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 When we study calculus, we often take the real numbers for granted.  It is especially difficult for 
the novice to trace the development of the real numbers through the more mathematically natural but 
conceptually difficult path.  The properties of the real numbers are well known but often assumed as a 
matter of fact.  We shall recreate the real numbers through Dedekind's cuts, starting from the rational 
numbers and then prove all the properties of the real numbers that we often assumed.  One last step in 
this approach is to show that there is only one real number system, a complete totally ordered field up to 
isomorphism.  By this isomorphism, we understand and translate all the properties that the real numbers 
possess as Dedekind's cuts, to our usual concept of the real numbers as 'extension' of the rational num-
bers.  There are other models for the real numbers, but the Dedekind's cuts offer the clearest but by no 
means easy, logical development. 

 This book aims to provide the novice first year undergraduates or a beginner thirsting for the 
meaning of the real number system, a step by step approach to finding out about the real numbers.  The 
need for calculus students, who we can say study properties of function from the real numbers to the real 
numbers or from Cartesian products of the real numbers to Cartesian products of the real numbers, to 
know about the object that they are studying is apparent.  More precisely, if we are studying the proper-
ties of the functions from the real numbers to the real numbers, we ought to know or at least be familiar 
with the real numbers themselves. 

 The creativity evident in the construction of the Dedekind's cuts and the deep result that there is 
one and only one complete totally ordered field up to isomorphism can only be appreciated with some ef-
fort and concentration.  The book is written to allow for appreciation in steps rather than all at one go.  If 
one wants to know just the real numbers as cuts, start with chapter two.  Then if one wants to know about 
addition on the real numbers, one can proceed next to chapter three.  If one wants to know about the 
overall picture, then start with chapter one, the least technical of all the chapters. 

 This book has come to be written for the following reason.  The author often has to clarify the fi-
ne points and the understanding of the real numbers, in particular, their properties, with students, who of-
ten regard the real numbers as little more than abstract algebra with inequalities.  It is the hope that this 
book will make some difference towards an appreciation of the definitions of limits, continuity and dif-
ferentiability and theorems such as the intermediate value theorem, extreme value theorem and the mean 
value theorem.  In writing this book, the author has considered among other things, how anyone would 
begin this journey to know the real numbers better, the possible pitfalls, the explanation and the technical 
details from the point of view of someone doing it for the first time.  This book that has gone through 
many revisions is also a labour of love.  Many people have contributed to it in one way or another.  They 
include the students, for whom it is mainly intended, and my family without whose support and love I 
will not be able to find the reason for writing it.  Last but not least, thanks are due to Ian Shelly who has 
prompted me to write and my spirit for wanting to give. 
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CHAPTER ONE 
 

Real Numbers!     What are they? 
 

 Numbers have different origins, but mostly in the abstract.  There are many ways of 
thinking and representing integers.  We speak of 'real' numbers.  What do we mean by a number 
that is real?  A question, hardly understood and least to answer.  Let us start by counting. 

ONE, TWO, THREE, FOUR, FIVE, SIX, ....  

The counting numbers, as the name suggests, has to do with counting.  Starting with one, we get 
its successor, two, followed by its successor, three, and so on.  If we were to ask: "What this 
number (which is represented by a symbol) is?", there is a number of answers we can give.  We 
can start by recalling the sequence of successor followed by successor, starting from one, until 
we reach our desired number.  We are accustomed to see numbers abbreviated by universally un-
derstood symbols.  We would subsequently simplify or modify this to a system that takes into ac-
count certain specified numbers together with the operation of addition (and sometimes multipli-
cation) that gives a representation of a number by a shorthand that will let the beholder know and 
reconstruct the number by addition of certain basic chosen numbers.  For example, 1024 would 
mean one THOUSAND, zero HUNDRED, two TEN and four ONE.  How useful or effective is 
this representation?  It would depend on the chosen specified blocks of numbers and how you 
would represent these blocks. 

 A symbol for each block would be cumbersome.  For one, we would run out of symbols.  
For second, these symbols may not be universally understood.  Nevertheless, these symbols are 
unavoidable if we want to make ourselves understood.  For instance, 1024 could equally mean 
one 63, zero 62, two 6 and four 1.  There would also be the need for special symbols to represent 
certain numbers.  These would be the first few numbers needed to exchange certain number of 
blocks with another block.  This is useful and desirable for commerce and trade.  For our stand-
ard base TEN representation, we would need the symbols for (zero), one, two, ..., nine.  A sym-
bol for zero is not essential for this purpose.  Ten ONE is TEN or one block of TEN, ten blocks 
of TEN is HUNDRED and so on.  For the base 2 representation we would need only zero and 
one.  So, two ONE is 2, two blocks of 2 is 22 and so on.  The representation ought to be unique 
otherwise we would be open to dispute.  Because a symbol for each block is cumbersome, alt-
hough there is a place for this, place value becomes a device to circumvent the need for these 
symbols or to reduce the number of symbols required.  But then there is still the problem of 
which way do we assume the place value to begin, from the right to the left or from the left to the 
right?  A symbol for zero here would be essential because we cannot disregard the place value 
even though there is zero block there.  1024 and 4201 could mean the same thing unless we all 
agree on which way the place value is written down.  We shall adopt the base 10 representation 
from right to left starting from the smallest to the largest blocks. 
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The Integers 
 To set the rudiments of arithmetic, we introduce the notion of negative numbers.  Arith-
metic is of course desirable for trading purposes.  Mathematicians view negative numbers as the 
solution to the linear equation, 

x + n = 0,      

for each counting number n.  For this approach, of course, the notion of zero would have to be in-
troduced.  There is not a satisfactory way of defining or saying what zero means at least mathe-
matically or what the equation means, unless we begin from the meaning of the counting num-
bers and its construction, the meaning of addition, multiplication and the ordering of the counting 
numbers with the meaning of zero as satisfying the following:  

m + 0 = m for all counting numbers m and 0 + 0 = 0. 

So, we must then assume the existence of such a number zero and rightly this is a very important 
number and we should indeed construct the counting numbers together with zero.  We shall not 
venture into the technical detail and justification of the existence of the negative numbers. The 
construction of the negative numbers at this point would cloud our view and make us lose sight 
of the overall picture.  For now, we view the existence of the negative numbers as guaranteed by 
construction.  Thus, the integers consist of the counting numbers, their negatives and zero.  Or-
dering comes naturally with the counting numbers together with zero.  Successor comes after 
each number, starting from zero.  It is not clear that the ordering is naturally extended to the neg-
ative numbers.  If we view negative numbers as deficits, that are similar to money owed or quan-
tity owed, then a natural ordering would be the same as that of counting numbers with zero at the 
start.  One would have 1 comes after 0, 2 comes after 1, 3 comes after 2 and so on.  Then 0 
would be in a unique position as the starting number for both the counting numbers and their 
negatives.  This would be fine until we view these numbers as distances.  A deficit distance 
would assume an ordering as 1 comes before 0 and 1 comes after 0, ..., basically dictated by di-
rection.  So, for the ordering on the negative to be consistent with direction, we would have 1 
comes after 2 and 2 comes after 3 and so on.  The number zero does play a unique role in this 
ordering and an even greater part in fact is played by the counting numbers, if we were to define 
meaning of ordering (in an algebraic context). 

The Rational Numbers    

 A ratio of 1: n gives a fraction 
1

n
 for each counting number n.  Then addition of m of this  

1

n
 means 

m

n
.  This representation is not unique and we have to allow for cancellation, as for in-
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stance, 
1

2
means the same as 

2

4
.  There is the question of deciding when two representations are 

the same without having to know the common factor of m and n.  We say 
a

b
 and 

c

d
 are the same 

if, and only if, a d = b c.  We write 
a c

b d
  when this happens.  We can define negative fractions 

as similar to how we define integers as the solution to x + r = 0 for each fraction r.  The collec-
tion of the fractions, their negatives and zero constitute the rational numbers  .   There is anoth-
er way of constructing the rational numbers from the integers by set theoretic consideration, a 
more mathematical way.  We are keeping to our theme of extending a system to include the solu-
tion of all linear equations.  

 Ordering does not come easily this time with the rational numbers.  The set of "positive" 
rational numbers has the following properties.  It should, of course, contain the counting num-
bers.  For any two "positive" rational numbers p and q, 

 
 A.    p + q is again a "positive" rational number and 
 
            B.   p q is again a "positive" rational number. 
 
Notice that the counting numbers satisfy these two properties.   

 This meaning of "positive" is artificial and unnatural.  We know it ought to apply to the 
counting numbers and it does as we shall see later.  At least it is consistent with our perception of 
what positive would mean.  Property B involves multiplication.  It is easily seen that multiplica-
tion of a counting number by  1 gives a negative integer and so multiplication of a fraction by 
1 gives us a negative rational number. 

 We now additionally insist that this set of "positive" rational numbers, together with its 
negative, that is the set consisting of the result of multiplying each "positive" rational numbers by 
1, and zero form the entire set of the rational numbers.  Can we do this?  That is, do we have a 
candidate for this set of "positive" rational numbers?  Yes.  Our construction of the rational num-
bers involves the following ingredients: the fractions, their negatives and zero.  Plainly, the nega-
tive fractions are the result of multiplication of the fractions by 1.  Obviously, the fractions sat-
isfy Properties A and B.  Is our insistence misplaced?  Is there a set of different "positive" ration-
al numbers than the fractions?  The answer is no.  Our insistence does pay off.  This definition of 
"positive" would capture the essence of the meaning of positive.  Indeed, it gives it new meaning.  
Note that 1 is "positive", a notion we would accept readily.  But with the new meaning, it would 
require some thought.  We would use a contradiction argument to show this.  If 1 is not "posi-
tive", then it's negative 1 would be "positive" and by Property B, (1)(1) = 1 would be "posi-
tive", contradicting our assumption that 1 is not "positive".  Then by Property A, all the counting 
numbers, being defined successively by adding 1, are "positive".  Also note that for any counting 
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number n, 
1

n
 is "positive".  This can be verified as follows.  If  

1

n
 is not "positive", then 

1

n
 is the 

multiplication of a "positive" number by 1 because it is not 0.  Thus, 
1

n
  is "positive" and so, 

since n is "positive", 
1

1 n
n

     would be "positive" by Property B, contradicting that 1 is not 

"positive".  Therefore, we conclude that 
1

n
 is "positive".  It then follows from Property B that 

any fraction 
m

n
 is "positive" for any counting numbers m and n, since 

1m
m

n n
  .   Thus, our 

fractions are "positive".  Then the "positive" rational numbers are precisely the fractions.  This is 
because if there is a "positive" number p not a fraction, then since 0p  ,   p is a fraction and so 

 p is "positive" (since any fraction is "positive") and so p is not "positive", contradicting that p is 
"positive".  We call this subset of "positive" rational numbers, a positive cone.  It is precisely the 
set of fractions. 

 The positive cone or the fractions would serve as a kind of reference for the ordering.  It 
is a natural division of the rational numbers into two parts, a special part that decides the "direc-
tion" of an ordering and another.  There is always a division of the rational numbers at any point 
into the 'left' and 'right'; what we needed is a reference point, zero, and a translation operation to 
give meaning to 'left' and 'right'. 

 For any two rational numbers a and b, we say a is greater than b (a > b) if, and only if, a  
b is "positive", i.e., a  b belongs to this special part. 

 This ordering is consistent with the ordering on the counting numbers.  This is seen as 
follows.  For any counting number n, n + 1 > n because (n + 1)n = 1 is "positive".  Since n +1 
is the successor of n, this ordering is consistent with the previous ordering determined by the se-
quence of successor followed by successor.  In particular for any fraction r, r  0 because r  0 = 
r is "positive".  If we now define any rational number r to be positive when r  0, then positive 
would mean the same as "positive". 

 In here is buried the notion of "reality", a reference to the continuous nature of time, past, 
present and future.  We cannot in any way pinpoint what the next instant of time is, but we can 
say the future is what comes after the present instant.  The next instant does not exist until it be-
comes the present instant.  What lies beyond the present is the future.  The difficulty in describ-
ing time is the same as the difficulty in describing reality. 

 

What We Would Like the Real Numbers to Possess 
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 If we can view the real numbers as the extension of the rational numbers, then we would 
want the properties that the rational numbers possessed that are so useful, to carry over to this ex-
tension.  We shall describe in abstract terms these properties. 

 The rational number system is an example of an object, which mathematician calls a field.  
It is a set F that comes with two binary operations called addition (+) and multiplication (two 
unique elements called respectively 0 and 1, two unary operations, one on F denoted by 

: F F   and the other on F  {0}, denoted by *: {0} {0}F F   , satisfying the following 9 
properties. 

 For all a in F, 
                  1.    a + 0 = 0 + a = a; 
                  2.    a + ( a) = ( a) + a = 0. 
            For all a, b and c in F, 
                  3.    a + (b + c) = (a + b) + c;             (Associativity) 
                  4.    a + b = b + a;                                (Commutativity) 
                  5.    a(b + c) = ab + ac.                     (Distributivity) 
 For all a in F {0}, 
                  6.    1 a = a  1 = a; 
                  7.    a  (*a) = (*a)  a = 1. 
 For all a, b and c in F {0}, 
                  8.    a  (b c) = (ab) c;          (Associativity) 
                  9.    a  b = b  a.                                 (Commutativity)  

 The unary operation * for the rational numbers   corresponds to taking reciprocals on 
non-zero rational numbers.  The other operations are suggestive of the symbols. 

 A totally ordered field F is a field F together with a positive cone P such that 0 does not 
belong to P, the union of P, its reflection, P = { a: a belongs to P}, and {0} is equal to F and P 
satisfies the following two properties, that for all a and b in P, 

 
          (A)   a + b belongs to P and 
 
          (B)   a  b belongs to P. 
 
The ordering, '', called a total ordering on F, is defined by, b a if, and only if, b  a belongs to 
P.  Thus, for any x in F, x  0 if, and only if x belongs to P. 

 The rational numbers   satisfy all the 9 properties with the usual operations of addition, 
multiplication, taking negatives and reciprocals and has the total ordering described earlier with 
the (positive) fractions as the positive cone.  To investigate the desirable property the real number 
system should possess, we have to reinvent the whole system of representing numbers.  In the 
theory of mensuration, there are numbers or quantities that are not commensurable.  Take for in-
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stance, 2 , the square root of 2.  Is this a number?  Geometric intuition says it is.  One thing is 

sure as we are taught - we can "approximate" 2  by fractions.  There are rational numbers as 

close to 2  as we like 'before' and 'after' 2 .  We cannot pin down 2  as a rational number.  It 

is not a symbol readily understood as  2 or 
1

2
.  But what we can say is this:  If there is such a 

number, then its square would give us the integer 2.  We can be bold.  We can extend, in any 
sense as we would, our rational numbers to some system containing the solution of the equation,  

x2 = 2.  But then we would just open up a Pandora's box.  What about 3, 5, 7, , p , p a 

prime and so on?  It is well-known none of these numbers is rational.  What about cube root of 
2?  These are solutions to polynomial equation of the form, 

xn = p, where p and n are counting numbers.  

What about solution to all polynomial equations?  It then becomes an impossible task to describe 
all these "numbers".  In particular, there are "numbers", such as the Euler constant e and  that 
are not the solution of a polynomial equation.  So, extending our rational numbers in this way 
would not include these numbers.  But what is plausible is that, no matter what their origins may 
be, there are rational numbers as close to these numbers as we like 'before' and 'after' these num-
bers.  This forms the basic concept of the cut of Dedekind.  We have to think of numbers differ-

ently as if there is a hierarchy of numbers.  We may not know what 2  is but we know there are 
rational numbers as close as we like on the 'left' of it or less than it, if we can give an ordering on 

our set of real numbers.  This gives enough information about 2  for all practical purposes.  In-
deed, it is a collection of rational numbers that can give us all the information we required about 

2 .  In this way, we need a collection of rational numbers to describe a number.  We shall come 
back to this later when we embark on making this more precise.  

 We say the totally ordered field F has the Archimedean Property if for all x > 0 in F, and 
for all y > 0 in F, there exists a counting number n such that 

 (n1)xy

We can rewrite the last inequality as  
1

1
y x

n
   or   *( 1)n y x  .  What this says is that given 

any x and y > 0 in F, no matter how small x is, we can find a counting number n such that 
1

y x
n
  , if we identify  

1 1
 with 

1n n
.  Obviously, the rational numbers   has the Archimedean 

Property.  This is a property that we would wish the real numbers to have. 

 We shall need to add a new property that says that the set of real numbers does exist in a 

different sense.  We know there are rational numbers arbitrarily bigger than 2 .  We can collect 

all the rational numbers below or less than 2 .  In a way, 2  would be the largest such number 

if it exists, bigger than all the rational numbers below 2 .  The existence of such a number 
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would have guaranteed the meaning of 2 .  But of course, we would have to think of rational 
numbers in a different way.  To describe more precisely what we mean, we make the following 
definition. 

