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Have you ever wonder about just how 'nice' is monotone function?  The following fact

about monotone function is not usually revealed in a first course on calculus.  Firstly, we say

what we meant by a monotone function.

Definition 1.   Let  f : [a, b] → R be a real valued function defined on the closed and

bounded interval [a, b] with a < b.   We say f  is a monotone function if it is either

increasing or decreasing, that is, either for all x and y such that a ≤ x < y ≤ b,   f (x) ≤  f

(y) (increasing) or  for all x and y such that a ≤ x < y ≤ b,   f (x) ≥  f (y) (decreasing).

Throughout we shall assume that [a, b] is a non trivial interval with a < b.  Before we

embark on describing the points of discontinuity of  f , we shall see how the values of  the

differences of  the  left and right limits of  f at a finite set of points in [a, b] can sum up to.

Note that if  f  is continuous, then this sum is always zero.  This will in some sense detect

some discontinuity of the function  f .   If  f  is a monotone function, then the difference of the

left and right limits at a point x  being zero is equivalent to the function being continuous at

the point x.  Why?  Why do the left and right limits at x exist?  An explanation is in order.

Notice that if  f  is increasing, then for a fixed x in (a, b), for all y in [a, b] such that y

< x,  f (y) ≤  f (x).  Therefore, the set { f (y) :  y in [a, b] and  y < x } is bounded above

by  f (x).  Hence by the completeness property of R, sup{ f (y) :  y in [a, b] and  y < x }

exists and is less than or equal to f (x).  We claim this is the left limit of  f  at  x.

Denote sup{ f (y) :  y in [a, b] and  y < x } by L.  Then for any ε > 0,  L − ε < L .

Therefore, by the definition of supremum, there exists a  y0 in { f (y) :  y in [a, b] and  

y < x } such that L − ε <  y0 ≤ L.  Therefore, there exists a x0 in [a, b] such that x0 < x ,   

f (x0) = y0.   Let now δ =  x − x0 > 0.   Then for all z in [a, b] such that x − δ < z < x ,

i.e., x0 < z < x , we have y0 = f (x0) ≤  f (z) ≤  f (x).   Since f (z) ∈ { f (y) :  y in [a, b] and

 y < x },  f (z) ≤ sup{ f (y) :  y in [a, b] and  y < x } = L.   Therefore, we have L − ε < y0

≤  f (z) ≤ L.  Thus | f (z) − L | = L −  f (z) < ε.  We have finally shown that for any ε >

0, there exists a δ > 0 such that for any z in [a, b] with x − δ < z < x, | f (z) − L |  < ε.

This means that the left limit of  f at x is L ≤ f (x).  Similarly, we can show that the

right limit of  f at x  is the infimum of { f (y) :  y in [a, b] and  y > x }and is greater

than or equal to f (x).  Thus, for any x in (a, b),  .  Now
y d x−lim f (y) [ f (x) [

y d x+
lim f (y)

the limit of  f  at x exists, if and only if, the left and right limits at x exist and are the

same. Therefore, if the limit of  f  at x exists, it must be equal to f (x) and so  f  must be

continuous at x.   Hence the only possible way for  f  to be discontinuous at x is for the

left and right limits at x to be different, that is by definition a jump discontinuity.  If  x

= b, the same argument as above for the left limit shows that sup{ f (y) :  y in [a, b]

and  y < b }=   and if x = a we shall have inf{ f (y) :  y in [a, b] and  y
y d b−
lim f (y) [ f (b)

> a }=     A jump at the point x in (a, b) is defined to be  
y d a+
lim f (y) m f (a).

, at  a, it is  and at b, it is   
y d x+
lim f (y) −

y d x−lim f (y)
y d a+
lim f (y) − f (a) f (b) −

y d b−
lim f (y).

Therefore, the only possible kind of discontinuity at the end points is also a jump

discontinuity, that is, when the jump is not zero.  In particular when the jump is zero
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at x, the function must be continuous at x.  By definition, when the function is

continuous at x, the jump must be zero.  This is the case for increasing function.

When  f  is decreasing, we shall have the same conclusion by a similar argument.

Thus, if  f  is a  monotone function then this sum does detect the discontinuity of the function  

f  at these points and to some extent can tell us something about the points of discontinuity of  

f.   

Theorem 2.  Suppose  f : [a, b] → R is an increasing function. Let  x0 = a < x1 < x2 <

… < xn = b be a partition of [a, b].  (See Page 121 of Calculus, an Introduction.)    

