Monotonicity and Continuity of Inverse Function

By Ng Tze Beng

The following is a subtle theorem. Essentially it means that the monotonicity of a function implies the continuity of its inverse function.

Theorem 1. If I is an interval and $f: I \rightarrow \mathbf{R}$ is (strictly) monotonic, then f^{-1} is continuous.

Proof. Assume that f is (strictly) increasing. [f is (strictly) monotonic implies that f is either (strictly) increasing or is (strictly) decreasing. If f is is (strictly) decreasing, then -f is (strictly) increasing. We also have that $f^{-1} = (-f)^{-1} \circ (-1)$, where -1 is multiplication by -1. Therefore, since -1 is a continuous function, if we can show that $(-f)^{-1}$ is continuous, then f^{-1} , being the composite of two continuous functions is continuous. So it suffices to prove the theorem when f is (strictly) increasing.]

Let J = f(I), the range of f. Then J is the domain of the inverse function $f^{-1}: J \to I$ $\subset \mathbf{R}$. Take an element b in J. Then since f is strictly monotonic, f is also injective. Hence there exists an unique element a in I such that f(a) = b. We shall show that given any $\varepsilon > 0$, we can find a $\delta > 0$ such that for all y in J, $|y - b| < \delta$ implies that $|f^{-1}(y) - f^{-1}(b)| < \varepsilon$. Suppose *a* is in the interior of *I*, i.e., there exist ξ and η , with $\xi < a < \eta$ and $[\xi, \eta] \subseteq I$. Then $(\xi, \eta) \cap (a - \varepsilon, a + \varepsilon)$ is an open interval containing a and contained in I. If need be, we can replace ξ by max(ξ , $a - \varepsilon$) and η by min(η , $a + \varepsilon$) and still call them ξ and η . That means we may assume that $(\xi, \eta) \subseteq (a - \varepsilon, a + \varepsilon) \cap I$. Then since f is (strictly) increasing, ----- (1) $f((\xi, \eta)) = (f(\xi), f(\eta)) \cap J.$ This can be deduced in the following manner. For any x such that $\xi < x < \eta$, we have that $f(\xi) < f(x) < f(\eta)$ since f is (strictly) increasing and so $f(x) \in (f(\xi), f(\eta)) \cap J$. Hence $f((\xi, \eta)) \subseteq (f(\xi), f(\eta)) \cap J$. Conversely, take any y in $(f(\xi), f(\eta)) \cap J$. That means there exists x in I such that y = f(x) and $f(\xi) < f(\eta)$. We shall show that x actually lies in (ξ, η) . It is a simple matter to check that $f^{-1}: J \to I$ is also (strictly) increasing if f is. (*Obviously* $y_1 < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y_2)$, otherwise if $f^{-1}(y_1) \ge f^{-1}(y_2)$, then $y_1 = f(f^{-1}(y_2))$ $(y_1) \ge f(f^{-1}(y_2)) = y_2$, contradicting $y_1 < y_2$.) Hence we can conclude that $f^{-1}(f(\xi)) < f^{-1}$ $(f(x)) < f^{-1}(f(\eta))$, that is, $\xi < x < \eta$, deduced from the fact that $f^{-1} \circ f$ is the identity function on *I*. Hence $y = f(x) \in f((\xi, \eta))$. That means $(f(\xi), f(\eta)) \cap J \subset f((\xi, \eta))$. This proves (1).

Now since $b = f(a) \in (f(\xi), f(\eta))$, and because $(f(\xi), f(\eta))$ is an open interval, we can find a $\delta > 0$ such that $(b - \delta, b + \delta) \subseteq (f(\xi), f(\eta))$. Then for all y in J and y in $(b - \delta, b + \delta)$, we have that y is in $(f(\xi), f(\eta)) \cap J = f((\xi, \eta))$ and so since f is injective, $f^{-1}(y) \in (\xi, \eta) \subseteq (a - \varepsilon, a + \varepsilon) \cap I$. This means whenever y is in J and $|y - b| < \delta$, we have $|f^{-1}(y) - f^{-1}(b)| < \varepsilon$. Hence, f^{-1} is continuous at b.

We now consider the case when $a = f^{-1}(b)$ is an end point of *I*. Suppose *a* is the right hand end point of the interval *I*. Then as above we can find a $\xi < a$ with $[\xi, a] \subseteq I \cap (a - \varepsilon, a + \varepsilon)$. We now choose $\delta > 0$ such that $\delta < f(a) - f(\xi) = b - f(\xi) > 0$. Then for all *y* in *J* with $f(\xi) < b - \delta < y < b + \delta$ we have that $f(\xi) < y \le b$ because f^{-1} is increasing. This is easily deduced for if y > b, then $f^{-1}(y) > f^{-1}(b) = a$ contradicting that $f^{-1}(y) \le a$, the right hand

©Ng Tze Beng

end point of the interval *I*. Hence, applying f^{-1} we obtained $\xi = f^{-1}(f(\xi)) < f^{-1}(y) \le f^{-1}(\xi)$ (b) = a. That is to say $f^{-1}(y) \in (\xi, a) \subseteq I \cap (a - \varepsilon, a + \varepsilon)$. In other words, for any y in J such that $|y - b| < \delta$ we have $|f^{-1}(y) - f^{-1}(b)| = |f^{-1}(y) - a| < \varepsilon$. This means f^{-1} is continuous at b. It can be similarly shown that f^{-1} is continuous at b if $a = f^{-1}(b)$ is the left hand end point of the interval I. This completes the proof.

The proof is a little longer than one using the characterization of continuity by sequences. It is chosen because we use only the definition of continuity in terms of ' ϵ and δ ' i.e., in terms of open sets and also because the definition of continuity applying to the image *J* which may not be an interval is emphasized.

This theorem then raises the question whether f is itself continuous. An important condition of the theorem is that the domain I be an interval. Now since $f: I \to \mathbf{R}$ is (strictly) monotonic, its inverse $f^{-1}: J \to I$ is also (strictly) monotonic. Does this mean that the inverse of f^{-1} , which is f is also continuous? Obviously, if J is an interval, then Theorem 1 applies to tell us that indeed f is also continuous. Hence we can phrase our result thus:

Theorem 2. Suppose I is an interval and $f: I \to \mathbf{R}$ is (strictly) monotonic. Then f is continuous if and only if the range of f, J=f(I) is an interval.

Proof. I have already shown above that if J = f(I) is an interval, then f is continuous. On the other hand, if f is continuous, then J = f(I) is an interval. This is because if y_1 and y_2 are in J with $y_1 < y_2$, then there exist c and d in I such that $f(c) = y_1$ and $f(d) = y_2$. Therefore, by the Intermediate Value Theorem, for any y between y_1 and y_2 , there can be found an element k between c and d such that f(k) = y, i.e. y is also in J. This means J is an interval. This completes the proof of this theorem.