 Consider a subset A of F.   A is said to be bounded above if there exists x in F such that 
for all a in A, a  x.  Here, a  x means a < x or a = x.  We say A is bounded below if there exists 
y in F such that for all a in A, y  a. The number x is called an upper bound for A and y a lower 
bound for A.  We say A is bounded if it is both bounded above and bounded below. 

 If A is bounded above, then it has an upper bound.  It is natural to ask if it has the smallest 
such upper bound.  That means, if M is the smallest such upper bound, then, of course, M is in F 
and for any x in F with x < M, x cannot be an upper bound for A and so consequently, there exists 
a a0 in A such that x < a0.   

 Definition 1.  M is the least upper bound or supremum (sup) of a subset A of F if for all a 
in A, a M and for any x < M, there exists b in A such that x < b. 

 A more descriptive way of describing M is this:  For any number x less than M, we can 
always find an element b in A such that x  b  M. 

 Similarly, we can define the greatest lower bound or infimum of A. 

 Definition 2.  m is the greatest lower bound or infimum (inf) of a subset A of F if for all a 
in A, m a and for any x > m, there exists b in A such that b < x. 

 We can thus characterize m by saying that for any x > m, we can always find an element 
b in A such that x  b  m. 

 The notion of supremum or infimum would be in vain if they do not exist.  We would like 
them to be included in our consideration.  A totally ordered field in which every bounded subset 
has an infimum and a supremum is special in that the “boundaries” of the bounded subsets are 
elements in the field.  This prompts the next important definition. 

 Definition 3.   A totally ordered field F is complete if every non-empty bounded above 
subset of F has a supremum. 

 The significance of this definition is that the supremum is a member of F.  That means 
any bounded above subset has its 'upper' boundary residing in F and there is no room for a gap to 
exist in F. 

 The term 'complete' has several meanings.  The present meaning is sometimes referred to 
as order complete.   
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 This property is new.  It is desirable for 2  to have a meaning.  The rational numbers   
is not complete.  Take for example the subset A = {x in  : x > 0 and x2 <2} of  .  It does not 

have a supremum (in  ).  Note that we cannot as yet write 2  as its existence has not been es-
tablished.  We can only talk about it hypothetically.  Even if we assume that its existence has 
been established, we still have to know how the usual ordering on the rational numbers will place 

2  by some extension of the ordering.  That 2 is not a rational number can easily be shown as 

follows.  Suppose 2  is rational, say 2
p

q
 , where p and q are counting numbers with no 

common factors other than 1.  Then 2p q  and so p2 = 2 q2.  Thus, p2 is even.  Since product 
of odd numbers yields odd number, p is even and so p = 2 k.  Thus 2 q2 = p2 = 4 k2 and we get q2 
= 2 k2.  A similar argument yields q is even.  Hence, 2 is a common factor of p and q, contradict-

ing that p and q have no common factors other than 1.  Thus, 2  will belong to a different 
scheme of things.  A is plainly bounded above for we see that for any a in A, a < 2.  We shall now 
show that A has no supremum. 

 Suppose A has a supremum M.  Then M  a for all a in A and that if k < M, then there ex-
ists b in A such that k < b.  By definition of A, a2 < 2 for all a in A. Note that a2  M 2 for all a in 

A.   We can compare M 2 and 2 to produce a contradiction.  Suppose M 2 > 2.  Then 
2 2

0
2

M

M





 

as plainly, M +2 > 0.  Let 
2 2 2 2

2 2

M M
k M

M M

 
  

 
 .  Then k < M.  Note that 

   
 

 
 

2 2 2

2
2 2

2 24 1 2 2
2 0

2 2

MM M
k

M M

  
   

 
 since M 2 > 2.   Thus, k 2 > 2.  But since k < M, 

there exists b in A such that k < b.  Thus k2  b 2  2.  This contradicts k 2 > 2.  Therefore, M 2  2.  
Since M 2  2 because M is a rational number, M 2  2.  We shall now derive another contradic-

tion.  So, we now assume 2 M 2  0.  Let now 
22 2 2

2 2

M M
k M

M M

 
  

 
Then k  M.  Ob-

serve that 
 
 

2

2
2

2 2
2 0

2

M
k

M


  


 since M 2  2.  Therefore, k 2  2.  Hence k belongs to A and so 

k  M.  This contradicts k M.  Consequently, these two contradictions imply that M = sup A 
does not exist. 

 The following is a variation or equivalent definition for completeness.  First, note that for 
any non-empty bounded below subset A of F, A = {a: a belongs to A} is bounded above.  In 
particular, inf A =  sup(A).   It follows that if the supremum exists for any non-empty bounded 
above subset of F, then the infimum too exists for any non-empty bounded below subset of F. 

 Definition 3'.   A totally ordered field F is complete if every non-empty bounded below 
subset of F has an infimum. 
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 It is clear from the above that Definition 3 implies Definition 3'.  It can be similarly ob-
served that for any bounded above subset A of F, A = {a: a belongs to A} is bounded below 
and sup A = inf (A).  This will supply the argument for proving that Definition 3' implies Def-
inition 3. 

 Assuming that we have constructed the real numbers, then the following tells us just what 
it is. 

 Theorem 4.  The real numbers  is a complete totally ordered field. 

 There is essentially one such complete ordered field.  This is not to say that there is exact-
ly one such complete totally ordered field but that any two are isomorphic.  We interpret this to 
mean that for all intent and purposes they are the same although they may be constructs of a dif-
ferent nature. 

          Proposition 5.   The real numbers   has the Archimedean Property.  That is to say, 

                   for any x, y  0 in  , there is a counting number n such that n x  y.  ---------  (*) 

(Here we are using the notation inherited from the rational numbers.) 

 
 When a totally ordered field has the Archimedean Property, we say it is Archimedean.  
Thus,  is Archimedean.   
 
 Proof of Proposition 5.   We shall prove Proposition 5 by contradiction.  Suppose   is 

not Archimedean.  Then by negating the statement (*), we get, 
 

there exists x, y > 0 such that for all counting number n, n x  y. ------ (**) 
 

 Take the set K = {n x: n a counting number}.  Then by (**), K is bounded above by y and 
is non-empty.  Because   is complete, the supremum M of K exists.  Hence, for any 
counting number n, n x  M since n x belongs to K.  Now, (n + 1)x belongs to K too.  
Therefore, (n + 1)x  M.  It follows that for any counting number n, 

     n x  M  x  M.    -------------------    (***) 

 Thus, M  x is an upper bound for K.  Because M  x M and that M is the supremum of 
K, there is an element n0 x in K, for some counting number n0, such that M  x  n0 x.  But 
by (***), n0 x  M  x.  This contradicts that M  x  n0 x.  Therefore,  is Archimedean. 

 Real numbers are hard to conceptualize, particularly so, when we are so accustomed to 
the arithmetic of the rational numbers to expect that they are a natural extension of the rational 
numbers.  When we say, take a small number   0, we like to think of  as a rational number, 
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since we are more comfortable with the rational numbers.  For all practical purposes, this is what 
we need to think of .  We may indeed just say, take a small rational number   0 instead.  The 
following justifies this. 

 Corollary 6.  For any   0, there is a counting number n such that 
1

n
 . 

 Proof.  By the Archimedean Property of  , there exists a counting number n such that       

n  1.  Therefore, 
1

n
 . 

 Note that 
1

n
 is a rational number.  So, the above corollary says that for any   0, no mat-

ter how small  is, we can find a rational number 
1

n
 such that 

1
0

n
  .  So, for all practical 

purposes, in place of , we can use 
1

n
 instead.   

 Now that we have presented a class of numbers, which consists of numbers that are not 
rational numbers and accepted that there is an ordering that applies to the whole of  , we might 
ask ourselves the question, “How often can we find a rational number or for that matter, irration-
al number?”.  “Very often” is the answer.  In mathematical terms, we mean the rational numbers 
or the irrational numbers are dense.  The following Corollary gives meaning to the term ‘density 
of the rational numbers’. 

 Corollary 7.   For any x and y in  and x  y, there exists an integer n and a counting 

number m such that 
n

x y
m

  . 

 
 A descriptive way of stating Corollary 7 will be “between any two real numbers, there is a 
rational number”. 

 Proof of Corollary 7.  The proof goes like this.  Take two real numbers x and y such that 
x  y.  Then y  x  0.  It follows by Corollary 6 that there is a counting number m such 

that 
1

y x
m
  .  The rest of the proof will be divided into 3 cases.  The easiest case will 

be when x = 0.  Then we have 
1

0 y
m

   and so the required rational number is 
1

m
 for 

this case.  The second case is when x  0.  We now invoke the Archimedean Property of 

 .  By this property, there is a counting number n, such that 
1

n x
m
 .  Having estab-

lished the existence of such an integer n, we can then by successively taking one away 
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from this number n to obtain the least integer n such that 
1

n x
m
 .  That means 

1
( 1)n x

m
  .  Therefore, 

1 1
( ) ( 1)

n
y y x x n x

m m m
        . 

 For this case, the required rational number is 
n

m
.  The remaining case is when x  0.   

That is, x  0.   Then by the Archimedean property, there is a counting number n such 

that 
1

n x
m
  .  As before, we choose the least integer n such that 

1
n x

m
  .  Then we 

have 
1

( 1)n x
m

   .  Therefore, 

                                             
1 1

( ) (1 )
n

y y x x n x
m m m

        . 

 

 For this case, the required rational number is 
1 n

m


.  This completes the proof. 

 Having established the density of the rational numbers, we expect that the irrational num-
bers are also dense in  .  More is true here.  The irrational numbers are more numerous than the 
rational numbers.  This statement will make sense only when we have some means of "measur-
ing" subsets of the real numbers.  Indeed, the "measure" of the set of rational numbers is zero but 
not so for the set of irrational numbers.  We would need a theory of measure to establish this.  
The fact that  is uncountable and the rational numbers   is countable gives us some idea of the 
difference in "size" of the set of irrational numbers and the set of rational numbers.  A set is said 
to be countable if we can match its elements one to one with elements of the counting numbers.  
It can be shown that   is countable though not finite.  But it is much harder to show that  is 
not countable.  One can do this by showing that the real numbers between 0 and 1 is not counta-
ble.  This can be shown by way of contradiction.  First, by assuming that we have a matching 
function from the counting numbers to the real numbers between 0 and 1 and thus we can write 
them as a sequence.  Then assuming that each term of this sequence can be written as an infinite 
decimal and with this sequence of infinite decimals to produce a number different from any term 
of this sequence and thus showing that we can never have a matching function.  This approach 
will need some criterion to distinguish infinite decimals converging to different limits.  For now, 
we are content with the following. 

 Corollary 8.  For any two rational numbers a and b with a  b, there is an irrational num-
ber  such that a  b.  
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 Proof.  The proof of this Corollary is by actually producing the required irrational number 
 by making use of a known irrational number.  Take an irrational number k  0.  For      

instance, we can take k =  2 .  By the Archimedean Property of  , there is a counting 
number n such that n (b  a)  k.  That is, 

k
a b

n
  . 

 Then  
k

a a b
n

   .  Since k is irrational, 
k

a
n

  is also irrational because a is rational 

and 
k

n
 is irrational. Take 

k
a

n
    to be our required irrational number.  This establishes 

the truth of this corollary. 

 Now, here is a curious observation.  Each integer is separated from the nearest integer by 
one.  We can expect to find an integer between x and x +1 for any real number x.  This is stated 
more precisely as follows. 

 Corollary 9.  For any real number x, there is an integer n0 such that x  n0  x + 1. 

 Proof.  If x is an integer, then we only have to take n0 to be x + 1.  Now, assume x is not 
an integer.  Suppose x  0.  Then by the Archimedean Property of R, there is a counting 
number n such that n = n1  x.  Take the least such integer N with N  x. Then N1  x.  
Therefore, x  N  x .  So, take n0 = N.  Observe that we actually have x  N  x 
since x + 1 is not an integer Now, for the case x is not an integer and x  0.  Then, as 
shown before, there exists an integer M such that x < M < x +1.  Thus, x 1   M  x 
and so x   M +1  x + 1.  For this case, take n0 = 1 M.  This completes the proof.   

 In the next few chapters, we shall construct the real numbers and show that it is a com-
plete totally ordered field.   

 
 

 



 

 
 

CHAPTER TWO 
 

A Cut, An Instant 
 

Because I know that time is always time 
And place is always and only place 
And what is actual is actual only for one time 
And only for one place 
..............                               T.S. Eliot 

 
 
 Before we begin the construction of the real numbers, we take another look at the object 
we shall use, namely the rational numbers in a different way.  As we shall see, in an analogy with 
time, when we stand at the threshold of time dividing the past and the future, there is an urge to 
move and yet not moved for time's ceaseless motion like an invisible hand divides the past and 
future at any instant now and forever.  Pondering upon the total ordering on the rational num-
bers, we have a situation that mirrors the ever-present time.  At any point P (either to be made 
precisely or a rational number), there is according to the total ordering a division of the rational 
numbers into two classes of numbers, the class whose numbers are all greater than P mimicking 
the future of P and the class whose numbers are all less than P mimicking the past of P, a cut in 
time, in analogy as an instant in time.  The nature of the point P or the cut is the subject to be dis-
cussed.  This cut in time is infallibly associated with an instant, the present instant.  The unteth-
ered instant has order amidst the chaos.  We cannot tell when it is and yet we know.  The set of 
rational numbers then has a new meaning and in this new meaning is born the seed of the real 
numbers. 
 

A Cut in Time 
 
  We cannot quite yet describe the present but we can for practical reason describe what 
comes close to being the present.  A measure of time, the second, the humanly imaginable unit of 
time is our yardstick.  As we speak, the present becomes in a fraction of the second the past and 
the future seems in a fraction of the second like the present.  Time never stands still.  We can in 
our humanly possible way describe what comes close to an instant as a cut in time. With this 
philosophical musing, we define what we call a cut of the rational numbers.  

 
Definition 1.   A cut of   is an ordered pair of subsets of the rational numbers (L, R) sat-

isfying the following three properties: 
 (1)   L  , R  . 
 (2)   L  R = , L  R =  . 

 (3)   If x is in L and y is in R, then x  y. 



Chapter 2 A Cut, An Instant 

 14  
 

 
 The subset L is called the left set of the cut and R the right set of the cut.  By Property (2), 
every cut is determined by its left and right sets, each of which determines the other.  Therefore, 
we shall identify a cut with its left set. 
 
 Thus, each 'point' or each instant is given by a cut.  Each 'point', as time, has its past and 
future.  If we are given a reference point, then we can begin to think of each rational number as a 
cut.  This then gives new meaning to the rational numbers. 
 

Definition 2.  A subset  of   is called a real number if it satisfies the following two 
properties. 

 (A)   is the left set of some cut; and 
 (B)   has no greatest element with respect to the total ordering on  . 

 

              
 
 The present instant, the fleeting moment, once you think you have it in your grasp, it has 
already escaped you; yet we know the present instant.  A point, an instant, has taken on a new 
meaning as a cut in time.  A 'real' number is not a number yet but part of a continuum of time in 
analogy.  The abstract notions of addition and multiplication have yet to be invented.  Property B 
models the fleeting nature of an instant. 
 
 Technically not all cuts are real numbers.  Take for example the following cuts. 
 
 (1)  (L, R) = { x   : x2  2} { x   : x2  2}. 

          (2)  (L, R) = { x   : x  2} { x   : x  2}. 

 (3)  (L, R) = { x   : x  2} { x   : x  2}. 
 
 Cuts (1) and (2) are real numbers but cut (3) is not a real number.  The cuts (2) and (3) 
correspond in some sense the integer 2, but we do not want both.  We identify a real number with 
the left cut that has no greatest element.  Like the essence of an instant, knowing but unattaina-
ble, the real number is represented by the left cut that has no greatest element.  Out of these spe-
cial partitions of rational numbers, identified as the left-hand sets of the cuts and hence out of the 
basic building blocks in set theory, we shall realise the real numbers.  We shall have to redefine 
what seems so natural in the rational numbers.  The identification of the cuts with their left-hand 
sets provides us with the ease to redefine operations of addition and multiplication and others in 
terms of the basic operations in set theory.  The following is a way of deciding when a subset of 
the rational numbers is a real number under our identification. 

L R

P 
Time    
Line 
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Lemma 3.   A subset  of   is a real number if, and only if, the following four conditions 

are satisfied. 
 1.   
 . 
 3.   For any x in , if y is a rational number such that y  x, then y is also in . 
 4.    has no greatest number.  

 
 Proof.  Let L =  and R =   Then conditions (1) and (2) imply that L  and R  

.  For any x in L and any y in R, x  y.  This is because if on the contrary that x  y, then 
by condition (3) above, y is in .  But since y is in R =    y is not in .  This contra-

dicts that y is in Therefore, by Definition 1, (L, R) is a cut.  Condition (4) then says that 
L has no greatest number.  Therefore,  is a real number.  Conversely if  is a real num-
ber, then the conditions (1) to (4) are automatically satisfied. 