Then the following sum

 [ f (a+) −  f (a )] + [ f (x1
+) − f (x1

− )] + … + [ f (xn − 1
+) − f (xn − 1

− )] +  [ f (b) − f (b − )] 

≤  f (b)−  f (a) , where  .f (x+) =
k dx+
lim f (k)and f (x−) =

k dx−
lim f (k)

Proof.  Note that the function f  is bounded.  The idea of proof is very simple.  Take a

point  yi   in each of the open interval ( xi − 1 , xi ) for i = 1,  …, n.   Then the sum of the

differences of the values of  f  at these points would add up to f (b) −  f (a ).  Notice by

the completeness property of R, the left and right limits at the xi 's exist. (See the

above explanation.)  Note that for i = 1,  …, n−1,   xi − 1 < yi  <  xi <  yi + 1 <  xi + 1 and so

since f  is increasing   f (xi − 1
+ )≤ f ( yi ) ≤  f (xi 

−) ≤  f (xi 
+) ≤  f (  yi + 1 ).  Note also that 

f ( yn ) ≤  f (xn 
−) = f (b − ).

Thus, for i = 1,  …, n−1,

                f (xi
+) − f (xi

− ) ≤  f (  yi + 1 ) -   f ( yi ) .

Then 

[ f (a+) −  f (a )] +  [ f (x1
+) − f (x1

− )] + … + [ f (xn − 1
+) − f (xn − 1

− )] +  [ f (b) − f (b − )]     

  ≤  [ f (x0
+) −  f (a )] + [ f (y2) − f (y1 )] +…+ [ f (y n) − f (y n −1 )] + [ f (b) − f (x n

 − )]

≤    [ f (y1) −  f (a )] + [ f (y2) − f (y1 )] +…+ [ f (y n) − f (y n −1 )] + [ f (b) − f (y n )]

=   f (b) −  f (a).

This theorem also says that if  f : [a, b] → R is an increasing function, then the

discontinuity of  f  can only be jump discontinuity not exceeding  f (b) −  f (a).  We shall use

the above theorem to determine the size of the set of the points of discontinuity of  f .

Theorem 3.  Suppose  f : [a, b] → R is a monotone function.  Then the set of

discontinuity of  f  is countable.

Proof.   Assume  that  f is increasing.  As remark above any point of discontinuity of  f

 is also a jump discontinuity.    So we look at the points in (a, b), where the jump of

discontinuity exceeds 1/n for some natural number n.  This is the set 

         Disn ={ x ∈ (a, b) :  f (x+) − f (x− ) > 1/n }.

How large can this set be?  Strange enough, Theorem 2 can tell us something.  Take k

points in this set, then for each point x the jump f (x+) − f (x− ) > 1/n.  Thus by theorem

2, summing over these k points would give us a sum less than or equal to  f (b) −  f (a).

 That means  f (b) −  f (a) ≥ k/n .  Consequently  k ≤  n(f (b) −  f (a)).   Hence the

number of points in Disn cannot exceed n( f (b) −  f (a)) and so is finite.  Now the set

of discontinuity of  f  is  D = ∪ {Dis n :n =1,…,∞), that is the union of all the Dis n.

Since each Dis n is finite and so D being a countable union of finite set is countable. (

This is a result in set theory.)  Hence the set of discontinuity of  f  is countable.  If  the
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function  f  is decreasing, then − f  is increasing.  Because the sets of discontinuity of  f

and  − f are the same,  the above argument applies to give that the set of discontinuity

of − f  is countable and so  the set of discontinuity of  f  is countable.  This completes

the proof of this theorem.

Corollary 4.   Suppose  f : [a, b] → R is a monotone function.  Then f  is Riemann

integrable.

Proof.   We shall give a non standard proof without using the definition of the

Riemann integral.  The function  f  is obviously bounded since its range lies between  f

(a) and  f (b).   By Theorem 3,  f  is continuous except perhaps on a countable set.

Since any countable set has Lebesgue measure zero,  f  is bounded and continuous

almost every where on [a, b] and so  f  is Riemann integrable by Lebesgue's Theorem.

Defiinition 5.   Let  f : [a, b] → R  be a real valued function.  Suppose

∆ : x0 = a < x1 < x2 < … < xn = b   is a partition of  [a, b].  Define ∆ f j  for j = 1,…, n

by  ∆ f j  = f (xj ) − f (xj - 1 ).  The function  f  is said to be of bounded variation if there

exists a real number K > 0 such that  ∑  n
j  = 1  |∆ f j | ≤ K for any partition ∆ οf [a, b].

