorem is a quick way of telling if certain series is divergent.
Proposition 10. If $\sum a_{n}$ converges, then $a_{n} \rightarrow 0$.
Proof. If $\sum a_{n}$ converges, then $\sum a_{n}$ is Cauchy. Then definition 8 , with $p=1$, shows that a_{n} $\rightarrow 0$.

Exanple

$\sum a^{n}$ is divergent if $|a| \geq 1$ since (a^{n}) does not converge to 0 .
Converse of Proposition 10 is false.
Counter Example $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent as the observation about its n-th partial sums will reveal $s_{1}=1, s_{2}=1+1 / 2, s_{4}=1+1 / 2+(1 / 3+1 / 4)>1+1 / 2+1 / 2$
$s_{8}=1+1 / 2+(1 / 3+1 / 4)+(1 / 2+1 / 6+1 / 7+1 / 8)>1+1 / 2+1 / 2+1 / 2$
and so $\left(s_{n}\right)$ is unbounded and so is divergent.
Now we have some nice result, a consequence of the monotone convergence theorem.
Proposition 11. Suppose $\sum a_{n}$ is a series of real non-negative terms. Then $\sum a_{n}$ is convergent, if and only if, $\left(s_{n}\right)$ is bounded.

Proposition 12 (Comparison Test)

Let $\sum a_{n}$ and $\sum b_{n}$ be two series of real non-negative terms such that $a_{n} \leq b_{n}$.
Then (1) $\sum a_{n}$ converges if $\sum b_{n}$ is convergent
(2) $\sum b_{n}$ diverges if $\sum a_{n}$ is divergent.

Example 13. $\Sigma \frac{1}{n^{2}}$ is convergent.
Since $\frac{1}{(n+1)^{2}} \leq \frac{1}{n(n+1)}$ and $\sum \frac{1}{n(n+1)}$ is convergent, so by the Comparison Test, $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ is convergent. Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=1+\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ is convergent.

Proposition 14. Suppose $\sum\left|a_{n}\right|$ is convergent. Then $\sum a_{n}$ converges.
Proof is just simply observing that if $\sum\left|a_{n}\right|$ is Cauchy, then so is $\sum a_{n}$. This follows from the following inequality and Definition 8 :

$$
\left|\sum_{n+1}^{n+p} a_{k}\right| \leq \sum_{n+1}^{n+p}\left|a_{k}\right|<\varepsilon .
$$

The converse is not true.

Definition 15. We say the series $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ is convergent
Example 16. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ is convergent but not absolutely. (It converges by Alternating series test.)

Proposition 17. Suppose $\left(a_{n}\right)$ is a bounded sequence. Then $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{2}}$ converges.
Example 18. $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$ is absolutely convergent for any x.

Proposition 20 (Alternating Series Test, Leibnitz's Test)

If $\left(a_{n}\right)$ is a monotone decreasing, non-negative sequence and $a_{n} \rightarrow 0$, then $\sum(-1)^{n+1} a_{n}$ is convergent.

The proof consists in showing that $\sum(-1)^{n+1} a_{n}$ is Cauchy and is omitted. There is also a proof making use of the fact that $s_{2 n}=s_{2 n-1}-a_{2 n}$, both $\left(s_{2 n}\right)$ and $\left(s_{2 n-1}\right)$ are bounded and monotone and so are convergent and that $a_{2 \mathrm{n}} \rightarrow 0$.

Theorem 21 (Ratio Test, D'Alembert's Test)
Suppose the series $\sum a_{n}$ is such that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists and is equal to α.
Then we have:
(i) $\alpha<1$ implies that $\sum a_{n}$ is absolutely convergent (hence convergent).
(ii) $\alpha>1$ implies that $\sum a_{n}$ is divergent.
(iii) If $\alpha=1$, then $\sum a_{n}$ may converge or diverge. No inference can be made. The convergence may be investigated by other methods.

Proof is omitted.

Example $\sum 1 / n$ is divergent and $\sum 1 / n^{2}$ is convergent. Ratio test for both gives α as 1 .
Example 22.

1. $\sum_{n=1}^{\infty} \frac{1}{n!}$ is convergent as $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1 /(n+1)!}{1 / n!}=\frac{1}{n+1} \rightarrow 0<1$.
2. $\sum_{n=1}^{\infty} n^{2} x^{n}$ for $x>0$. Let $a_{n}=n^{2} x^{n}$. Then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} x^{n+1}}{n^{2} x^{n}}=x$.

Thu s $\sum_{n=1}^{\infty} n^{2} x^{n}$ is convergent for $0<x<1$. It is divergent for $x>1$. For $x=1$ it is divergent.
3. $\sum_{n=1}^{\infty} \frac{1}{n^{s}}(s>0)$.

This series converges if $s>1$, diverges if $\mathrm{s} \leq 1$.
Example 23. $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$ is convergent .
This is because for $n>0, e^{n}>1+n+n^{2} / 2+n^{3} / 6>n^{3} / 6$ and so

$$
\frac{n}{e^{n}}<\frac{6}{n^{2}} .
$$

Therefore by the Comparison Test $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$ is convergent because $\sum_{n=1}^{\infty} \frac{6}{n^{2}}$ is convergent by (3) above.