 The essence of a cut is captured in the following lemma.  It says that there are points on 
the left and right of a cut that are as close to one another as one wishes. 

Lemma 4.   1.   If  is a real number and n is a counting number greater or equal to 1, 

then there exists (rational numbers) a in  and b not in such that 
1

b a
n

  . 

2.    For any rational number a in a real number , there exists a counting number m such 

that 
1

a
m

  .   

 Proof.  Part 1.    The real line will help us to visualise this lemma.  Look at the following 
picture carefully.  

                     

 Since  is a real number, we can take an integer c not in  and an integer d in .  Then 

starting from d, we shall add lengths of  
2

1

n
 to give rational numbers that are consecu-

 

ba

< 1/n
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tively 
2

1

n
 apart.  Define 

2i

i
x d

n
  .  Then x0 = d, x1 , x2 , x3 , ... , 2 ( )n c d

x c


  is a se-

quence of rational numbers such that x0 = d  x1  x2  x3   ...  2 ( )n c d
x c


 .   Therefore, 

for some integer j such that 0  j n2(c  d), xj is in  but xj+1 is not in .  Take b = xj+1 

and a = xj .  Then for n  1, b  a = 
2

1 1

n n
 .  For n =1, use n + 1 instead as above to ob-

tain b and a such that 
1 1

1
b a

n n
  


.   

 Proof of Part 2.    Take any rational number a in the real number .  Suppose on the con-

trary that we cannot find such a number m with 
1

a
m

  .  Then for all counting number 

n,  
1

a
n

   .  That is, for all counting number n, 
1

x a
n

   for all x in .  This implies 

that for each x in , x  a.  This is shown by way of contradiction.  Suppose on the contra-
ry that x  a.  Then by the Archimedean property of  , there exists a counting number p 

such that p (x  a)  1.  That is, 
1

x a
p
  .  Hence, 

1
x a

p
  .  This contradicts 

1
x a

p
  .  Therefore, for each x in , x  a.  Since a is in , a is a maximum element in 

, contradicting that  does not have a maximum element because it is a real number.  

Thus, for each a in , there exists a counting number m such that 
1

a
m

   

 A cut has a natural ordering arising out of a subset inclusion.  Like the marching of time 
extending into the future, this analogy aptly describes the ordering.  We make the definition be-
low. 

Definition 5.   For any two real numbers  and , we say  if, and only if, 

                 

 Let the set of real numbers be denoted by  .  Clearly this ordering ' ' is a reflexive, 
transitive and antisymmetric relation on the set  .  What does this mean?  ' ' is reflexive means 
that for all  in  ,   .  It is obviously true since  for any set .  Transitivity means if 
and   , then .  Clearly if and   , then  and  so that  
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which means that .  '  ' is antisymmetric means that ifand, then .  This is 
plainly true, since  and  imply that . 

 Lemma 6.   This ordering ' ' on  is a total ordering. 

 Proof.   We have shown above that ' ' is a partial ordering on  .  We need to show that 
any two real numbers and are comparable.  That is, either or  Since both 
and are subsets of  , either  or   .  If , then  and we have noth-

ing to prove.  It remains to show that if   , then .   Now, if   , then there 

exists a rational number x in  such that x is not in  (x  ). Then for any y in , y  x by 
Property 3 of Definition 1 because  is a cut.  Therefore, by Property 3 of Lemma 3, for 
any y in , y is in  since x is in. Thus,   . Therefore, . 

 Then  is complete in the sense of order.  We shall show this below.  First, let us exam-
ine what we have not done so far.  We have not yet defined the operations of addition and multi-
plication on  .  The only structure we have on  at the moment is a total ordering. 

Lemma 7.   Let S be a subset of   which is bounded above.  Then S has a least upper 
bound or supremum in  . 

 Set theoretically the supremum is easily found.  But we do need to show that we can ac-
tually obtain a real number this way.  Much of the proof of Lemma 7 goes in showing this.  Re-
member each element in S is a subset of the rational numbers.   

 Proof of Lemma 7.   Define   : S    . Then   for all  in S.  Remember that 

each  in S is a cut and so is a subset of the rational numbers.  Therefore,  is a subset of 
the rational numbers  .  We need to show that  is a real number and that it is the su-
premum of S.  We are given that S is bounded above.  Therefore, there exists a real num-
ber  such that    for all  in S.  That means    for all  in S.  Therefore, 

 : S      .  If we can show that  is a real number, then   .  We shall now 

use Lemma 3 to show that  is a real number.  Since    for each  in S, we have then 
that   .  Also     because    and    .  Take now any x in .  Then x  for 

some  in S.  Thus, for any y in   with y  x, y is in  by Property 3 of Lemma 3, since  

is a real number. Hence, for any y in   with y  x, y  .  It now remains to show prop-

erty 4 of Lemma 3 for  that is,  has no maximum element.  We shall show this by con-
tradiction.  Suppose on the contrary that  has a maximum element l.  Then l is in some  
in S.  Also, for all y  , y  l.   This is also true of all y in this particular , since   .  
Thus, l would be the greatest element in .  This contradicts that  has no greatest element 
since it is a real number.  This completes the proof that  is a real number.  Since for 
any in S,  : S      ,    for any  in S.  Therefore,  is an upper bound for 
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S.  Now, let  be any other upper bound of S.  Then   for all  in S.  That means   
 for all  in S.  Therefore,  : S     .  Hence .  This shows that  is 

the least upper bound or the supremum of S. 

We have thus proved the following. 

 Theorem 8.    has a complete total ordering. 

 The construction of the real numbers makes it stand apart from the rational numbers.  
Firstly, it is constructed out of subsets of the rational numbers.  Secondly, the set of rational 
numbers is definitely not a subset of it, at least not in a natural sense.  To make sense of the ra-
tional numbers in this new, as yet to be defined, system of real numbers, we shall embed our ra-
tional numbers into   in such a way that it is compatible with the ordering on the rational num-
bers. 

 

The Embedding of the Rational Numbers in The Real Numbers 

 Define an embedding, :     ,  by  (a) = {x  : x  a} for any rational number a.  
This is the only natural way of embedding   and gives the new meaning of   that was men-

tioned earlier.  This is well defined, for (a) is a real number.   Why?  Obviously, (a) is a cut 
that does not have a maximum element and so by definition, (a) is a real number.  The image of 
  under  is truly a copy of  .  Until addition and multiplication are defined on the set of real 
numbers, we cannot show that the image behaves just like the rational number system.  This will 
be done in the later chapter.  We now show that  is injective and is compatible with the ordering 
on the rational numbers. Mathematically, this is summarised as follows.  

 Lemma 9.  :     is injective.  Furthermore, for any rational numbers a and b                 

a  b  (a)  (b).   

 Proof.    We shall show that  is injective.   More precisely, we shall show that whenever 
(a)  (b), then a = b.  (a)  (b) implies that {x  : x  a} = {x  : x  b}.   If a  

b, then a  {x  : x  b}.  Take 
2

a b
c


 .  We have then a  c  b, c  {x  : x  b} 

and c  {x  : x  a}.  Therefore, {x  : x  b}  {x  : x  a}, contradicting {x 

 : x  b} = {x  : x  a}.  Thus, a must be greater or equal to b.   We can show simi-

larly that a cannot be greater than b.  Thus a = b.  Hence  is injective. 
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 If a  b, then (a) = {x  : x  a}  {x  : x  b} =(b).  Therefore,(a)  (b).  

Conversely, if (a)  (b), then {x  : x  a}  {x  : x  b}.  It follows that a  b, 

for otherwise, a  b would imply that {x  : x  a}  { x  : x  b}, since we would 

have  
2

a b
c


   {x  : x  a} and c  {x  : x  b}.  This completes the proof of 

Lemma 9. 

 We now have a new model of the rational numbers embedded in the real numbers. We 
have yet to define multiplication and addition on  and yet to show that the embedding respects 
addition and multiplication.  We shall come back to this in the later chapter.   Having known that 
the embedding  respects ordering, Lemma 4 will then have new interpretation as given below. 

Corollary 10.   If  is a real number, then for any counting number n, there exist rational 
numbers a and b such that  

             (a)    (b) and (b  a)  1

n
  
 
 

, 

where the strict ordering ' ' is defined by   if, and only if,    and   . 

 Proof.  By Lemma 4, for any counting number n, there exist rational numbers a in and b 

  such that 
1

b a
n

  .  Since a  , by Property 3 of Lemma 3, any rational number x  

a belongs to .  Therefore, {x  : x  a}  .  That means (a)  , therefore (a)  
Because a  (a) and a , (a)  Thus (a)  .  Since b  , for any x in x  b 
because b is in the right set of the cut .  Hence   {x  : x  b} = (b).   Therefore,  

 (b).  By Lemma 9, (b  a)  1

n
  
 
 

As 
1

b a
n

  , 
1

b a
n

     
 

  Now that we al-

so have b  a  (b  a), (b  a)  1

n
  
 
 

Therefore,   1
b a

n
      

 
  This com-

pletes the proof. 

 Corollary 10 says that for any real number , there are rational numbers (the embedded 
kind) before and after  that are arbitrary close to one another.  In the next chapter we shall define 
addition on  . 

 

 



 

 
 

CHAPTER THREE 

Relearning Addition 
 

Like a child who has forgotten how to walk 
Like a bird who has forgotten how to fly 
We shall learn, step by step, 
Carefully, gingerly, how to add 
Not by natural designs, but by constructs  
That spring from our forgotten past.  

 Addition on the real numbers comes naturally but subtly as we shall observe in our defi-
nition. 

 Definition of Addition.    

 Now that a real number is a collection of rational numbers, given two real numbers, a 
natural consideration for the addition of these two real numbers is to form a collection of rational 
numbers by taking the sum of a rational number from one real number and a rational number 
from the other.  

  For any  and  in , define  +  = {x + y: x  , y  }. 

 This looks natural but we need to know if it gives us a real number.  It would not make 
any sense if it is not a real number.  Note that  +   .  We shall show that  +    .  Since  

is a real number, there exists a rational number c such that for all x in , x  c.  Likewise, 
there exists a rational number d   such that for all y in , y  d.  Then for any x in  and any y 
in , x + y < c + d.  Therefore, c + d   +    Hence,  +    .  Now, take any x in  and any y 

in .  For any rational number z  x + y, z  x < y.  Hence, z  x  by Property 3 of Lemma 3, 
Chapter 2, since  is a real number.  Then z = x + (z  x)   + It follows that  +  satisfies 
Property 3 of Lemma 3, Chapter 2.  It remains to show that  +  has no maximum element.  We 
show this by way of contradiction.  Suppose  + has a maximum element k in  + That is, 
for all r in  + r  k and there exists x in  and y in  with k = x + y.  Therefore, r  k = x + y 
and so r  x  y for any r in  +  Now, take any l in x + l Thus, by the above ar-
gument, for any l in , (x + l) x = l  y (taking r = x + l).  Hence, since y is in , y is the maxi-
mum element of , contradicting that  has no maximum element (because  is a real number).  
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This contradiction tells us that  + has no maximum element.  We can thus conclude, by Lem-
ma 3 of Chapter 2, that  +  is a real number. 

 We have thus proved the following. 

 Lemma 1.  For any  and  in  ,  +  is a real number. 

 Hence, the usual properties of addition will be the rules to be verified.  They are simply 
not obvious.  We need to check these rules by different means than we are accustomed to. 

Lemma 2.  Let ,  and  be any real numbers in   and a, b any rational numbers in  .  
Then the following holds. 

 1.   +  =  + .                                   (Commutativity) 

 2.   ( + ) +  =  + ( + ).                    (Associativity) 

 3.    + (0) = . 

 4.   

5.   (a + b) = (a) + (b). 

 Before we embark on a proof of this lemma, let us examine what it says.  Property 1 and 
Property 2 are the usual properties that would be expected from any definition of addition.  Prop-
erty 3 says that (0) is the zero for this addition.  Notice the difference from the old zero.  It is a 
subset of the rational numbers.  Property 4 says that addition respects the ordering on the real 
numbers  .  Finally, Property 5 says that the embedding  of the rational numbers   into  re-
spects both addition on   as well as on  . 

 Proof of Properties 1 and 2.    Obviously,  +  = {x + y: x  , y  } = {y + x: x  , y 
 } =  +  as x + y = y + x for any rational numbers x and y.   Now, 

( + ) +  = {k + z: k   + , z  } = {(x + y) + z: x  , y  , z  } 

 = {x + (y + z): x  , y , z  },   

                                     since for any rational numbers x, y and z, (x + y) + z = x + (y + z), 

 = {x + l: x  , l   + } 

 =  + ( + ). 

 Proof of Property 3.   Recall that (0) = {x   : x  0}.  Then 
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 + (0) = {x + y: x  , y  (0)}. 

Now, for any y in (0), y  0, therefore, for any x in and y in (0), x + y  x.  Since  is 
a real number and x is in , by Property 3 of Lemma 3, Chapter 2, x + y is in .  It follows 
that for any x in and any y in (0), x + y is in .  Therefore,  + (0)    Take any ra-
tional number a in By Lemma 4, Part 2 of Chapter 2, there exists a counting number n 

such that 
1

a
n

  hen  

                                          
1 1

(0)a a
n n

            
   

,  

since 
1

n
  is in  because 

1
0

n
  .  Thus,    + (0).  Hence,    + (0).  There-

fore,    + (0). 

Proof of Property 4.   if, and only if, his means any element x in  is also 
in .  Therefore, 

 + = {x + y: x  , y  }  {x + y: x  , y  } =+. 

Hence, +   + .  

Proof of Property 5.  Let us write down the three subsets that are involved here. 

(a) = {x  : x  a}; (b) = {x  : x  b} and (a + b) = {x  : x  a + b}.  Then  

(a) + (b) = {x + y   : x  (a), y  (b)} 

                   = {x + y   : x  a, y  b} {z   : z  a + b}= (a + b). 

Therefore, (a) + (b) (a + b).  Next, we shall show that (a + b)  (a) + (b). 

Take any z in (a + b).  Then z < a + b and so z a < b.   Hence, z a  (b).  By Lem-

ma 4, Part 2 of Chapter 2, there exists a counting number m such that 
1

z a
m

     (b) .  

Therefore, z = 
1 1

a z a
m m

         
   

 (a) + (b), since 
1

a a
m

  .  This is true for 

every z in (a + b) and so (a + b)  (a) + (b).  Hence, (a + b)  (a) + (b). 

 Lemma 2, Property 3 says that the zero for the real number is (0).  Notice that the ra-
tional number 0 is not in (0).  We also need to show that (0) has the property that the rational 
number 0 enjoys, namely that each element  in  has an additive inverse  such that their sum 
gives (0).  We want to define a unary operation     that assigns to each  in  , its additive 

inverse, . 
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 Definition 3.  For any  in  , define 

  = {x  :  x y for some y  }. 

 There are two things we need to do.  We need to show that  is a real number and that 
indeed  + () = (0). 

 Lemma 4.  For any real number , is a real number.  

 

 Before we embark on the proof of this lemma, let us examine the reason and considera-
tion behind the definition.  The concept of additive inverse for a rational number is an extension 
of the definition of negative integers conceptually as discussed in Chapter 1.  Both in concept and 
construction, the additive inverse for an integer is strongly associated with a direction and the no-
tion of distance.  Envisaged in another way, the additive inverse of an integer is the reflection of 
the integer about the point 0.  Reflection is multiplication by  1.  It has the effect of reversing 
the ordering of any two integers.  Each real number carries with it a whole baggage of the ration-
al numbers but without the structures.  The additive inverse seems so unnatural to define.  For 
distance, reflection is easily understood.  What about a cut?  A real number is represented by the 
left hand cut of a special cut.  If we apply reflection to a CUT, the left-hand set becomes the 
right-hand set and the right-hand set becomes the left-hand set.  Suppose the real number, is 
the left-hand set of the cut (L, R).  Then the reflection of this cut gives a cut (R,  L), where R 
is the set { r: r  R} and  L = {x: x  L}.  

  

This may not give you a real number, for  R may contain the greatest number.  To obtain a real 
number, we must exclude the greatest number in R whenever it exists.  There is a way to do 
this.  Take any rational number y in R and consider its negative y in  R.  Then take all rational 
numbers x such that x <  y.  In this way, if y is the greatest element in  R, then the set {x 
 ; x  y} will not have the greatest element.  This explains the definition: 

 = {x  : x y for some y  }. 

 

 R

 
L 

 R

= L
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From the point of view of a cut, it is easy to see that  is the left-hand set of some cut, 
which has no maximal element and so it is a real number.  All the same, we shall check if it is 
indeed a real number.  