 Denote the set of functions on [a, b] of bounded variation by  BV(a, b).

The following is an easy consequence of the definition.

Theorem 6.   If   f   is of bounded variation on [a, b], then  f  is bounded.

Proof.    Choose any y in (a,  b),  let  ∆ : x0 = a < x1 < x2 = b be a partition with x1 = y.

Then  since  f   is of bounded variation, there exists K > 0 such that  ∑ 2
j  = 1 |∆ f j |  ≤ K.

Therefore, | f (y )| − | f (a)| ≤  | f (y )−  f (a)| =  |∆ f 1 | ≤ ∑ 2
j  = 1  |∆ f j | ≤ K .   Hence | f (y

)|  ≤  | f (a)| + K.   This is obviously true for y = a and also true for y = b, since ∆ : a <

b is also a partition.  Therefore,   f  is bounded  by | f (a)| + K ).   

Theorem 7.    If   f   is monotone on [a, b], then  f   is of  bounded variation.

Proof.   Assume  f  is increasing.  Then  for any partition ∆ : x0 = a < x1 < x2 < … < xn   

 = b,   ∑ n
j  = 1  |∆ f j | = ∑ n

j  = 1  ∆ f j  =  f (b) − f (a) because ∆ f j ≥ 0.  Hence   f  is of

bounded variation.

Total  Variation

Definition 8.  Let   f : [a, b] → R  be a real valued function of bounded variation,

that is,  f  is in BV(a, b).  This means that there is a positive real number K  such that

for any partition ∆ : x0 = a < x1 < x2 < … < xn = b , ∑  n
j  = 1  |∆ f j | ≤ K .   Hence the set  

{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, b] } is bounded above and so by the

completeness property of R, sup{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, b] } exists.

This is called the total variation of  f  on  [a, b] and is denoted by V( f ; a, b).

Obviously, V( f ; a, b) ≥ 0  and V( f ; a, b) = V(− f ; a, b).
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Let c be in (a, b).   Then it is obvious by adding the end point b (the beginning point

a) that any partition for [a, c]  ( [c, b] ) can be extended to a partition for [a, b].  And so it is

trivial to conclude that if  f  is of bounded variation on [a, b], then it is also of bounded

variation on [a, c] and on [c, b].  We have then the following theorem.

Theorem 9.    Let   f : [a, b] → R  be a real valued function of bounded variation, that

is  f  is in BV(a, b).  Then for any c in (a, b),  V( f ; a, b) = V( f ; a, c) + V( f ; c, b).

.

Proof.   Take any partition ∆ 1 : x0 = a < x1 < x2 < … < xn = c  for  [a, c] and  any

partition  ∆ 2 : y0 = c < y1 < y2 < … < ym = b for [c, b].  Then the partition,

∆  : x0 = a < x1 < x2 < … < xn = c = y0 = c < y1 < y2 < … < ym = b ,

is a partition for [a, b] and so 

                 ∑  n
j  = 1  |f (xj ) − f (xj - 1 )| +  ∑  m

j  = 1  | f (yj ) − f (yj - 1 )| ≤ V(f ; a, b).

That means for any partition, ∆ 1 : x0 = a < x1 < x2 < … < xn = c, for [a, c], 

       ∑  n
j  = 1  |f (xj ) − f (xj - 1 )| ≤ V(f ; a, b) −  ∑  m

j  = 1  | f (yj ) − f (yj - 1 )|

and so V(f ; a, b) −  ∑  m
j  = 1  | f (yj ) − f (yj - 1 )| is an upper bound for the set 

{ ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, c] }.

Thus, V(f ; a, c) = sup{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, c] }

                           ≤ V(f ; a, b) −  ∑  m
j  = 1  | f (yj ) − f (yj - 1 )|. 

Hence, we have for any partition, ∆ 2 : y0 = c < y1 < y2 < … < ym = b for [c, b],

 ∑  m
j  = 1  | f (yj ) − f (yj - 1 )| ≤ V(f ; a, b) −  V(f ; a, c). 

That means V(f ; a, b) −  V(f ; a, c) is an upper bound for the set {∑  n
j  = 1  |∆ f j |: ∆ is a

partition of  [c, b] }.  It follows, by the definition of supremum, that 

V(f ; c, b) = sup{∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [c, b] }≤ V(f ; a, b) −  V(f ; a, c).

Therefore, V( f ; a, c) + V( f ; c, b) ≤ V( f ; a, b).

