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The subject of this note is the following theorem.

Theorem 1.  Suppose p(x) and q(x) are real polynomial functions, i.e., functions defined by  
polynomial with real coefficients.  Suppose the degree of p < degree of q and p(x) and q(x)
have no common factors other than the non zero constants.  Then for the partial fraction
expansion of , (i) corresponding to a real factor (x − a) k , k ≥ 1, of q(x) we have an

p(x)
q(x)

expansion
                                        ,A1

(x − a) + A2
(x − a)2 +£ + Ak

(x − a)k

and (ii) corresponding to a real quadratic factor ( x 2 + c x + d)k , k ≥ 1, where  c 2 < 4d, we
have the expansion
                            .C1 x + D1

(x2 + cx + d) + C2 x + D2
(x2 + cx + d)2 + £ + Ck x + Dk

(x2 + cx + d)k

This result is often used in the integration of a rational function offered in almost any
elementary text on the calculus but the proof in general terms is seldom offered and tends to
be glossed over.   We shall prove this result using complex analysis.  

Proof.  Consider the polynomial functions p and q as functions on the complex numbers. Let
L = degree of q(z)  and by hypothesis, L > degree of p(z).   We can write 
                                f (z) =

p(z)
q(z) =

p(z)
zL(q(z)/zL) .

Note that  as z → ∞, where bL is the coefficient of z L in q(z).
q(z)
zL d |bL| ! 0

Since L > degree of p(z),  
                                                     as z → ∞.

p(z)
zL d 0

Hence  as z → ∞.  f (z) =
p(z)
q(z) ==

p(z)
zL

1
(q(z)/zL) d 0 $ 1

bL
= 0

Suppose     q(z) = (x − a1)n1 $ (x − a2)n2£(x − aK)nK $ (x2 + c1x + d1)L1 $ $ $
                             ,$ $ $(x2 + cJx + dJ)LJ

where a1 , a2 , …, aK , c1 , c2 , …, cJ,  d1 , c2 , …, dJ, are real numbers and cn
2 < 4 dn , n =1 ,2,

…, J .  Let xn,    be the two non real roots of   z 2 + cn z + dn , n = 1, …, J.   Suppose f 1 ,  f 2,xn
  … ,  f K  are the principal parts of  f (z) at a1 , a2 , …, aK respectively.  Note that a j is a pole
of  f (z) of order n j  and  x j ,    are poles of   f (z) of order L j ,  j =1 ,2, …, J .xj

Let  g j , h j , j =1 ,2, …, J , be the principal parts of the Laurent series of  f  at xj,    xj
respectively.  Then
                  g = f − ( f 1 + f 2 +¢+ f K) − ( g 1 + g 2 +¢+ g J) − ( h 1 + h 2 +¢+ h J)
has removable singularities at a1 , a2 , …, aK,  x j ,   , j =1 ,2, …, J .xj
Hence, by defining appropriate values of g at these points by taking limits, g(z) is an entire
function.
Now for j =1 ,2, …, J ,  | g j (z) | → 0, | h j (z) | → 0 as z → ∞ and | f n (z) | → 0 as z → ∞,  for
n =1 ,2, …, K and so  | g (z) | → 0 as z → ∞.  Therefore, by Liouville’s Theorem,  g(z) is a
constant function and so since | g (z) | → 0 as z → ∞, g(z) is identically zero.  (We can aslo



deduce this as follows.  Because | g (z) | → 0 as z → ∞, M(s) = sup{|g(z)|: |z| = s} → 0 as s →
∞.  Hence by the Cauchy Inequality, g(z) is identically zero. )  Thus

                     .f = f 1 + f 2 +¢+ f K + g 1 + g 2 +¢+ g J + h 1 + h 2 +¢+ h J
                                                                   ----------------------------------------  (A)
Note that if a is a pole of order k of  f, then the Laurent series of  f  at a is given by 
                           --------------- (1)f (z) = A1

(z − a) + A2
(z − a)2 +£ + Ak

(z − a)k +
n=0

∞

bn(z − a)n

where the Ai’s are complex numbers.  In particular,   is theA1
(z − a) + A2

(z − a)2 +£ + Ak
(z − a)k

principal part of  f  at a.  Thus (A) is the partial fraction decomposition of  f  as complex
rational function.  We now specialize to real rational function. 

Since  and p and q have real coefficients,f (z) =
p(z)
q(z)

                                                        . f (z) =
p(z)

q(z)
=

p(z)
q(z) = f (z)

Thus from (1) that if a is a pole of order k of  f, then 

                   -----------------   (2)f (z) = A1

(z − a)
+ A2

(z − a)2 + £ + Ak

(z − a)k +
n=0

∞

bn(z − a)n

If  a  is real then  and so (2) becomesa = a

                     ---------------   (3).f (z) = A1
(z − a) + A2

(z − a)2 + £ + Ak
(z − a)k +

n=0

∞

bn(z − a)n

This means that if a is real, (3) is also a Laurent series for f at a and so by the uniqueness of
Laurent series,   for j =1, …k.  It follows that the principal part of  f at z = a for real aAj = Aj
is given by
                               ------------------------------  (B)A1

(z − a) + A2
(z − a)2 +£ + Ak

(z − a)k

where A j , j =1 , 2, …k, are real numbers.
Therefore,  f 1 ,  f 2,   … ,  f K are of the form given by (B).
Note that if  a is non real, then (2) is a Laurent series for  f  at .  Consequently, the sum ofa
the principal part of  f  at a and the principal part of  f  at  is a
                 

               A1
(z − a) + A1

(z − a)
+ A2

(z − a)2 + A2

(z − a)2 +£ + Ak
(z − a)k + Ak

(z − a)k

    =
A1(z − a) + A1(z − a)
(z2 − 2 Re a + |a|2) +

A2(z − a)2 + A2(z − a)2

(z2 − 2 Re a + |a|2)2 +£ +
Ak(z − a)k + Ak(z − a)k

(z2 − 2 Re a + |a|2)k

                                                                                     ---------------------------------------  (4)
Note that because  are conjugate pairs, the coefficients of   Ajanand Ajan

  are real.  Hence  is a real polynomial ofA j(z − a) j + A j(z − a) j A j(z − a) j + A j(z − a) j

degree  j.  Therefore, by successively dividing out by , starting from z2 − 2Rea + |a|2

 , (4) can be written as 
Ak(z − a)k + Ak(z − a)k

(z2 − 2 Re a + |a|2)k

              ,C1z + D1
(z2 − 2 Re a + |a|2) + C2 z + D2

(z2 − 2 Re a + |a|2)2 + £ + Ck z + Dk
(z2 − 2 Re a + |a|2)k

where  C j and D j are real numbers for j =1, 2, …, k.   This then implies that g j + h j , j =1 ,2,
…, J ,  is of the form 



                           ---------------  (C)C1 z + D1
(z2 + cz + d) + C2 z + D2

(z2 + cz + d)2 + £ + Ck z + Dk
(z2 + cz + d)k

where c, d, C n and D n ,  n =1, 2, …, k = L j , are real numbers.   By specializing to real
variable x this proves the theorem.