 Proof of Lemma 4.  First of all,   .  This is deduced as follows.  Since      , 

we can choose a rational number y  .  Take any rational number a > y.  Then   a  
, since  a   y.  Thus,   .  Let K = { y:  y    and y}.   Then K    be-

cause {y   : y }  , since   .  Then   K.  This is because for any x in , 

there exists y  , such that x  y.  Therefore,  x  y and so  x   and that means x 
belongs to K.  This is true for all x in  and so gives us the stated inclusion.  Therefore, 
   .   Now, take any x in .  Then for any rational number b  x, b is in .  This is 

because there exists a rational number y   such that x   y and so b  y and that 
means b belongs to  .  Finally, we shall show that  has no maximal element.  Sup-
pose it has a maximal element M.  That is, for all x in , x M.Since M is in , there 

exists a rational number y0 not in  such that M  y0.  Then by taking 0

2

M y
z


 , we 

see that there is a rational number z such that M  z  y0.  Obviously, z   and so z 
M.  This contradicts M  z and so  has no maximal element.  Therefore, we have 
shown that  satisfies Properties 1 to 4 of Lemma 3 of Chapter 2 and so  is a real 
number. 

 Next, we shall show that  is indeed the additive inverse of , i.e., it lives up to the 
meaning that the minus sign in front of it would suggest.  We shall also show that the embedding 
 of the rational numbers into the real numbers takes the additive inverse of a rational number, a 
in  , to the inverse of its image, (a), in  .   

 Lemma 5.  1.  If  is a real number, then  + ) = (0). 

         2.  For any rational number a, (a) = (a). 

                    3.  For any real numbers,  and ,  ( + ) = ( ) + () 

 Proof.   

 Part 1.   Firstly, we shall show that  + )  (0).  Recall that  

                   +  = {x + y: x  , y  }.    

 For any y in , there exists a rational number y0 not in  such that y  y0.  Now, for any 
x in , x  y0, since y0 is not in .  Therefore, x + y  y0 + ( y0) = 0.  Hence, x + y belongs 
to (0).  This is true for any x + y in  +  and so  + )  (0) and  + )  (0).   
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Next, we shall show that any negative rational number is in  + .  We begin with the 
following observation.  By Lemma 4 of Chapter 2, for any counting number n, there exist 

rational numbers b   and c  such that 
1

0
2

b c
n

   .  Therefore,    1
2b c c

n
    

and so   1
2c c b

n
    .  Now, c  2b is in because c 2b   b.  Hence, c + (c  2b) 

  + ().  Therefore, for any counting number n,  
1

n
  belongs to  + ().  For any ra-

tional number q 0, q  0. Therefore, by the Archimedean Property of the rational num-

bers, there exists a counting number n0, such that n0( q) >1.  Therefore,  
0

1
q

n
   and 

that means 
0

1
q

n
  .  Since we have just proven that 

0

1

n
  belongs to  + () and be-

cause  + () is a real number, q belongs to  + ().  Since this is true for any rational 
number q  0, (0)  + ) and so (0)  + ).  Hence,  + ) = (0). 

 Part 2.  (0) = (a + (a)) = (a) + ( a), --------------------(*) 

                                                                   by Lemma 2 (5).    

  Thus, adding (a) to both sides of the equation (*) gives 

                                (a) + (0) =  (a)((a) + ( a)). 

 Therefore, by Lemma 2, part 3 and the associativity of addition (Lemma 2, part 2),            
 (a)= ( (a)(a)) + ( a).  Hence,  (a)= (0) + ( a) = ( a), by part 1 and 
Lemma 2, part 5.   This completes the proof. 

 Part 3.    

 (( ) + ()) + ( + )  

  = ((( ) + ()) + by the associativity of addition (Lemma 2, part 2), 

            = ( + (( ) + ()) by the commutativity of addition (Lemma 2, part 1), 

 = (( + ( )) + () by the associativity of addition (Lemma 2, part 2), 

 = ((0) + ()by part 1, 
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 = () by Lemma 2, part 1 and part 3, 

 = (0), by part 1. 

 Therefore, 

  ( + ) = (0) + (( + )), by Lemma 2, part 1 and part 3, 

            =  ((( ) + ()) + ( + )) + (( + )) 

 = (( ) + ()) + (( + ) + (( + ))), by Lemma 2 part 2, 

 = (( ) + ()) + (0) 

 = ( ) + (), by Lemma 2 part 3. 

 

 Lemma 2, parts (1), (2), (3) and Lemma 5 imply that the set of real numbers with the op-
eration of addition is an abelian group with identity element given by (0).  Hence, we have 
proved the following. 

 Theorem 6.  with the operation of addition is an abelian group with (0) as its identity 
element. 

 The embedding  gives then a copy of the rational numbers in  , additively.  This is 
summed up in the following theorem. 

 Theorem 7.  The embedding,  :      of Chapter 2, is a group monomorphism  of 
( , +) into ( , +). 

 Proof.   This theorem is a consequence of Lemma 2, Part 5, Lemma 5, Part 2 and Theo-
rem 6. 

 We have now succeeded in copying the additive structure of the rational numbers onto a 
subgroup of  , namely the image of the embedding .  The next task is to see how the multipli-
cative structure can be defined on   and how our embedding will also copy the multiplicative 
structure of the rational numbers  onto ( ).  The task seems complicated and we shall do this 
in stages in the next chapter. 

 



 

 

 

CHAPTER FOUR 
 

Rethinking Multiplication 
 Multiplication for the rational numbers is no longer an obvious generalisation of addition.  
Its rule has become embedded in the definition of the rational numbers.  For the real numbers, it 
seems we have to learn the meaning of multiplication by using the ubiquitous multiplication on 
the rational numbers.  What is even harder is to recover the old meaning of multiplication this 
way.  The only thing we can say about the definition below is that it seems to be the only thing 
we can try.  We shall define multiplication in stages, first on real numbers  (0) and then extend 
it to the whole of the real numbers. 

 We shall begin by considering the subset of the rational numbers constructed out of two 
real numbers  (0) described in the lemma below.  This is going to be the subset that gives the 
multiplication of these two real numbers.  Of course, we shall need it to be a real number.  The 
following lemma confirms it to be the case. 

Lemma 1.  For any two real numbers (0) and  (0), define the subset of the ra-
tional numbers, L, by 

           L = (0)  {x  : x = ab for some rational number a  0 in  and some rational    

                                 number b  0 in }. 

Then L is a real number. 

 The subset L seems unnatural as a candidate for the multiplication of  and .  But the 
"obvious" subset, {x  : x = ab for some a in  and some b in }, cannot be a candidate for the 
multiplication, simply because it can be too large or bounded below by 0 and so cannot be a left 
cut.  Take for example (0) and (1).  Then we have that the subset defined by = {x  : x = 

ab for some a in  and some b in } is the same as the set of rational numbers  .  This is 

seen as follows.  Obviously, 0  (1) implies that 0  .  For any x > 0, x  (0).  Since 1 
(1), for any x > 0, x = (x)(1) is in .  Also, for any x < 0, 2x  (0) and so since 1/2  (1), x 
= (2x)(1/2) is in .  Thus,  =   and it cannot be a cut and so not a real number.  The additional 
condition in the definition of L is to ensure that we obtain a real number again. 
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 Before we embark on the proof of Lemma 1, we state the following characterisation of 
when a real number  satisfies  (0).  We write  (0) if, and only if,   (0) and   (0). 

 Lemma 2.  For any real number ,   (0) if, and only if, 0  .   In particular, if   
(0), then there exists a rational number a  0 in . 

Proof.    (0) implies that (0) is a proper subset of .  This means there exists a ra-
tional number x in  such that x  (0).  This means that x  0.  Therefore, 0  , since  
is a real number.  Conversely, if 0  , then for any rational number q  0, q   again, 
since  is a real number.  This means that (0)   and so (0)  .  Since 0 (0) ,   

(0).  This completes the proof. 

Proof of Lemma 1.     

If any one of the real numbers  or  is equal to (0), then L is equal to (0) because the 
set {x  : x = ab for some rational number a  0 in  and some rational number b  0 in 

} is empty.  Therefore, L is a real number. 

We now assume that  ,  > (0) 

Obviously, L  since (0)  L.  Next, we shall show that L   .   For any ,   

(0), either    or  , since the ordering  is a total ordering.  Without loss of gener-
ality, we assume that  , i.e.,   .   Since  is a real number and  > (0), there ex-
ists a rational number x0 > 0 not in  such that for all x in , x  x0.  Similarly, there exists 
a rational number y0 > 0 not in  such that for all y in , y  y0.  Then for any rational 
number a  0 in  and any rational number b  0 in , we have that a  x0 and b  y0 and 
a b x0 y0.  It follows that x0 y0  {x  : x = ab for some rational number a  0 in  and 

some rational number b  0 in }and so since x0 y0 > 0, x0 y0  L.   Hence, L   .  

Now, take any rational number z in L.  We shall next show that for any rational number x 
 z, x  L.  Note that z is in L implies either z (0) or z  {x  : x = ab for some ra-

tional number a  0 in  and some rational number b  0 in }.  If z  (0) or z = 0 (that 
is, z  0), then we have nothing to prove, since any x  z implies that x  (0)  L.  If z  
0, then z  {x  : x = ab for some rational number a  0 in  and some rational number 

b  0 in } and there exist rational number a0  0 in  and rational number b0  0 in  
such that z = a0 b0.  Now, take any x  z, if x 0, then x  (0) and so x  L. We are thus 
left with showing that for any rational number x such that 0  x  z, x is in L.  For any of 
these rational numbers x, we have 0  x  a0 b0.  Therefore, x/a0  b0 and so x/a0   
since  is a real number and b0 is in .  Hence, x = a0 (x/a0), with a0 in  and x/a0 in  
belongs to L.   

Next, we shall show that L has no maximal element.  Suppose next that L has a maximal 
element M.  We shall derive a contradiction.  By Lemma 2, since ,   (0), there exist 
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rational numbers a 0 in  and b  0 in .  Therefore, a b  and is an element of L.  
Because M is the maximal number of L, M  a b and so M  0.  Consequently, M  (0).  
It follows that M  {x  : x = ab for some rational number a  0 in  and some rational 

number b  0 in }.  Hence, there exist rational number a0  0 in  and rational number 
b0  0 in  such that M = a0 b0.  Then consider a0 = M / b0.  Because a0  0, for any a in  
such that a  0, a  a0.   Now, for any a in  such that a  0, a b0  M so that a  M / b0 = 
a0.  Thus, for any rational number a in , a  a0.  That means a0 is a maximal number for 
, contradicting that  is a real number.  Therefore, the maximal number M for L does not 
exist.  Hence, it follows from Chapter 2, Lemma 3 that L is a real number. 

Definition 3.   For any real numbers  and   (0), we define the product   by            

                    = (0)  {x  : x = ab for some rational number a  0 in      

                                          and some rational number b  0 in }. 

By Lemma 1, the product   is a real number.  It remains to check if this product defines 
a multiplication.  There are some immediate consequences of the definition.  Firstly,    (0) 
since (0)   .  Secondly, if both  and   (0), then    (0), since 0    because 0 be-
longs to both  and . 

 Proposition 4.  Let  and  be any real numbers  (0). 

 1.    =  .                                   (Commutativity) 

 2.   If any one of  or  is equal to, then   = (0). 

Proof.    Simply examine the definition of the product. 

   = (0)  {x  : x = ab for some rational number a  0 in  and some rational num-

ber b  0 in } 

       = (0)  {x  : x = ba for some rational number b  0 in  and some rational 

number a  0 in } 

       =  . 

Part 2 is a consequence of the fact that if any one of  or  = , then {x  : x = ab for 

some rational number a  0 in  and some rational number b  0 in } = . 

 Definition 3 is the first of a series of definitions to define the multiplication on the real 
numbers  .  Before we extend the definition to the whole of  , the next thing we shall do is to 
define the multiplicative inverse of a real number   (0).  Later, we shall extend this definition 
of the inverse to all of     {(0)}.   
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Consider the next construct obtained from any real number   (0).   Define 

                               = {x   : x  1/y for some y  }.  

Let us examine this set.  First of all, the inequality in the definition makes sense because 
for y  , y  0, since by Lemma 2, 0   and  is a (left) cut.  Since for any y  , 1/y  0, this 
set consists of all rational numbers less than or equal to 0 together with the reciprocals of all ra-
tional numbers not in with the exception that if the complement of  has a least number (as in 
(1)), we do not get the reciprocal of this number.  This set looks naturally like the multiplicative 
inverse of .  The usual multiplicative inverse of a non-zero rational number is its reciprocal.  
Here,  is a set, so we shall have to take for its multiplicative inverse a collection of the recipro-
cals cleverly and to include at least sufficient rational numbers to give us a real number.  Then 
the next thing to do is to show that it really is the multiplicative inverse. 

Proposition 5.   If   (0), then the subset  of the rational number is a real number. 

 Proof.  1.   is obviously not empty since  .    

2.      .    This is seen as follows.  Since   (0), by Lemma 2, there exists a rational 

number x0  0 in .   Then for any rational y  , because  is a real number, y  x0  0.  
Thus, 1/x0  1/y for any y  .   For any x in , there exists some y   such that x  1/y.  
Therefore, for any x in , x 1/x0.  Thus 1/x0   and so    . 

3.   Take any rational number z in .  Then there exists some y   such that z  1/y.  
Hence, for any rational number x  z, x  1/y and so x  . 

4.   does not have a maximal number.  Suppose on the contrary  has a maximal num-
ber M.  Then M  x for all x in .  Note that M   implies that there exists some y   
such that M  1/y.  Take the rational number q = (M + 1/ y)/2 satisfying M  q  1/y.   
Then q   and so M  q, contradicting M  q.  Therefore, M does not exist. 

 We are now ready to make our definition. 

 Definition 6.   For any real number   (0), define 

                                   
1 1

:  for some x x y
y




 
    
 

  .   
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  By Proposition 5, 
1


 is a real number.  An immediate consequence of the definition is 

that 0  
1


 and so 

1
(0)


 . 

 As the notation suggests, 
1


 is the multiplicative inverse of .  This is stated in the fol-

lowing lemma. 

 Lemma 7.   If  is a real number and   (0), then  
1

(1) 

 .  

 Before we prove this lemma, we shall record a technical consequence of Lemma 4 of 
Chapter 2 that we shall be using. 

Lemma 8.   If  is a real number, then for any counting number n, there exist rational 

numbers a and b, b  , a such that 
1

b a
n

   and there exists a rational number c   such 

that c  b. 

 This lemma simply says that we can always choose the rational number b there not equal 
to the minimum of the complement of  in   if this minimum exists. 

Proof of Lemma 8.   By Lemma 4 of Chapter 2, for any counting number n, there exist 

rational numbers a and c, a , c   such that 
1

0
2

c a
n

   .  Take b = 2c  a.  This 

choice of b satisfies b  c and so b   and 
1

2 2b a c a
n

    . 

Proof of Lemma 7.    Recall that the product  

 
1


 = (0)  {x  : x = ab for some rational number a  0 in  and some rational 

number b  0 in 
1


}. 

Firstly, we shall show that 
1

(1) 

 .  Since (0)  (1) and 0  (1), we only need to 

show that for any rational number a  0 in  and any rational number b  0 in 
1


, a b  
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(1).  By the definition of  
1


, b 0 in 

1


 implies that there exists rational number y   

such that (0 ) b < 1/y.  Since a   and  is a real number, a  y.  Therefore, a b < y (1/y) 

= 1 and so a b  (1).  Thus, 
1

(1) 

 and that means  

1
(1) 


 .   

Next, we need to show that 
1

(1) 


  .  Now, for any rational number x  0, 
1

x 


 , 

since (0){0} 
1


because of the fact that 0 belongs to both and 
1


 and that 

1
(0) 


 .  Then it remains for us to show that for any rational x such that 0  x  1, 

1
x 


 .  Choose a rational number y0  

1


.  Then for all rational number z  , 

                          y0  1/z ( 0).   --------------------------------------------   (1) 

Next, since   is Archimedean, there exists a counting number n such that n (1  x)  y0, 
that is to say, 

                          1  0

1
y

n
  x.     ---------------------------------------------- (2) 

By Lemma 8, there exist rational numbers x0 and z0, where x0   and z0  , such that 

   0  z0  x0  
1

n
  ------------------------------------------------(3) 

and there is a rational number z1   such that (0 ) z1  z0.  Then 1/z0  1/z1 and so 1/z0  
1


.  Dividing (3) by z0, we have 0

0 0

1
0 1

x

z nz
   .  Therefore, 

                      0

0 0

1
1

x

z nz
  .     -------------------------------------------(4) 

Note that  0
0

0 0

1 1x
x

z z



  .   By (1), 0
0

1
y

z
  since z0  .  Thus, 0

0

1 y

nz n
   .  There-

fore, by (4) and (2), we have 0
0

0

1
1

x
y x

z n
   .  Thus, 

1
x 


 .  This is true for all x  1.  