Now we start with a partition  ∆  : x0 = a < x1 < x2 < … < xn = b  for  [a, b].  Note that c

≠ x0,  xn because c ∈ (a, b) = (x0 , xn ).  If  for some k ≠ 0, n,  c =  xk, then  ∆ 1  : x0 = a <

x1 < x2 < … < xk = c  is a partition for [a, c] and ∆ 2 : xk = c < x k+1 < x2 < … < xn = b is a

partition for [c, b].   Therefore,

      ∑  n
j  = 1  |f (xj ) − f (xj - 1 )| = ∑  k

j  = 1  |f (xj ) − f (xj - 1 )| + ∑  n
j  = k + 1  |f (xj ) − f (xj - 1 )|

                                              ≤  V( f ; a, c) + V( f ; c, b) .

If  c ≠ xj , j = 1, …, n−1, then c must be in the interior of one of the subintervals

defined by the partition and so for some integer  k,  1≤ k ≤ n,  x k  − 1 < c < xk .  Then

 ∆ 1  : x0 = a < x1 < x2 < … < x k − 1 < c  is a partition for [a, c] and ∆ 2 : c < xk < x k+1 < x2

< … < xn = b is a partition for [c, b].  Thus, 

∑  n
j  = 1  |f (xj ) − f (xj - 1 )| 

            = ∑  k−1
j  = 1  |f (xj ) − f (xj - 1 )| + | f (xk ) − f (xk - 1 )| + ∑  n

j  = k + 1  |f (xj ) − f (xj - 1 )|

            ≤ (∑  k - 1
j  = 1  |f (xj ) − f (xj - 1 )| + | f (c ) − f (xk - 1 )| )                                                  

            + ( |f (xk ) − f (c )| + ∑  n
j  = k + 1  |f (xj ) − f (xj - 1 )|)  by the triangle inequality

            ≤ V( f ; a, c) + V( f ; c, b) .

In the above summation, if k =1, then ∑  k−1
j  = 1  |f (xj ) − f (xj - 1 )| is taken to be 0 and if

k = n , then ∑  n
j  = k + 1  |f (xj ) − f (xj - 1 )| is taken to be 0.

Hence we have shown that for any partition ∆ : x0 = a < x1 < x2 < … < xn = b  for [a, b],

 ∑  n
j  = 1  |f (xj ) − f (xj - 1 )| ≤ V( f ; a, c) + V( f ; c, b).   

Therefore, 

V( f ; a, b) = sup{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, b] }≤ V( f ; a, c) + V( f ; c, b).

It follows that V( f ; a, b) = V( f ; a, c) + V( f ; c, b).   This completes the proof.
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The total variation is a very useful information for a function with bounded variation.

We can even use it to define a function and with this function we can show that any function

of bounded variation is the difference of two monotone increasing functions.

Definition 10.  Let   f : [a, b] → R  be a real valued function of bounded variation,

that is  f  is in BV(a, b).  The variation of  f   is a function  V f : [a, b] → R defined by

V f (a) = 0,  and for x in (a, b],  

V f (x) = V( f ; a, x) = sup{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [a, x] }.

This is well defined since for any x in (a, b], f  is  also a function of bounded variation

on [a, x].

Theorem 11.  If  f  is in BV(a, b),  then V f : [a, b] → R  is an increasing function.

Proof.    Let a ≤ x <  y  ≤ b.  Then

V f ( y) = V( f ; a, y) = V( f ; a, x) + V( f ; x, y)  by Theorem 10

           = V f ( x) + V( f ; x, y) ≥ V f ( x) since  V( f ; x, y) ≥ 0.

Thus  V f  is increasing.

Theorem 12.   If  f  is in BV(a, b),  then V f  −  f   is an increasing function on [a, b].

Proof.  Let a ≤ x <  y  ≤ b.   Then

 (V f  −  f )(y) − (V f  −  f )(x) = V f ( y) − V f ( x) − ( f (y) −  f (x))

              =  V( f ; a, y) − V( f ; a, x)  − ( f (y) −  f (x))

              =  V( f ; x, y) −  ( f (y) −  f (x)), by Theorem 10,

 ≥ | f (y) −  f (x)| − ( f (y) −  f (x)), because x < y is a partition for [x, y] and 

                 V( f ; x, y) = sup{  ∑  n
j  = 1  |∆ f j |: ∆ is a partition of  [x, y] }≥| f (y) −  f (x)|,

            ≥ 0.

Therefore, (V f  −  f )(y) ≥ (V f  −  f )(x) and so V f  −  f   is increasing.

