Monotonicity and Continuity of Inverse Function

By Ng Tze Beng

The following is a subtle theorem. Essentially it means that the monotonicity of a function implies the continuity of its inverse function.

Theorem 1. If I is an interval and $f: I \rightarrow \mathbf{R}$ is (strictly) monotonic, then f^{-1} is continuous.
Proof. Assume that f is (strictly) increasing. [f is (strictly) monotonic implies that f is either (strictly) increasing or is (strictly) decreasing. If f is is (strictly) decreasing, then $-f$ is (strictly) increasing. We also have that $f^{-1}=(-f)^{-1} \circ(-\mathbf{1})$, where $-\mathbf{1}$ is multiplication by -1 . Therefore, since $-\mathbf{1}$ is a continuous function, if we can show that $(-f)^{-1}$ is continuous, then f^{-1}, being the composite of two continuous functions is continuous. So it suffices to prove the theorem when f is (strictly) increasing.]

Let $J=f(I)$, the range of f. Then J is the domain of the inverse function $f^{-1}: J \rightarrow I$ $\subseteq \mathbf{R}$. Take an element b in J. Then since f is strictly monotonic, f is also injective. Hence there exists an unique element a in I such that $f(a)=b$. We shall show that given any $\varepsilon>0$, we can find a $\delta>0$ such that for all y in $J,|y-b|<\delta$ implies that $\left|f^{-1}(y)-f^{-1}(b)\right|<\varepsilon$. Suppose a is in the interior of I, i.e., there exist ξ and η, with $\xi<a<\eta$ and $[\xi, \eta] \subseteq I$. Then $(\xi, \eta) \cap(a-\varepsilon, a+\varepsilon)$ is an open interval containing a and contained in I. If need be, we can replace ξ by $\max (\xi, a-\varepsilon)$ and η by $\min (\eta, a+\varepsilon)$ and still call them ξ and η. That means we may assume that $(\xi, \eta) \subseteq(a-\varepsilon, a+\varepsilon) \cap I$. Then since f is (strictly) increasing,

$$
\begin{equation*}
f((\xi, \eta))=(f(\xi), f(\eta)) \cap J . \tag{1}
\end{equation*}
$$

This can be deduced in the following manner. For any x such that $\xi<x<\eta$, we have that $f(\xi)<f(x)<f(\eta)$ since f is (strictly) increasing and $\operatorname{so} f(x) \in(f(\xi), f(\eta)) \cap J$. Hence $f((\xi, \eta)) \subseteq(f(\xi), f(\eta)) \cap J$. Conversely, take any y in $(f(\xi), f(\eta)) \cap J$. That means there exists x in I such that $y=f(x)$ and $f(\xi)<f(x)<f(\eta)$. We shall show that x actually lies in (ξ, η). It is a simple matter to check that $f^{-1}: J \rightarrow I$ is also (strictly) increasing if f is. (Obviously $y_{1}<y_{2} \Rightarrow f^{-1}\left(y_{1}\right)<f^{-1}\left(y_{2}\right)$, otherwise if $f^{-1}\left(y_{1}\right) \geq f^{-1}\left(y_{2}\right)$, then $y_{1}=f\left(f^{-1}\right.$ $\left.\left(y_{1}\right)\right) \geq f\left(f^{-1}\left(y_{2}\right)\right)=y_{2}$, contradicting $y_{1}<y_{2}$.) Hence we can conclude that $f^{-1}(f(\xi))<f^{-1}$ $(f(x))<f^{-1}(f(\eta))$, that is, $\xi<x<\eta$, deduced from the fact that $f^{-1} \circ f$ is the identity function on I. Hence $y=f(x) \in f((\xi, \eta))$. That means $(f(\xi), f(\eta)) \cap J \subseteq f((\xi, \eta))$. This proves (1).

Now since $b=f(a) \in(f(\xi), f(\eta))$, and because $(f(\xi), f(\eta))$ is an open interval, we can find a $\delta>0$ such that $(b-\delta, b+\delta) \subseteq(f(\xi), f(\eta))$. Then for all y in J and y in $(b-\delta, b+$ δ), we have that y is in $(f(\xi), f(\eta)) \cap J=f((\xi, \eta))$ and so since f is injective, $f^{-1}(y) \in(\xi$, $\eta) \subseteq(a-\varepsilon, a+\varepsilon) \cap I$. This means whenever y is in J and $|y-b|<\delta$, we have $\left|f^{-1}(y)-f^{-1}(b)\right|<\varepsilon$. Hence, f^{-1} is continuous at b.

We now consider the case when $a=f^{-1}(b)$ is an end point of I. Suppose a is the right hand end point of the interval I. Then as above we can find a $\xi<a$ with $[\xi, a] \subseteq I \cap(a-\varepsilon, a$ $+\varepsilon$). We now choose $\delta>0$ such that $\delta<f(a)-f(\xi)=b-f(\xi)>0$. Then for all y in J with $f(\xi)<b-\delta<y<b+\delta$ we have that $f(\xi)<y \leq b$ because f^{-1} is increasing. This is easily deduced for if $y>b$, then $f^{-1}(y)>f^{-1}(b)=a$ contradicting that $f^{-1}(y) \leq a$, the right hand
end point of the interval I. Hence, applying f^{-1} we obtained $\xi=f^{-1}(f(\xi))<f^{-1}(y) \leq f^{-1}$ $(b)=a$. That is to say $f^{-1}(y) \in(\xi, a) \subseteq I \cap(a-\varepsilon, a+\varepsilon)$. In other words, for any y in J such that $|y-b|<\delta$ we have $\left|f^{-1}(y)-f^{-1}(b)\right|=\left|f^{-1}(y)-a\right|<\varepsilon$. This means f^{-1} is continuous at b. It can be similarly shown that f^{-1} is continuous at b if $a=f^{-1}(b)$ is the left hand end point of the interval I. This completes the proof.

The proof is a little longer than one using the characterization of continuity by sequences. It is chosen because we use only the definition of continuity in terms of ' ε and δ ' i.e., in terms of open sets and also because the definition of continuity applying to the image J which may not be an interval is emphasized.

This theorem then raises the question whether f is itself continuous. An important condition of the theorem is that the domain I be an interval. Now since $f: I \rightarrow \mathbf{R}$ is (strictly) monotonic, its inverse $f^{-1}: J \rightarrow I$ is also (strictly) monotonic. Does this mean that the inverse of f^{-1}, which is f is also continuous? Obviously, if J is an interval, then Theorem 1 applies to tell us that indeed f is also continuous. Hence we can phrase our result thus:

Theorem 2. Suppose I is an interval and $f: I \rightarrow \mathbf{R}$ is (strictly) monotonic. Then f is continuous if and only if the range of $f, J=f(I)$ is an interval.

Proof. I have already shown above that if $J=f(I)$ is an interval, then f is continuous. On the other hand, if f is continuous, then $J=f(I)$ is an interval. This is because if y_{1} and y_{2} are in J with $y_{1}<y_{2}$, then there exist c and d in I such that $f(c)=y_{1}$ and $f(d)=y_{2}$. Therefore, by the Intermediate Value Theorem, for any y between y_{1} and y_{2}, there can be found an element k between c and d such that $f(k)=y$, i.e. y is also in J. This means J is an interval. This completes the proof of this theorem.