Therefore, 
1

(1) 


  and so 
1

(1) 


 .  We have thus proved that 
1

(1) 

 . 
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 Next, we shall verify that our multiplication on the real numbers  has the desired prop-
erties, at least for the moment, for the real numbers  (0). 

 Lemma 9.   (Properties of Multiplication) 

 Let ,  and  be any real numbers  (0).   Let a and b be any rational numbers  0. 

 Then 

 1.       (0); if  and   (0), then    (0).   

 2.      =  .                                    (Commutativity) 

 3.    ( )  =  ).                        (Associativity) 

 4.     ( + ) =   +  .                  (Distributivity) 

 5.     (1) = . 

 6.    (a b) = (a) (b). 

 Property 1 is an immediate consequence of the definition as explained just after the Defi-
nition 3.  Property 2 is Proposition 4, part 1 and Property 3 is an easy consequence of the defini-
tion of the multiplication and the associativity of multiplication on the rational numbers.  We 
shall prove the remaining three properties. 

 

Proof of Property 5 of Lemma 9.     Observe that  (1) = (0)  {x  : x = ab for 

some rational number a  0 in  and some rational number b  0 in }.  Since   (0), 
(0)  .  Now, for any a  0 in  and any rational number b  0 in , a b  a, since b 
 1.  It follows that a b   since a   and  is a real number.  This implies that {x  : 

x = ab for some rational number a  0 in  and some rational number b  0 in }  .  
Hence,  (1) = (0)  {x  : x = ab for some rational number a  0 in  and some ra-

tional number b  0 in }  .  That means  (1)  .  Next, we shall show that    
(1).  Let x be a rational number in .  If x  0, then x  (0)   (1).  If x  0, then by 

Lemma 4, Part 2 of Chapter 2, there exists a counting number n such that 
1

x
n

  .  Ob-

viously, 
1

0x x
n

   .  Thus 
1

0 1
n

x

x
 


and so 

1
n

x

x 
  (1).  Hence, 

1

1
(1)

n

x
x x

n x
 

         
.  It follows that    (1).  We can now conclude that   

(1). 
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Proof of Property 4 of Lemma 9.   First observe that  and   (0) implies that  +   
 + (0) = (0) +  ≥ (0) + (0) = (0) by Lemma 2, Part 4, Part 1 and Part 5 of Chap-
ter 3.  Similarly, since by Part 1,  ,    (0), we conclude that   +    (0).  We 
shall show that  ( + )    +  .  Take a rational number x in  ( + ).  If x  0 then 
x  (0)    +  .  We now assume that x  0.  Then there exists rational number a  0 
in  and rational number b  0 in ( + ) such that x = a b.  Since b  ( + ), there exist 
rational numbers c in  and d in  such that b = c + d.   

Therefore, x = a b = a (c + d) = a c + a d.  Since c + d = b  0, either c  0 or d  0. 

If both c and d are  0, then a c    and a d    and so x = a c + a d    +  . 

If c  0 and d  0, then c + d  c and so b = c + d   since c is in .  Thus, x = a b   
ow,      +  by Lemma 2, Part 4 of Chapter 3, since  
Therefore, x    +  .  Likewise, if c  0 and d  0, then c + d  d and so b = 
c + d  , since d is in .  Hence, as before, we have x = a b       +   Once 
again, we get x    +  .  Thus, we can conclude that  ( + )    +  .   

Next, we show that   +     ( + ).   By Lemma 2, Part 4 of Chapter 3,  +   , 
, since  and   (0).  We have thus    +  and    + .  Then     ( + ) 
and     ( + ).   This is seen as follows.  Take any x in  .  If x  0, then x   ( + 
).  If x  0, then there exist rational number a  0 in  and rational number b in  such 
that x = a b.  Since    + , b   + .  Therefore, x = a b   ( + ).  Hence,     
( + ).  It follows similarly that     ( + ).  Now, take any rational number x in   
and any rational number y in  .  If x 0, then x + y  y and so x + y      ( + ), 
since   is a real number.  Likewise, if y  0, then x + y  x and so x + y      ( + 
).   If both x and y are  0, then there exist rational numbers a, a'  0 in , b  0 in  and 
b'  0 in  such that x = a b and y = a' b'.  If a'  a, then x + y = a b + a' b'  a b + a b' = 
a(b + b' )  ( + ).  Hence, x + y  ( + ) because ( + ) is a real number.  Final-
ly, and similarly, if a  a', then x + y  a' (b + b')  ( + ) and so we deduce in the 
same manner that x + y  ( + ).  Since this is true for any x in   and any y in  , we 
conclude that   +     ( + ).  Therefore,   +     ( + ).   

Proof of Property 6 of Lemma 9.    If either a or b is 0, then (a b) = (0) and (a)(b) 
= (0) by Proposition 4, Part 2.  In this case the equality is trivial.  We now assume a and 
b are both  0.  Let y be any rational number in (a)(b).  If y  0, then y  a b and so y  
(a b).  We now assume y  0.  Then there exist rational numbers c and d such that 0  c 
 a and 0  d  b and y = c d.  Therefore, y = c d  a b and so y  (a b).  Hence, any ra-
tional number y in (a)(b) is also in (a b).  Thus, (a)(b)  (a b).  Conversely, take 
any rational number x in (a b).  If x  0, then x  (a)(b) since (a)(b)  (0).  We 

now assume 0  x  a b.  Then 0
x

b
a

   since a  0.  Therefore, 0
x

b
a

  .   Then by the 
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Archimedean property of  , there exists a counting number n such that 
x x

n b
a a

   
 

.  

Hence, 
1x x

b
a n a

   
 

.  Thus, 

                          
1

1
x

b
n a

   
 

. 

Therefore, 
1

1 ( )
x

b
n a

   
 

.  Also, since 
11 n

a
a


, 

1
( )

1 n

a
a


.  Hence, 

 1
1

1 ( ) ( )
1 n

n

a x
x a b

a
 

         
).  We can now conclude that (a b)  (a)(b). 

Thus, (a b)  (a)(b).  This completes the proof. 

 

 Extension of Multiplication to All of the Real Numbers 

 Extending the multiplication to all of the real numbers  is a natural progression for our 
construction.  We shall use the device: convert a pair of real numbers, if needed, to a pair of real 
numbers  (0) by taking the appropriate additive inverse, then multiply the resulting pair ac-
cording to the definition for real numbers  (0), follow this by, if appropriate, taking the addi-
tive inverse of the real number so obtained.  For real number  (0), the operation of taking the 
additive inverse behaves like the usual reflection for the rational numbers.  This is made precise 
in the following lemma.  This lends support to the economy of visualisation of the real numbers 
as an infinite "line". 

 Lemma 10.    For any real number ,   (0) if, and only if,   (0). 

Proof.    Suppose   (0).  Then   (0) and there exists a rational number y  0 such 
that y   Take any rational number z in (0).  Then z  0   y.  This means that z and 
0 belong to  his implies that (0)    and that means (0)   since 0   . 

Conversely, suppose (0)   hen (0)    and there exists a rational number y0 in 
 such that y0  (0).  Hence y0  0 and there exists some rational number y1   such 
that 0  y0   y1.  Therefore, y1   y0  0.  Since y1  , for any rational number x in , x 
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 y1  0.  Thus,   Since y1  (0) and y1    his completes the 
proof. 

Definition 11.    Suppose ,  and are real numbers such that   (0),   (0) and   
(0).  The following defines the multiplication of  with any one of  or  in any order. 

 and 

  = (  )( ) = (  )( ) = 



 Observe that with Definition 11, multiplication of any two real numbers not both  (0) 
is defined.  This means that we now have a multiplication on the set of real numbers.  A conse-
quence of the definition is commutativity for multiplication.  Another deduction from the defini-
tion is that for any real number ,  =  (0) = (0).  With this definition, we have a multi-
plication map,     , that takes an ordered pair (, ) and assigns to it, the product  .  It 
now remains to define the multiplicative inverse of any real number   (0).    

 Definition 12.  For any real number   (0), define the multiplicative inverse by 

   
1 1

 
 

   
.  

 We can easily check that this is really the multiplicative inverse of .  To facilitate the 
checking, we use the following Lemma. 

 

 Lemma 13.   For any real number , () = 

 Proof.   =  + (0) =  + (() + ()))   

               =  + ()) + ()), by the associativity of addition, 

               =  + ( ))    

               = ()) +by the commutativity of addition (Lemma 2(1) Chapter 3), 

     = (), by Lemma 2, part 3 of Chapter 3. 
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 Thus, for   (0),   (0) and so 
1

(0)




as remarked in the paragraph following 

Definition 6 of the multiplicative inverse for real numbers > (0).  It follows then that 
1 1

(0)
 

 
    

 by Lemma 10.  Hence, by Definition 11, 

                 1 1 1  
  

     
                 

, by Definition 12,  

                        1


 
    

, by Lemma 13, 

                       = (1), by Lemma 7. 

This shows that the definition of the multiplicative inverse of the real number   (0) is the cor-
rect one. 

 

 Now, we collect all the properties that the set   of real numbers possesses with respect 
to multiplication and addition together with the properties in Lemma 2 of Chapter 3 and charac-
terise  as a field. 

Lemma 14.   For any real numbers ,  and  and any rational numbers a and b, the fol-
lowing properties hold.  

 1.     =  .                                    (Commutativity) 

 2.   ( )  =  ( ).                          (Associativity) 

 3.     ( + ) =   +  .                  (Distributivity) 

 4.     (1) = . 

 5.   If   (0), then 
1

(1) 

 . 
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 6.   If   (0), then         . 

 7.   (a) (b) =(a b). 

 

 Property 1 of Lemma 14 is a consequence of Lemma 9, part 1 and Definition 11.  Proper-
ty 5 has already been shown.  We shall prove the remaining properties. 

 

Proof of Property 2 of Lemma 14.    If any one of ,  or  is (0), then trivially, by 
Proposition 4, part 2, both sides of the equation are the same as (0) and so we have noth-
ing to prove.  If , ,   (0), then this is just Lemma 9, Part 2.  So, we have the remain-
ing seven cases to check out. 

Case 1.  ,    (0),   (0). 

( )=since   > (0) and   (0), 

 = ( ( ))), by Lemma 9 Property 3,  

 =     (( ))), by Definition 11, since   (0) and ( ))  (0) and Lemma 13, 

=     ( ), by Definition 11, since   (0) and   (0). 

Case 2.  ,    (0),   (0). 

( )=by Definition 11, since   (0) and   (0), 

 =   by Definition 11, since   (0) and   (0), 

 =   by Lemma 13, 

 =  by Lemma 9, Property 3, since , ,   (0), 

 =  by Definition 11, since   (0) and   (0) and Lemma 13, 

 = ( ), by Definition 11, since   (0) and   (0). 

Case 3.    (0), ,   (0). 

( )=by Definition 11, since   (0) and   (0), 

 = ( ), by Definition 11, since   (0) and   (0), 

 = ), by Lemma 13, 
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 = )), by Lemma 9, Property 3, since , ,   (0), 

 =  ( ), by Definition 11, since ,   (0). 

Case 4.     (0), ,   (0). 

( ) = ( ), by commutativity of multiplication, 

 =  ( ), by Case 2 above, 

=  (), by commutativity of multiplication, 

 = ( ), by Case 1 above, 

 = ( ), by commutativity of multiplication. 

Case 5.  ,    (0),   (0). 

( ) =  (by commutativity of multiplication, 

 =  ( by commutativity of multiplication, 

 = ( ), by Case 3 above, 

 =  ( ), by commutativity of multiplication, 

 =  (), by commutativity of multiplication. 

Case 6.  ,    (0),   (0). 

( ) =  (by commutativity of multiplication 

 = ( ), by Case 5 above, 

 = ( ) by commutativity of multiplication, 

 = ( ), by Case 5 above, 

 = (), by commutativity of multiplication. 

Case 7.  , ,   (0). 

( ) = , by Definition 11, since ,   (0). 

 = ((()())), by Definition 11, since  < (0) and ()()  (0), 

 = (()(()())), by Property 3 of Lemma 9, since   (0), 



Chapter 4 Rethinking Multiplication 

 40  
 

 = (()()), by Definition 11, since   (0) and ()()  (0) 

 = ( ), by Definition 11, since ,   (0). 

This completes the proof of Property 2 of Lemma 14. 

Proof of Property 4 of Lemma 14.   

If   (0), then  (1) = , by Property 5 of Lemma 9.  For real number   (0), 

 (1) =  (()(1)), by Definition 11, 

 =  (), by Property 5 of Lemma 9, since    (0), 

 = , by Lemma 13. 

 The following is a useful observation of the operation of taking additive inverse with 
multiplication.  It is an easy consequence of Definition 11.  It is stated here for reference as we 
shall be using it implicitly. 

Lemma 15.  For any real numbers  and , 

 ()) = ()() = (()) =  . 

Proof of Property 3 of Lemma 14.    

If , ,   (0), then  ( + ) =   +  , by Property 4 of Lemma 9.  If  = (0), trivi-
ally, ( + ) =   +   = (0), by Proposition 4.  If  = (0), then  ( + ) = ( + 
) =   = (0) +  =   +  .  Similarly, if  = (0), then  ( + ) =   +  .  The 
remainder of the proof is covered in the following six (not necessarily mutually exclu-
sive) cases. 

Case 1.    (0),  (0),  +   (0), 

If   (0), then the distributivity is already shown in the preceding paragraph.  We now 
assume   (0). 

( + ) + () = (( + ) + ()), by Lemma 9, Property 4, since  +   (0), 

                           = (( +  + ())), by associativity of addition, (Property 2 of  

                                                     Lemma 2, Chapter 3), 

                           = ( + (0)), by Property 3, Lemma 2 of Chapter 3, 

                           =  
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Adding ()) to both sides, we get 

( + ) + ( )) + ( ))) =  + ( ))) 

                                                    =  + , by Lemma 15. 

Thus, ( + ) + ()) + ()))) =  + , by the associativity of addition.  
Hence, the left-hand side is equal to ( + ) + (0) = ( + ).  This proves ( + ) = 
 + . 

Case 2.    (0), (0),  +   (0). 

( + ) = ( + ), by the commutativity of addition (Lemma 2, Property 1 of    

                                Chapter 3), 

              =   +  , by Case 1 above, 

             =  + , by the commutativity of addition. 

Case 3.    (0),  +   (0). 

( + ) = ( + ))), by Lemma 15, 

          = (() + ())), by Lemma 5, Part 3 of Chapter 3, 

          = () +()), by Case 1, if or Case 2, if   since   (0), 

                   and ) + () (0), 

           = ()) +())), by Lemma 5, Part 3 of Chapter 3, 

            =  + , by Lemma 15. 

Case 4.    (0),   (0) and +   (0). 

( + ) = ( + )), by Lemma 15, 

              =  +)), by Case 1, since   (0),  (0) and  +   (0), 

              = () +)), by Lemma 4 Part 3 of Chapter 3, 

              =    + , by Lemma 15. 

Case 5.   (0),   (0)and +   (0). 

( + ) = ( + ), by the commutativity of addition, 
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           =   +  , by Case 4 above, 

           =  + , by the commutativity of addition (Lemma 2, Property 1 of        

                                  Chapter 3). 

Case 6.   (0),  +   (0)

( + ) = ( + )), by Lemma15, 

     =  +), by Case 3, since   and  +  (0), 

= +) by Lemma 5, Part 3 of Chapter 3, 

 = +  by Lemma 15. 

This completes the proof of Property 3. 

 Before we proceed to prove the remaining properties, we state the following equivalent 
result of Property 4, Lemma 2 of Chapter 3 for strict inequality.  

Lemma 16.  For any real numbers ,  and , 

       +    + . 

Proof.    By Property 4, Lemma 2 of Chapter 3,      +    + .  We need only 
show that there exists a rational number, d, in  +  but not in  + .   Now, since   , 
there exists a rational number a in , but a  .  Therefore, for all x in , x  a.  

By Lemma 4, Part 2 of Chapter 2, there exists a counting number n such that a + 1/n  .   
Also, by Lemma 4, Part 1 of Chapter 2, there exists rational numbers b in  and c   
such that c  b  1/n.  Therefore, for all rational number y in , y  c  b + 1/n.  Thus, for 
all rational number x in  and all rational number y in , x + y  a + b + 1/n.  It follows 
that d = a + b + 1/n   + .  Now, d = (a +1/n) + b   + , since a +1/n   and b .  
We can thus conclude that  +    + . 

Proof of Property 6 of Lemma 14.   

By Lemma 16,    implies that    + () = (0).  Since   (0), by Property 
1 of Lemma 9, ( )  (0).  Therefore, by Property 3 of Lemma 14, we have   + 
  = ( )  (0).  It then follows by Lemma 16 that 

        (  +  ) +  ))  (0) +  )).  