Theorem 13.  (A characterization of BV(a, b)) .  BV(a, b) consists entirely of

functions defined on [a, b], expressible as the difference of two monotone increasing

functions.

Proof.   If  f  and g are monotone increasing functions, then by Theorem 7,  f  and g

are in BV(a, b) and as a consequence of the triangle inequality f − g is also in BV(a,

b). 

Suppose now f  is in BV(a, b).   Then both V f   and  V f  −  f  are increasing functions.

Thus  f  =  V f  − ( V f  −  f ) is the difference of two monotone increasing functions.

Theorem 14.  If  f  is in BV(a, b), then  f  is Riemann integrable.

Proof.  By Theorem 13,  f  =  g − h where g and h are monotone increasing functions.

Since monotone increasing functions on [a, b] are integrable and  f  being the

difference of two Riemann integrable functions,  f  is Riemann integrable.  

Below we state a deeper form of the Fundamental Theorem of Calculus involving

only Riemann integrable function.
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Theorem 15 (Fundamental Theorem of Calcullus).  Let  f  be a Riemann integrable

function on [a, b].  Define  F: [a, b] → R  by F(x) = ¶a
x f (t) dt for x in [a, b].  Then

1.  F is in BV(a, b),

2.  F is continuous on [a, b].

3.  If  f  is continuous at  x in [a, b], then F  is differentiable at x and F'(x) = f (x). 

Proof.  Since  f  is Riemann integrable function on [a, b],  f  is bounded on [a, b].

Thus by the completeness property of R,  K = sup{| f (x)|  : x ∈ [a, b]} exists. Then −K

≤  f (x) ≤  K for all x in [a, b].  Take any partition ∆ : x0 = a < x1 < x2 < … < xn = b of

[a, b].  Then for all x in [x i-1 , xi ],  − K ≤   f (x) ≤ K .  Since  f  is Riemann integrable

on [x i-1 , xi ] for i = 1, …, n , by Theorem 2 or Corollary 3 of Riemann Integral and

Bounded Function, for i = 1, …, n, we have

  , that is, −¶
xi−1

xi

Kdt [ ¶
xi−1

xi

f (t)dt [ ¶
xi−1

xi

Kdt

.  ----------------------  (1)−K(x i − x i−1) [ ¶
xi−1

xi

f (t)dt [ K(x i − x i−1)

Thus, from (1) we have for i = 1, …, n,

.      ------------------------------------  (2)¶
xi−1

xi

f (t)dt [ K(x i − x i−1)

Now, for  i = 1, …, n,  

               |F(xi)− F(x i - 1)| = ≤ K (x i -  x i-1).¶
a

xi

f (t)dt − ¶
a

xi−1

f (t)dt = ¶
xi−1

xi

f (t)dt

Therefore,

�
i=1

n

F(x i) − F(x i−1) =�
i=1

n

¶
xi−1

xi

f (t)dt [ K�
i=1

n

(x i − x i−1) = K(b − a).

This is true for any partition ∆ of [a, b] and so F is of bounded variation and the total

variation by the completeness property of R exists and is finite.  That is F ∈ BV(a, b)

and V( F ; a, b) = sup{  ∑  n
j  = 1  |∆ F j |: ∆ is a partition of [a, b] } is finite.  This proves

part (1). We have actually proved that V( F ; a, b)≤ sup{| f (x)|  : x ∈ [a, b]}(b − a).

For part (2).  We shall show that F is uniformly continuous and hence continuous.

For any  x < y such that a ≤ x ≤ y ≤ b we have that  −K ≤  f (t) ≤  K for all t in [x ,  y ].

Hence   and so ≤ K( y − x) = K| y − x|.  This−K(y − x) [ ¶
x

y
f (t)dt [ K(y − x) ¶

x

y
f (t)dt

is also true for  a ≤ y < x ≤ b because then  = ≤ K( x − y) = K| x −¶
x

y
f (t)dt ¶

y

x
f (t)dt

y|.   Therefore, for any x, y in [a, b],

| F(x)− F(y)| = ≤ K| x − y|.¶
a

x
f (t)dt − ¶

a

y
f (t)dt = ¶

y

x
f (t)dt

Thus for any ε > 0 , take δ to be any real number greater than zero if K = 0, otherwise

take any 0 <  δ < ε/K.  We have then for all  x, y in [a, b],

 | x − y|< δ implies that  | F(x)− F(y)| ≤ K| x − y| < K ε/K = ε.  
Therefore, F is continuous on [a, b],

Part (3) is proved in Calculus, An Introduction, page 137.

This completes the proof.
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