Now, 

         (0) +  )) =  )), by Lemma 2 Property 1 and 3 of Chapter 3, 



Chapter 4 Rethinking Multiplication 

 43  
 

                =  , by Lemma 15. 

Also, we have,  

         (  +  ) +  )) =   + (  +  ))), 

                                           by Property 2 Lemma 2 of Chapter 3 

                                  =   + (0)  

                    =  , by Lemma 2, Property 3 of Chapter 3. 

Hence     . 

Proof of Property 7 of Lemma 14.    

If a = 0 or b = 0, then trivially (a) (b) =(a b) = (0). 

If a, b  0, then (a) (b) =(a b), by Property 6 of Lemma 9. 

If a  0 and b  0, then a b  0.   Therefore, as ( ) (0)b  ,  

(a) (b) =  ((a) ((b))) 

                =  ((a) (b)), by Lemma 5, Part 2 of Chapter 3, 

                 = (a b)), by Lemma 9, Property 6, since a, b > 0, 

                =   ((a(b))), by Lemma 5, Part 2 of Chapter 3, 

     = (a b). 

If a  0 and b  0, then (a b) = (b a) = (b) (a), by the above argument. 

Thus,  (a b) = (b) (a) = (a)(b). 

If a, b 0(a)(b) = (a)(b))  

                                  = (a)(b), by Lemma 5, Part 2 of Chapter 3, 

                                  = ((a)(b)), by Lemma 9, Part 6, since a, b > 0,  

                       = (a b).  

This concludes the proof of Lemma 14, Part 7.   

 We next extract some properties of the real numbers with respect to multiplication.  We 
summarise this in the following theorem. 
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Theorem 17.   (0) is an abelian group with respect to multiplication and its identi-

ty element is (1).  That is, multiplication on  is commutative and associative, has an identity 
element (1) and a unary operation that assigns to each real number   (0), its multiplicative 

inverse 
1


. 

 This is a consequence of Lemma 14, (1), (2) and (4).  Lemma 14, Theorem 6 of Chapter 3 
and Theorem 8 of Chapter 2 actually imply the following: 

Theorem 18.     is a field with (0) as the identity element for addition and (1), the 
identity element for multiplication. The field  has a total ordering with respect to “”.   is a 
complete, totally ordered field. 

 Lemma 9 of Chapter 2, Lemma 2, Part 5 of Chapter 3 and Lemma 14, Part 7 imply that 
the embedding of the rational numbers into  , :   , is a monomorphism of the field of 
rational numbers into   preserving the ordering on  .  We have now constructed a field   
with the rational numbers embedded in   as a subfield.  To think of the real numbers   as an 
extension of the rational numbers  , we identify each rational number a in   as its image (a) 

in  .   In this way the rational numbers are thought of as the subfield ( ) of  .  When we 
speak of the rational numbers, we think of the usual rational numbers, but when we want to 
prove any property of the real numbers we use the properties of a complete totally ordered field 
and think now of the rational numbers as the embedded subfield ( ).   It is hard to work with 
the model of the real numbers that we have constructed; most results about real numbers are re-
sults about complete totally ordered field and are proved using the properties of a complete total-
ly ordered field.  This is because there is essentially one such complete totally ordered field and 
we shall discuss this in the next chapter. 

 We conclude this chapter by showing that the remark stated just before Lemma 10 is ex-
plained as the fact that the additive inverse of any real numbers is precisely the multiplication of 
this real number by the (rational) number (1), the equivalent of 1 in  .   

 Lemma 19.   For any real number ,  = (1). 

 Proof.   By Lemma 2, Part 5 of Chapter 3, (0) = (1) + (1). 

 Now, 

 (0) = (0) = ((1) + (1)) 

                    =(1) + (1), by distributivity, 

         =  + (1). 

 Therefore, adding the additive inverse  to both sides of the equation above yields 
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  + (0) =  + ( + (1)) 

                  = (() + (1), by the associativity of addition, 

                  = (0) + (1) 

       = (1) + (0), by the commutativity of addition. 

 Thus, by Lemma 2, Part 3 of Chapter 3,  = (1). 

 This completes the proof. 

 

 



  

 

CHAPTER FIVE 

Order! Order! There is only one order 
 The ordering on the real numbers  is given by subset inclusion.  Let us now examine 
how we can think of this ordering as given essentially by a positive cone in  as described in 
Chapter 1. 

 Let P = {  :   (0)}.   

 For any real number   (0),   (0) or   (0).  By Lemma 10, Chapter 4,   (0) if, 
and only if,    (0).  Thus, the set 

  P = {  :   (0)} = {  :   (0)}.    

Hence,   = P P  {(0)}.  In particular, we have the following result. 

 Theorem 1.   

1.  (0)  P. 

 2.   ,   P   +   P. 

 3.   ,   P     P. 

 4.     (0)    P or   P. 

Proof.  Part 1 is obvious.  For Part 2, ,   P implies that ,   (0).  It follows by 
Lemma 16 of Chapter 4that  +   (0) + Hence, +  P.  Part 3 is 
just a consequence of Lemma 9, Part 1 of Chapter 4.  Part 4 follows from Lemma 10 of 
Chapter 4 and the fact that the ordering on   is a total ordering. 

 Thus, P is a positive cone for the real numbers.  The ordering with respect to the positive 
cone is defined by  ""  if, and only if,    P.  Now,    P if, and only if,     (0) 
if, and only if,    + (0) = .  So, the ordering defined by the positive cone is the same as that 
defined by set inclusion.  Thus, if we define a real number  to be positive if   P, then the posi-
tive cone is none other than the positive real numbers and  is positive if   (0).  So, we may, if 
we wish, identify (0) with 0 but we must be careful to distinguish them.  Notice then that a posi-
tive cone for the embedded rational number ( ) is P  ( ), which is the same as the set 

{(x): x a rational number and x > 0} and is the image of the positive cone of the rational num-
bers  .  The uniqueness for the positive cone for the rational numbers   has been established in 
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Chapter 1.  It is none other than the set of positive rational numbers.  However, the uniqueness of 
the positive cone for   and hence the uniqueness of the ordering on  is a little harder to show. 

 We now formally set the definition of a positive real number and a negative real number. 

Definition 2.  A real number  is said to be positive if   (0).   is said to be negative if 
  (0). 

 We shall need the following technical lemma regarding the existence of the n-th root of a 
positive real number.  We require only the existence of the square root of a positive real number 
to show the uniqueness of the positive cone.  Nonetheless, the same proof applies for n-th root. 

Lemma 3.  Let n be any counting number.  If  is a positive real number, that is,   (0), 
then there exists a positive real number such that n = .  Specifically, for n = 2, there exists a 
real number  such that 2 = .   

We shall prove Lemma 3 only for n = 2.  First, we make the following definition. 

Definition 4.  For any   (0), define  = {x   :  x 2  k for all k  }(0).  Obvi-

ously, 0  . 

 he set above is our candidate for the square root of .  Note that the construction of 
the square root has a practical and constructible nature in the set theoretic sense.  When we talk 
about solution to x2 = p, assumption is made about the existence of the square root of p without 
question.  Symbol like p is employed to mean the square root of p.  The meaning of p is not 
clear, particularly so when p is a prime number.  The meaning and existence of p must be es-
tablished less we shall be talking about an entity that does not exist.  In this context, we shall use 
the embedded rational numbers ( ).  Use (p) instead of the prime p.  With  = (p) and n = 2, 

the set  define above will be the square root of (p).  Undoubtedly, ( ).  We may deduce 

this as follows.  Suppose   ( ).  Then there exists a rational number q such that  = (q).  

Therefore, (p) =  2 = (q2), by Chapter 4, Lemma 14, part 7.  Since  is injective, p = q2.   We 

may assume that q is positive.  Now, as q is a rational number, 
m

q
n

 ,  where m and n are posi-

tive integers such that the highest common factor of m and n is 1.   It follows then from 
2

2

m
p

n
  

that the prime p must divide m.  Thus, m = p k for some positive integer k.  Then 
2 2 2 2n p m p k   implies that 2 2n pk and so p must divide n.  It follows that p must be a com-

mon factor of m and n other than 1.  This contradicts that the highest common factor of m and n 
is 1.  Hence, ( ). 

Of course, we need to show that  is a real number. 

Lemma 5.  For any real number   (0), the set  defined in Definition 4 is a real num-
ber. 
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Proof. 1.  Since (0)  ,   . 

 2.  Since  is a (left) cut, there exists a positive rational number q  1 not in .   Then for 
any rational number x in , if x > 0, then x 2 q 2 and it follows that x  q.  Therefore, q 
  and so    . 

3.  Let l  and x  l.  We shall show that x  .  If x  0, then x  .  It is sufficient to 
show that if x, l  0 and x  l, then x  .  Now, 0  x  l implies that x 2 l 2 and l  
implies thatl 2 k for all k not in .  It follows that x 2 k for all k not in  and so x  , 
by Definition 4. 

4.  Next, we shall show that  has no maximal number.  Suppose on the contrary that  
has a maximal number M.  Take a rational number q  0 in .  This number exists by 
Lemma 2 of Chapter 4.  Since   is Archimedean, there is a counting number n such that 

n q > 1, that is, 
1

0 q
n

  .  In particular, 
2

1
q

n
 .  Therefore, 

2
1

q k
n

    
 

for any ration-

al number k not in .  Hence, 
1

n
   and 

1
0

n
 .  Thus, M  0.  Then M 2  .  This is be-

cause, if on the contrary that M 2  , then M  would imply M 2  M 2, which is absurd.  
Then by Lemma 4, part 2 of Chapter 2, there exists a counting number m such that M 2 + 
1

m
  .  Let x0 = M 2 + 

1

m
.  Obviously, x0  M 2.  By the Archimedean property of the ra-

tional numbers, there exists a counting number n1 such that n1(x0  M 2)  M 2.  Thus (x0  

M 2)  2

1

1
M

n
.  Therefore, 2 2

0
1

1
1x M M

n

 
   
 

.  Repeating this argument with 

2

1

1
1 M

n

 
 

 
in place of M 2, we obtain another counting number n2 such that  

                    2 2 2
0

2 1 1

1 1 1
1 1 1x M M M

n n n

    
         
    

.        

Now, let k = max {n1, n2}.  Then M 2  
2

21
1 M

k
  
 

 2
0

2 1

1 1
1 1 M x

n n

  
    

  
 This 

means that 
2

21
1 M

k
  
 

  y for all y not in  , since x0   and  is a (left) cut. Hence, by 

the definition of , 
1

1 M
k

  
 

 .  (The above proceeding works equally well with the 

exponent 2 replaced by any other counting number N, taking k = max(n1 , n2 , ..., nN ), 
where the counting numbers nj are obtained by repeating the above argument N  times and 
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we get  0

1
1

N
N NM M x

k
    
 

.)  Now, 
1

1M M
k

   
 

but M is the maximal number in 

 and so 
1

1M M
k

   
 

and we have a contradiction.  Thus, the maximal number M does 

not exist.  By Lemma 3 of Chapter 2,  is a real number.  This completes the proof of 
Lemma 5. 

Lemma 6.  Let  be defined as in Definition 4 for any real number   (0).  Then 2 = 
. 

Proof.  Recall 2 = (0)  {x   : x = a b for some rational numbers a, b  0 in }. 

Firstly, we shall show that 2  .  Obviously, (0) .  Since 0  , 0  2.  Observe 
that 0   because   (0).  It remains to show that for any rational number a, b > 0 in , 
a b is in .  Since a, b  , for all rational number k  , a 2, b 2 < k. Therefore, for all ra-
tional number k  , (a b)2 = a 2 b 2 < k 2.  This means that a b  k for all rational number k 
 .  Thus, a b  .  We can then conclude that  2  . 

Next, we shall show that   2.  As before it is enough to show that for all rational 
number y  0 in , y  2, since (0)  {0} , 2.  If, on the contrary y  2, then y  
a 2 for all rational number a  0 in , otherwise y  a 2 for some a  0 in  would imply 
that y  2.  Therefore, we have for all a in ,   

                             a 2  y  k for all k  .           ---------------------------  (1) 

Now, by Lemma 4 of Chapter 2, for any counting number n, there exist rational numbers 
a  , b   such that b  a  1/n.  Since   (0), b   implies that b  0 and for some 
rational number q not in , b 2  q.  Hence by (1) we get 

                          a2  y  q  b2  
2

1
a

n
  
 

.      ---------------------------- (2) 

We are going to prepare y for a contradiction.  Since y , there exists a rational number 
x0 in  such that y  x0.  Choose a fixed rational number k0  .  Then k0  0, since   
(0).  Since x0  y  0, by the Archimedean property of  , there exists a counting num-
ber n0 such that  

    0
0 01 2

2

x y
n k

    
 

   -------------------------------   (*) 

and hence        

                                    0
0

0

1
1 2

2

x y
k

n


  .    --------------------------------  (3) 
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With this counting number n0 we obtain rational numbers a in and b not 
insatisfying That is


2

2 2

0

1
a y b a

n

 
    

 
  --------------------------  (4) 

Now,  
2

2
0

0 0 0 0

1 1 1 1
2 1 2a a a k

n n n n

   
        

   
since  

1
1

on
 and a  k0 because a 

and k0 .  Therefore,  
2

2 2 0
0

0 0

1 1
1 2

2

x y
a a k a

n n

  
      

 
 by (3).  Hence, by 

(4), 
2

0 0 0 0
0

0

1

2 2 2

x y x y x x
a y x

n

    
      

 
, since y  x0.  Now, since x0  , for 

any rational number k  , x0  k.  Therefore, for all k  , 
2

0

1
a k

n

 
  

 
.  This means 

0

1
a

n


 
  

 
.  But

0

1
a

n


 
  

 
 because 

0

1
a b

n

 
  

 
, b   and  is a (left) cut.  Thus, 

we have a contradiction and we conclude that y  2.   This is true for any rational num-
ber y in  and so   2.  Thus, 2 = .  This completes the proof of Lemma 6. 

 For completeness, we remark that a candidate for the N-th root of a real number   (0) 
would be the following real number, 

 N = (0)  {x   : xN  k for all rational number k  }. 

The verification that N is a real number is similar to that for N = 2 as indicated in the proof 
therein.  The proof that N)N =  is the same as that for N = 2 except that in place of (*), we use 
the existence of a counting number n0 such that  

 n0 0

2

x y 
 
 

  1 + NC1 k0 + NC2 k0
2 +  + NCN1 k0

N1,  

for some fixed rational number k0  . 

 The uniqueness of the ordering on the real numbers is summarised as follows. 

Theorem 7.  The real number field  has exactly one total ordering.  That is to say, if 
there is another positive cone P' for  , then P' = P  

Proof.  Suppose P' is another positive cone, satisfying   = P'  P'  (0)} and that 
for any real numbersP', ,   P'.  Take any real number   (0), either  
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 P' or   P'.  If   P', then  P'.  If   P', then  P' and so by Lemma 15, 
Chapter 4,  = () 2 P'.  Therefore, for any   (0),  P'.  For any   P,   (0) 
and so by Lemma 6, there exists a real number   (0) such that  = .  Therefore,   
P'.  Hence P  P'.  Thus, the complement    P' of P' satisfies    P'    P.  That 
is, P'(0)}  P(0)}.  Since (0)  P',  P'   P.  It follows then that  
P')   P).  Since for any subset of real numbers M,  ( M) = M, by Lemma 13 of 
Chapter 4, we conclude that P' =  P')   P) = P.  Thus, P' = P and so the total or-
dering on   is unique.  

 For any complete totally ordered field F, there is a subfield isomorphic to the rational 
numbers.  This is seen as follows.  Let 1 denote the identity element with respect to multiplica-
tion.  Then  is embedded as the subfield 

             {
1

1

m

n
: m an integer and n a counting number}, 

where we write 
1

1n
 for the multiplicative inverse of n1.  Let us see if this gives a new embedding 

of the rational number   into our real numbers  .  The identity element for multiplication is 

(1).  The embedding of the rational number 
m

n
 is given by 

(1) ( ) 1
( )

(1) ( )

m m m
m

n n n n

    
 

        
   

, which is the same as the original embedding  in Chapter 

2.  In the above we have used the fact that 
1 1

( )n n



   
 

.  This is seen as follows.  Since 

1 1
( ) (1)n n

n n
          

   
, by Lemma 14 of Chapter 4,  

   
1 1 1 1 1 1 1 1

(1) ( ) ( ) (1)
( ) ( ) ( ) ( )

n n
n n n n n n n n

       
   

                                
 .     

 The Archimedean property of a complete totally ordered field is a consequence of its 
completeness.  The following is proven similarly as Proposition 5 of Chapter 1. 

 Theorem 8.  Any complete totally ordered field is Archimedean.  

 As a consequence of the Archimedean property of a complete totally ordered field F, the 
set of embedded rational numbers is dense in it.  That is, for any ,  in F and   , there exists 

a rational number 
m

n
 with m an integer and n a counting number such that   

1

1

m

n
  .  The 
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proof is exactly the same as the proof of Corollary 7 of Chapter 1.  We shall be using this fact 
again and again. 

 We have shown that the real numbers   is a complete totally ordered field.  Does there 
exist a complete totally ordered field very different from  ?  The answer is no, at least in the 
sense that though the objects or constructs may be different, nevertheless we can change from 
one object or construct to another for all practical purposes.  This is what the next theorem says.  

Theorem 9.  For each complete totally ordered field F, there is an order preserving iso-
morphism of F  into   and this isomorphism is unique.  That is to say, there is ONLY one such 
isomorphism. 

We shall prove this theorem in stages.  First, we shall define the isomorphism as stated in 
Theorem 9. 

Lemma 10.  For any  in a complete totally ordered field F, the subset M = {x   : x1  

} is a real number in  .  (Here, we write for x = 
m

n
, x1 = 

1

1

m

n
.) 

Proof.  1. M is not empty.  This is seen as follows.  For any  in F,either   0 the iden-
tity element for addition, or  0 or  = 0.  If   0, then 0 = (0)1  and so 0 M and 
M  .   If   0, then by the Archimedean property of F, there exists a counting number 
n such that n1( and so  n1= (n)1 and so n  M and once more M  .  If  = 
0, then any negative rational number is in M, since for any negative rational number q, q1 
0.  Obviously, for this case M  .   

2.  M   .  If   0, then by the Archimedean property of F , there exists a counting 

number n such that n1  .  Thus, we have a rational number n not in M.  If   0, then 
for any rational number q 0,   q1, since q1  0.  That means q  M and so M   . 

3.  Take any y in M.  Then y1 < .  Therefore, for any rational number x  y, we have then 
x1  y1   and so by definition of M, x  M. 

4.  M has no maximal element.  Suppose M has a maximal element J.  Then for all x in M, 
x  J and so x1  J1  .  Again by a consequence of the Archimedean property of F  
(density of the embedded rational field), there exists a rational number q such that J1  
q.  (Refer to the proof of Corollary 7 of Chapter 1 for verification.)  Thus, J  q and 
q  M.  This contradicts that q J.  Therefore, M has no maximal number. 

We now conclude by Lemma 3 of Chapter 2 that M is a real number. 

We can now proceed to define the isomorphism. 
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Definition 11.  For any complete totally ordered field F, define a mapping : F   , by 
() = {x   : x1  }, where 1 denotes the identity element for multiplication in F, for  in F.  
By Lemma 10, this mapping is well defined. 

Lemma 12.  The mapping : F   , is an order preserving bijection. 

Proof.   is injective.  This is seen as follows.  Let  and  be in F such that   .  Then 
either    or   .  Without loss of generality, we may assume   .  By Definition 11, 
()  ().  Now, by the density of the embedded rational field (see Corollary 7 of 
Chapter 1), there exists a rational number q such that   q1  .  Then ()  () since 
q  () but q  ().  This implies that the mapping  is order preserving.  Thus ()  
() for    and so  is injective.  Take any real number  in  .  Then consider the set 
 = {x1: x  } F.  This set is bounded above.  This is because there exists a rational 
number q   such that for all x in , x  q, since  is a left-cut.  Therefore, for all x in , 
x1 < q1 and so  is bounded above by q1 in F.  Since F is complete,  has a least upper 
bound or supremum say  in F.  Then () = .  This is seen as follows.  Obviously, for 
any rational number y in (), y1   and so y1  .  This is deduced below.  If on the 
contrary, y1 , then y  z for all z in  and so y1  z1 and y1 would be an upper bound 
of .  Thus, y1   contradicting y1  .  Hence, y1   and so y  .  This means ()  
.  Obviously,   (), since the above argument can be reversed as follows.  For any ra-
tional number x in , x1  .  Thus, x1  , since  is the least upper bound of .  We 
claim that x1  .  This is because if x1  , then for all y in , y x1.  Thus, for all y in 
, y x.  Therefore, x would be a maximal number for , contradicting that  has no max-
imal number.  Thus, for all x in , x1   and so x ().  This implies that   ().  
Thus, () = .  This shows that  is surjective and so is bijective. 

Lemma 13.  The mapping : F   , is a field homomorphism.  That is, for any  and  
in F,   

1.  ( + ) = () + () and 

2.   ( ) = () (). 

Proof.  1.  Firstly, we shall show that () + ()( + ), that is () + ()( + 
).  For any x in (), x1   and for any y in (), y1  .  Therefore, for any x + y in 
() + () with x  () and y  (), (x + y)1 = x1 + y1   + .  Hence, x + y  ( + 
).  Therefore, () + ()( + ).   

Now, take any z in ( + ).  Then z1   +  and so z1  .  Then by the density of 
the embedded rational field in F, there exists a rational number q such that z1  
q1.   Then we have (z q)1 = z1  q1 and so z q  ().  Obviously, q  
().  Thus, z = (z q) + q  () + ().  This is true for any z in ( + ) and so ( + 
)  () + ().  Therefore, () + ()( + ). 
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 2.  Firstly, we note that (0) = (0) the identity element for addition in  .  As a conse-
quence of part (1) above, for any  in F, () = ().  (This can be deduced in a simi-
lar manner as in the proof of the corresponding fact for the embedding  of the rational 
numbers into  .)  Note also that (1) = (1).  If any one of  and  is 0, then we have 
nothing to prove, since ( ) = () = (0) and since ()() is either ()(0) = 
()(0) or ()() =()() and is always the same as (0).  It is sufficient to show 
Part 2 for  and  not equal to 0 the identity element for addition in F.  We shall divide 
the remaining of the proof into two cases, firstly for ,   0, then for either   0 and   
0 or   0 and   0 or ,   0.  

Now, assume ,   0.  Note that for any   0 in F, ()  (0) and so by Lemma 2 of 
Chapter 4, {0} (0)  ().  Note that we have (), ()( )  (0).  Then we 
have ()()  (0).  Hence, {0}(0)  ()(), ( ).  So, for any x  0 in 
()(), x  ( ).  Therefore, we only need to show that for any x  0 in () and any 
y  0 in (), x y  ( ).  Now, x  0 in () implies that x1   and likewise, y  0 in 
() implies that y1  Therefore, (x y)1 = x1 y1    and so x y  ( ).  We can 
now conclude that ()()( ).  Next, we shall show that( )()().  
Again, we need only show that for any z  0 in ( ), z  ()().  (The proof of this 
part resembles that of the proof for Lemma 9, Part 6 of Chapter 4.)  Now, since z  0 and 
is in ( ), 0  z1   .  Therefore, multiplying the inequality by the multiplicative in-

verse of , we get 
1

0 1z 


  .  By the density of the embedded rational field in F, there 

exists a rational number a such that 
1

0 1 1z a 


   .  Then a  () and 0 z1  a1  

  . Thus, 
1

0 1
1

z z

a a
   and so 

z

a
  ().  Therefore, z = a  

z

a
  ()().  This is 

true for any z in () and so ()  ()() and the equality () = ()() fol-
lows. 

Now, for   0 and   0, (  (0) and   (0).  Therefore, by the preceding re-
mark, ()() =  (()(())= ((()(()) = ()) by the first case, since 
)  0.  Thus, ()() = ())) = ().  Similarly, if   0 and   0, by in-
terchanging  with , we can show that()() = ()() = ().  Finally, when ,  
 0, then ()() = ()()) = ()() = (()()) = (), by the first 
case.  This completes the proof of Part 2 of Lemma 13. 

 Lemma 12 and Lemma 13 imply that there is only one complete totally ordered field upto 
isomorphism.  The fields F and  may be constructs of different nature but they are all isomor-
phic in the sense that the mapping :F   is a bijective homomorphism, an isomorphism.  
More is true, that is, there is one and only one isomorphism of any complete totally ordered field 
F into  .  This is a consequence of the following theorem, which is of some interest on its own 
merit. 

Theorem 14.  Any automorphism :      (i.e. isomorphism of  into itself) is the 
identity homomorphism.  
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Proof.  We observe that any automorphism  would be order preserving.  (x2) = 
(x)(x) = (x))2  0 if x  0.  Here, we write 0 for (0).  Now, for any  in the positive 
cone P,  =  2 for some  and so () = ( 2)  0 so that ()  P.  That means  
maps positive cone into positive cone.  Hence, if ,    and   , then     P and 
so ) (  P and ) (We shall write 1 for (1) in  .   Then 
n1 = n(1) = (n) for any integer n.  For any counting number n, 

1 1 1 1

( ) (1) 1n n n n


 
     
 

 and so for any rational number 
m

n
,  

1 1
( )

1

m m
m

n n n
         
   

.  Thus, we can write ( ) = {
1

1

m

n
:  m is an integer and n a 

counting number}. 

We shall show next that  is the identity homomorphism on the embedded rational num-
ber fields ( ).  (1) = 1 since  is a field homomorphism. Then it follows that (1) 

=(1) = 1.  Therefore, for any integer n, (n1) = n1.  This means that  is the identity 

homomorphism on the embedded integers.  Now, for any rational numbers, 
m

n
, with m an 

integer and n a counting number,  

                     
1 1 1 1

( 1) 1
1 1 1 1

m m
m m

n n n n
           
   

,  

assuming that 
1 1

1 1n n

 
  
 

.  We shall deduce this fact as follows.   

1 1 1
1 (1) ( 1) 1

1 1 1

n
n n

n n n
                  
     

.  Therefore, multiplying by 
1

1n
 on both 

sides, we get  
1 1

1 1n n

 
  

 
.  Thus,  is the identity homomorphism on the embedded ra-

tional field.   

Now, let  be a real number in  and   ( ).  Suppose on the contrary that ()  , 

then either ()   or ()  .  Suppose ()  .  Then by the Archimedean property 
of  , there exists a counting number n such that    

        n()  )  1. 

Thus 
1

1n
  ()  .   Now, by Corollary 10 of Chapter 2, there exist rational numbers a 

and b such that (a)    (b) and (b  a) = (b)  (a)  
1

n
  
 
 

.  In our present nota-
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tion, we have a1    b1 and b1  a1 + 
1

1n
.  Since  is order preserving and is the iden-

tity homomorphism on the embedded rational subfield, it follows that (  (b1) = b1 

 a1 + 
1

1n
   + 

1

1n
Thus, we get (    

1

1n
, contradicting ()   1

1n
.  Simi-

larly, if ()  , by the Archimedean property of  , there exists a counting number m 

such that m())  1 and so 
1

1m
   ().  With this counting number m, again by 

Corollary 12 of Chapter 2, there exist rational numbers a and b such that a1    b1 and 

b1  a1 + 
1

1m
.  Then we have   b1  

1
1

1
a

m
 .  Applying the automorphism to the ine-

quality a1  , we get a1a .  Thus,   
1

1
1

a
m

    + 
1

1m
 and so    

  
1

1m
, contradicting      

1

1m
.  Therefore, ()  and we conclude that is 

the identity homomorphism on  .  This completes the proof. 

Theorem 15.  There is exactly one field isomorphism from any complete totally ordered 
field F into  .   

Proof.  Suppose there are two isomorphisms , : F   .  Let 1:    F be the in-
verse function of .  Then 1 is also an isomorphism.  This is seen as follows.  For any 
,  in  ,

(1() + 1()) = (1()) + (1())) =  +  = 1 + )).    

Since  is injective, we have then 1() + 1() = 1 + ).  Similarly,  

 (1() 1()) = (1()) (1()) =   = 1 )). 

Again, since  is injective, we have then that 1() 1() = 1 ).  Therefore, 1: 
   F is a field isomorphism, since 1 is also bijective.  Then the composite isomor-
phism,   1:     , is an automorphism.  Therefore, by Theorem 14,   1 = 1  

:      is the identity homomorphism.  Then  =  1    =   1)   =  (1  
) =   1   =  .  This completes the proof of Theorem 15. 

Proof of Theorem 9.  This is now an easy consequence of Lemma 12, Lemma 13 and 
Theorem 15.  

 In the next chapter we shall trace the genealogy of the real numbers starting from the nat-
ural number system.  We shall see how special and unique is the real number system. 



  

 

CHAPTER SIX 
 

 
Like the drifting seed in an ocean 
Asking by whom has cast its existence 
Whence we came, whimpering 
Who are we? What are we? 
Complicated, complex and perplexing questions 
That has no answer in what or who we are  
Only what we do  
Even then only Silence shall answer 
 

 We shall now trace the genealogy of the real numbers starting from the indivisible atomic 
individual, the empty set.  We shall observe the underlying theme, the first construct, the set of 
natural numbers (which now for this discussion includes the number 0) is unique in the sense that 
there is only one such natural number system up to isomorphism, a consequence of the Dede-
kind's Recursion Theorem, and that each embedding of the natural number system and subse-
quent constructs into the next is unique.  The following chart depicts the lineage of the real num-
bers. 

     

 

 It is clear that the construct at each stage involves a new kind of object with the embed-
ded starting object taking on a new and more complicated form.  Let us start with VON NEU-
MANN's definition of the natural number system,  .  With the axiom of existence, we have the 
existence of an empty set.  The number 0 is defined to be the empty set , 1 is defined to be the 

   

      {0}
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set {}, 2 is defined to be {, {}} and, in general, n + 1 is defined to be n{n}.  It has two 
things going for it.  Firstly, the number n has exactly n elements.  Secondly, the ordering "" is 
given by the relation "" ("is an element of").  For instance, 3 is defined by 2  {2} = {, 
{}}{{, {}}} = { {, {}}}.  Then , , {, {}} {{, {}}}.  
That is, 0, 1,2  3.  And for n  0, we have 0,1,, n1  n and so 0,1,, n1  n.  Addition 
and multiplication can be defined by using the successor function, S(n) = n{n} = n + 1 as fol-
lows.  Addition can be defined recursively starting from m + 0 = m, by m + S(n) = S(m+n) and 
multiplication, by m  0 = 0 and m(n+1) = mn + m.  Then we can easily check that all the well-
known rules of addition and multiplication are satisfied.   

 The next construct is the set of integers.  To do this we shall need the notion of a Carte-
sian product and an equivalence relation as explained below.   

Definition 6.1.   Let A and B be two sets that may or may not be the same.  An ordered 
pair, (a, b), where a is an element in A and b an element in B is defined to be the set {{a}, {a, 
b}}.   That the element a comes first before b is determined by the set inclusion {a}{a, b}.  The 
Cartesian product of A and B, denoted by AB, is then the set consisting of all the ordered pairs, 
that is, AB = {(a, b): a  A, b  B}.   

 In our usual sense of direction, for two natural numbers m and n, if m  n, then we would 
start from n and proceed to get to m by a sequence of application of the successor function S.  
The number of times that we apply S would give us a natural number.  This number, as we can 
perceive, is mn. We can think of this as applying the successor function S to the number 0 in m 
+ 0 while keeping m fixed. We would have applied the successor function mn times.  If we start 
from m and get to n then this would indicate an opposite direction.  The direction is determined 
by the ordering m  n.  So, going from m to n indicates a negative direction and hence gives rise 
to the "negative" of going from n to m.  Hence, we would need an ordered pair (n, m) in order to 
take into account this sense of direction and, once we have this, we do not even need the ordering 
of m and n.  So, we shall start with the Cartesian product of the set of natural numbers,   .  
There is one complication.  If m  n, then m + a  n + a.  Thus, both pairs (n, m) and (n + a, m + 
a) would represent the same number.  We would want to use only one representative from the set 
{(n + a, m + a): a   }.  So, we would need a way to distinguish different sets as representing 
different numbers.  We would want to carve up the Cartesian product   into subsets, each of 
which represents a number.  Elements in the set {(n+a, m+a): a   } are related by the same 
difference.  More precisely (a, b) and (c, d) are related if, and only if, b  a = d  c, if we have de-
fined subtraction, but since we have not yet defined subtraction, (a, b) and (c, d) are related if, 
and only if, a + d = b + c.  We shall need then the next concept in set theory, namely that of a re-
lation and in particular, an equivalence relation. 

Definition 6.2.   Let A and B be two sets.  A relation from A to B is a subset R of the Car-
tesian product AB.  For an element a in A and an element b in B, we say a is related to b (and 
we write aRb) if, and only if, (a, b) is in R.  If A = B, then we say the relation R is a relation on 
the set A. 
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 Definition 6.3.   Suppose R is a relation on a set A . 

 1.   R is reflexive if for all a in A, aRa. 

 2.  R is symmetric if for any a and b in A, aRb if, and only if, bRa. 

 3.   R is transitive if for any a, b, c in A, aRb and bRc implies aRc. 

 We say R is an equivalence relation if R is reflexive, symmetric and transitive.  Take an 
element a in A, the equivalence class of [a] consists of all elements in A that are related to a.  
That is, [a] = {bA: bRa}.   We can easily show that [a] = [b] if, and only if, aRb.  This would 
then carve up the set A into disjoint equivalence classes because [a][b] =  if a is not related 
to b.   A then becomes the disjoint union of these equivalence classes.  We denote the set of all 
equivalence classes by A/R. 

 We now take A to be the Cartesian product   .  Define a relation ~  on    by (a, 
b) ~ (c, d) if and only if a + d = b + c.  Thus, our relation is the subset of (   ) (   ) given 
by {((a,b), (c,d)) (   ) (   ): a + d = b + c }.  We then have a new way of looking at the 
natural numbers.  We can easily show that ~ is an equivalence relation.  Denote the equivalence 
class of (a, b) by [a, b].  Then 0 would correspond to [0,0] = [1,1], 1 would correspond to [0,1] = 
[1,2] and in general any natural number n would correspond to [0, n].  The set of equivalence 
classes    is then defined to be the integers  .  Addition and multiplication are defined by 

[a, b] + [c, d] = [a + c, b + d] and [a, b]  [c, d] = [ad + bc, ac + b d].  We can easily check that 
both addition and multiplication are meaningful, that is, if we take different representatives from 
each class of [a, b] and [c, d] and follow the definition, we should end up in the same equiva-
lence class.  Observe that both addition and multiplication are commutative and associative.  The 
identity element for addition is [0,0] and the identity element for multiplication is [0,1].  Then   
is an abelian group with respect to addition.  The additive inverse [a, b] for any [a, b] in   is 
[b, a] because [a, b] + [b, a] = [a + b, b + a] = [0, 0].    has no zero divisor because for any x 
and y in  , x y = [0,0] if, and only if, x = [0,0] or y = [0,0] the zero number of  .  We can now 
embed the natural numbers  into  , by g:     , defined by g(n) = [0,n], for each n in  .  
The order relation is then defined by the positive cone P = {[0, n]: n    and n  0}.  For any x 
and y in  , x  y if, and only if, y  x  P.  Indeed, the embedding, g:     , respects addi-
tion, multiplication and the orderings on both   and  .  If we now identify [0, n] with n, then 
since the additive inverse [a, b] = [b, a], we have then the negative integer,  n identified with 
[n, 0].  Then   is none other than the embedded natural numbers and their negatives.  The posi-
tive cone can then be written as {n: n g( ) and n  0}.    

 The next construct is the system of rational numbers.  Now, for the symbols 
a

b
and 

c

d
, we 

can take them as ratios for the time being, representing the same rational number if a d =  b c.  If 
a is not equal to c or if b is not equal to d, then these are really distinctively looking ratios even 
when a d = b c but we consider them as the same.  This brings us to the use of an equivalence re-
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lation again.  Since there are pairs involved and the denominator rightly should not be zero, we 
consider the Cartesian product,  {0}   , where we write 0 for [0,0].  For (a, b) and (c, d) in 

 {0}   , we define (a, b) ~ (c, d) if, and only if, a d = b c.  This relation is determined by 

the subset {((a,b), (c,d)) (  {0}    (  {0}   ): a d = b c } of (  {0}    

(  {0}   ).  We can easily show that this relation is an equivalence relation and we denote 

the equivalence class of (a, b) by 
a

b
 
  

.  Define the rational numbers to be the set of all equiva-

lence classes, that is  {0}      .   Addition is defined by 
a

b
 
  

  + 
c

d
 
  

  = 
ad bc

bd

 
  

 

and multiplication by 
a

b
 
  

 
c

d
 
  

 = 
ac

bd
 
  

.  Then the identity element for addition is 
0

1
 
  

 and 

the identity element for multiplication is
1

1
 
  

.  Addition and multiplication are easily shown to be 

commutative, associative and obey the distributive law.  Obviously, the additive inverse of 
a

b
 
  

 

is 
a

b

 
  

 and the multiplicative inverse of 
0

1

a

b
         

  is given by 
b

a
 
  

.   Then   with these two 

operations of addition and multiplication is a field.  The positive cone for  , as explained in 

Chapter 1, is P = : , 0
a

a b
b

       
and gives rise to a total ordering on  , given by, for any x, y in 

 , x  y if, and only if, x  y  P.  Thus,   is a totally ordered field.  The embedding, h:    

 , given by, h(x) = 
1

x 
  

, embeds the integers   in  .  This embedding is unique, respects the 

addition, multiplication and the orderings on   and  .     

 Finally, the last stage is the construction of the real numbers as described in Chapter 2, 
involving Dedekind cuts.  Thus, the set of real numbers sits on top of a heap of other constructs.  
Its nature is as yet unexplained as the empty set itself.  We might say the real number system has 
no nature but that the logical dynamic process of its creation comes close to being described as 
its nature.  The end products say much less than the process in arriving at these products.    

 In Chapter 5, we have seen that the real number system contains the n-th root of any posi-
tive real number for any counting number n.  This was a constructive demonstration.  We can di-
vide the real numbers into two classes of numbers, the algebraic numbers and the transcendental 
numbers.  The algebraic numbers are those real numbers that satisfy a polynomial equation with 
coefficients in the rational numbers, whereas a transcendental number does not.  Now, a Cantori-
an argument shows that the algebraic numbers can be at most countably infinite, a consequence 
of the result that the union of countably infinite family of countable infinite sets is countable.  
The union of two countable sets is countable again irrespective of whether the sets are infinite or 
not.  An easy argument below will then prove that the set of transcendental numbers is uncounta-
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bly infinite, if we can show that the set of real numbers is uncountably infinite.  If the set of tran-
scendental numbers is countable, then the set of real numbers being the union of the algebraic 
numbers and the transcendental numbers, would then be the union of two countable sets and is 
therefore countable, contradicting that the set of real numbers is uncountable.  Hence, the set of 
transcendental numbers is uncountably infinite.  We shall next show that the set of real numbers 
is uncountably infinite by employing a very simple argument of Cantor.  Firstly, we shall need a 
common representation of the non-zero real numbers by non-terminating decimals. 

 

 6.4.  Decimal Expressions.      

 We shall redefine each real number  0 as the supremum of a sequence of numbers.  Take 
any   0 in  .  Choose the greatest integer a0  .  We can verify its existence as in Corollary 9 

of Chapter 1.  Then we have a0 + 1  .  Consider next the numbers a0 + 
0

10
,  a0 + 

1

10
, a0 + 

2

10
, 

a0 + 
3

10
, a0 + 

4

10
, a0 + 

5

10
, a0 + 

6

10
, a0 + 

7

10
, a0 + 

8

10
, a0 + 

9

10
.  Then take the largest of these 

which is  .  That is, we choose a1 in 0,1,2, such that a0 + 1

10

a
   a0 + 1 1

10 10

a
 .  Let d1 

= a0 + 1

10

a
.  Then d1   d1 + 

1

10
.  Now, choose integer a2, 0  a2, such that d1  2

210

a   

d1 + 2
2 2

1

10 10

a
 .  Let now d2 = d1  2

210

a
 = a0 +  1

10

a
 +  2

210

a
.  We have, d2   d2 + 

2

1

10
.  Con-

tinuing like this, we shall obtain a sequence a0, a1, a2, ,  of integers,  0   ai,  such that if dn 

= dn1 
10

n
n

a
= a0  +  1

10

a
 +  2

210

a
 + + 

10
n
n

a
,  then  dn   dn + 

1

10n
.  The symbol a0  a1  a2   

a3  is called the non-terminating decimal expansion of  .   Note that the set {d1, d2, d3, d4, } 
is bounded above by .   Then the least upper bound or supremum of this set is We deduce 
this as follows. If sup {d1, d2, d3, d4, } = M, then  M.  Then by Corollary 6 of Chapter 1, 

there exists a counting number m such that 
1

m
  M and so M +  

1

m
  Now, take a non-

terminating decimal expansion 0  c1  c2  c3  for 
1

m
.  Let L be the first integer such that cL  0.  

Then 
1 1

10L m
 .Therefore, M + 

1

10L
  M + 

1

m
     Hence, since M = sup{d1 ,  d2 , d3 ,  d4  },  

dL + 
1

10L
  M +  

1

10L
   and this contradicts  dL + 

1

10L
.  Therefore, sup{d1 ,  d2 , d3 ,  d4 

 }. 

 his representation of the real number  is unique.  Suppose two non-terminating 
decimal expressions a0  a1 a2 a3 and b0  b1 b2 b3 are such that for some integer j  0, aj  
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bj and ai  bi for i  j 1.  If a0  a1 a2 a3 represents  and b0  b1 b2 b3 represents  we 
shall show that   .  Suppose that aj  bj.  By the hypothesis, we have                    

 a0  + 1

10

a
 +  2

210

a
 + + 1

110
j

j

a 
  

10
j

j

a
    a0  + 1

10

a
 + 2

210

a
 + + 1

110
j

j

a 
 

1

10
j

j

a 
.   But 

  a0 + 1

10

a
 + 2

210

a
 + + 1

110
j

j

a 
 

1

10
j

j

a 
= b 0  + 1

10

b
 + 2

210

b
 + + 1

110
j

j

b 
  

1

10
j

j

a 
 

b 0  +  1

10

b
 + 2

210

b
 + + 1

110
j

j

b 
 

10
j

j

b
  .  

Therefore,   and so   .  Similarly, if aj  bj, we can show that   .  Thus, this way of 

representing any real number  0 is unique.  Notice that for  = 
1

2
, the corresponding non-

terminating expansion is the expression 0.499999999999 which is a non-terminating ex-
pression with recurring '9'.  To complete the picture, for any   0, we take the non-terminating 
decimal expansion for  and represent  by attaching the negative sign to the non-terminating 
decimal expansion for  .  This is consistent with the following observation.  If sup{d1 ,  d2 
, d3 ,  d4  }, where the di's are as defined above in terms of the ai's and a0  a1  a2   a3 is the 
non-terminating decimal expansion of ,  then  =  sup{d1 ,  d2 , d3 ,  d4  } = inf{d1 , d2 , 
d3 ,  d4  }.  One exception is 0 itself.  It is simply represented by 0.0 a terminating decimal, 
that is, a decimal expression with recurring '0'. 

Cantor's Theorem.   The set of real numbers strictly between 0 and 1 is not countable. 

 Proof.   The proof is a simple one, known as the Cantor's diagonal process. 

Suppose on the contrary that the interval {x   : 0  x  1} is countable.  Hence, there is 
a matching function (that is a bijective function) g:    {x   : 0  x  1} from the 

counting numbers  onto the interval {x   : 0  x  1}.  For each counting number n, 

let the decimal expansion of g(n) be given by 0 gn1 gn2 gn3 gn4 gn5.  (Note here that for 
any real number  in the interval {x   : 0  x  1}, the first term of the non-terminating 
decimal expansion of  is 0.)  We then construct the following decimal expansion 

                                              0 b1 b2 b3 

where bj is chosen to be different from g j  j , 0 and 9.  Then  0  b1  b2   b3 represents a 
real number   0 and  1 because bj  0, 9  for all  j.  In particular,   g(j) for any count-
ing number j, since bj  g j  j.  We have thus produced a real number, , in the interval {x 
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  : 0  x  1}, which is not in the range of g, contradicting that g is bijective.  This 
proves that the interval {x   : 0  x  1} cannot be countable and so the set of real 
numbers   is not countable. 

 We close this chapter with the poetic remark of Eric Temple Bell: 

 The algebraic numbers are spotted over the plane like stars against a black sky; 

 the dense blackness is the firmament of the transcendentals. 

 

 This image sums up just how little we know about the transcendentals and hence the real 
numbers.  Apart from the well-known transcendentals, like the numbers and e, practically none 
is readily available; any attempt to produce one will need quite an effort both in its construction 
as well as its authentication. 

 



  

 

The water in a vessel is sparkling; the water in the sea is dark. 

The small truth has words that are clear; the great truth has great silence. 

                                         Rabindranath Tagore 

 We have constructed the real numbers and have recovered the natural numbers, integers 
and rational numbers in this model of the real numbers.  Henceforth, these numbers will take on 
new meanings.  We have also shown that the properties of the real numbers are the essence of a 
complete totally ordered field.  Are there other models?  Yes, there are, and they are constructs of 
quite different nature.  Each model has its own merit.  Cantor based his model on fundamental 
sequences (Cauchy sequences), where every Cauchy sequence converges, a notion that is called 
metric complete.  Weierstrass' model, based on nested intervals, is another that allows us to zoom 
in the position of a real number on the infinite real line.  The more recent model of John Conway, 
in terms of Conway games, has its origin in a different conceptual consideration, that of calling 
number a game and is a subset of a bigger field that includes infinitely small and infinitely large 
'numbers'.  It allows one to look forward to an extension of the real numbers to non-
Archimedean, non-standard numbers.  Whatever models that we choose, we can give an axiomat-
ic definition of the real numbers, based on the axioms for a complete totally ordered field.  Un-
doubtedly, there is some gain in this approach, but there is a loss of familiarity with the object it-
self. 

 Let us think about this creation of the real numbers in an abstract and foundational way, 
free from what we may think numbers or indeed what natural numbers really are.  Let us pause 
and think about the consequence of this creation.  Starting from the empty set we have obtained 
the real numbers, using entirely set theoretic construction from von Neumann's natural number 
system.  From the real numbers, we can give definitions of complex numbers, vector spaces, real 
and complex algebras and so on.  These are the building blocks of more complicated mathemati-
cal objects, which in turn, are also building blocks of even more complicated mathematical ob-
jects and so on.  If we accept the consistency of (Zermelo-Frankel) set theory, we can view the 
whole of mathematics as being built up from set theory, that is, giving it a unified axiomatic ba-
sis.  This view, though controversial, gives us the assured meaning of rigour, at least, in a re-
stricted portion of analysis.  The question, whether the whole of mathematics can be based on an 
axiomatised logical footing, will continue to be debated well into the next century.  On a note of 
pragmatism, the path that we have traversed in reaching the real number system is truly one of 
logical clarity and that is, perhaps how one should view the makings of the other branches of 
mathematics in this way.  Gödel's incompleteness theorem does restrict us from saying that eve-
rything in mathematics is provable or not provable, but it does not make the slightest blemish on 
the beauty of theorems such as the Fundamental Theorem of Calculus and the Euler-Poincaré 
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Index Theorem.  For the question on the foundation of mathematics, a good account is given in 
chapter 14 of Numbers by Ebbinghaus et al and a very rich extensive historical account in Chap-
ter 51 of Mathematical Thoughts from Ancient to Modern Times (Volume 3) by Morris Kline. 

 The Archimedean property allows us to think of the real numbers as an infinite line.  
Thus, we can think of the real numbers as a continuum.  How useful is this fact?  When we say 
that the real number system is a line, what do we mean?  Does the set of real numbers, being a 
continuum, gives us a justification to equate real numbers with the infinite line?  Yes, to some 
extent it does.  The question of what a real number is, fundamentally, is a philosophical one.  To 
reconcile with the technicality of its construction, we think of the real numbers, in very different 
ways.  Natural numbers and the integers and to some extent the rational numbers are something 
we have learnt and used so effectively since our school days.  We do not view them in a way to-
wards a foundational understanding; we do not think of them as objects or, in the case of the ra-
tional numbers, as embedded subfield, in the real number system we have constructed.  When we 
talk about the real numbers, we think of them more in terms of the properties they possessed, that 
is the properties of a complete totally ordered field, but the embedded rational number field is not 
thought of in the same way.  This is rightly so and we have two ways of thinking that suit our 
convenience.  It is easy for a mathematician to switch back and forth from just plain rational 
numbers to embedded rational numbers in the real numbers (whether being thought of as a com-
plete totally ordered field or a continuum).  The layman would find this task difficult, to say the 
least and the real numbers remain mysterious to fathom. 
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 The books listed here meant for further readings are good source for someone who wants 
to know what mathematics is about.  Some of them are extremely technical and some are contro-
versial.  They all have something to say about the foundation of mathematics and in particular, 
the real numbers.  They are chosen for the richness and depth of thoughts and the abundance of 
historical content, both inviting and challenging.   

 

William Dunham, Journey through Genius, Penguin Books 1990. 

(This is a very fascinating and captivating book to begin with.) 

Ebbinghaus et al., Numbers, Springer Verlag 1995. 

(This is a collection of the works by some prominent mathematicians on different aspects 
and areas pertaining to number systems and their ramification. It is a very technical book, 
mathematically very demanding and is recommended for further reading.) 

Morris Kline, Mathematical Thought From Ancient To Modern Times, Oxford  Uni-
versity Press 1972. 

(A monumental work of a kind that treats the history of mathematics in a readable and 
thought-provoking manner.) 

Morris Kline, Mathematics The Loss of Certainty, Oxford University Press 1980. 

Reinhard Laubenbacher and David Pengelly, Mathematical Expeditions, Springer Verlag 
1999. 

(An amazing book that invites you to participate in the foot-steps of some famous math-
ematicians.) 

 

 


