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This article discusses a technique to define measure from two given measures, similar in 

principle to defining product topology from given topologies.   Once we have defined the 

product measure of two measure spaces, we can then consider measurable and integrable 

function over a product measure space.  Fubini’s Theorem then realizes the integral of a 

measurable function, defined on a product measure space, as an iterated integral over the 

given measure spaces.   

 

We need some results concerning the uniqueness of given measure on a -algebra to show 

that the product measure so defined is unique. 

 

Uniqueness of Measure.    

We assume the familiarity of the notion of the constituent of a measure space, namely, that of 

a -algebra as introduced in my article, Introduction To Measure Theory. 

Definition 1. 

Suppose X is a non-empty set.    A collection, C ,  of subsets of X is called a d-system or a 

Dynkin class on X if it satisfies the following three conditions. 

(i)  X  C  , 

(ii)  if  A, B  C   and A   B, then  A − B  C   and 

(iii) if  nA is an increasing sequence of sets in C , i.e., for n ≥ 1, 1n nA A + , then 
1

n
n

A


=

 C  .  

A collection, S   of subsets of X is called a -system, if it is closed under the formation of 

finite intersection. 

If X is a set and M   is a -algebra on X, then certainly M   is a d-system and also a -system. 

It is easily shown that if   and  are finite (positive) measures on M    and that ( ) ( )X X = , 

then the collection, S   of all set A in M    such that ( ) ( )A A = , is a d-system.  

Our first result paving the way towards the uniqueness of measure is the following theorem. 

Theorem 2.  Suppose X is a non-empty set.  LetC   be a -system on X.  Then the -algebra 

generated by C    coincides with the d-system generated by C  . 
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Proof. 

It is easily seen that the intersection of non-empty d-systems is a d-system.  Therefore, the 

intersections of all d-systems containing C    is the d-system generated by C  .   Let D  denote 

this d-system. Let (C ) be the -algebra generated by C   .  Since (C ) is also a d-system, it 

must contain D  .  We claim that D  is a -system on X, i.e., D  is closed under the formation 

of finite intersection. 

Note that X, Ø  D  .  Now let D 1 = {A  D  :  A C   D   for all C in C  .}.   Since C     

D , X  D 1.  If A, B  D 1 and A  B, then for any C in C  , ( )A B C A C B C−  =  −    

D   because A C  and B C are in D  and D  is a d-system.  Hence, A − B  D 1.  If   
1n n

A


=
 

is an increasing sequence in D 1, then for any C in C  , ( )
1 1

n n
n n

A C A C
 

= =

 
 =  

 
  D   

because D , is a d-system, each nA C  is in D  and  
1n n

A C


=
  is an increasing sequence.  

Thus, D 1 is closed under the formation of proper difference and the union of increasing 

sequence of sets in D 1 and so D 1 is a d-system.  Since C    is closed under the formation of 

finite intersection and C      D ,  C      D 1. Note that by definition, D 1  D . It follows that 

D 1 = D  .  Let D 2 = {B  D  :  B A   D   for all A in D  }.   As D  = D 1 , for any A in D   

and for all C in C  , C A   D  .  Hence, C    D 2 .  It is easy to show that D 2 is also a d-

system.  Moreover, by definition D 2  D .  As D  is the smallest d-system containing C  ,  D  

= D 2 .   Hence, D  is closed under the formation of finite intersection and so D  is a -system 

on X.   Now X  D   so that D   is closed under the formation of complement.  Hence, D   is 

an algebra and since it is closed under the formation of union of increasing sequence of sets 

in D , D   is a -algebra containing C   .  Thus, D    (C   ).  As (C   ) is also a d-system 

containing C  ,  D   = (C   ).   

Corollary 3.  Suppose (X, M  ) is a measure space and C   is a -system on X such that M  = 

(C   ).   If  and  are finite positive measures on M   satisfying ( ) ( )X X = and that 

( ) ( )C C =  for all C C  , then  =  . 

Proof.  Let D   = {A  M  :  ( ) ( )A A = }.  Then plainly, D      M  , X   D   and C     D  .  

For  A, B   D  , B A implies that ( ) ( ) ( ) ( ) ( ) ( )A B A B A B A B     − = − = − = − and so A 

− B  D  .  Thus, D  is closed under the formation of proper difference.  If  
1n n

A


=
 is an 

increasing sequence in D , then by the continuity from below property of positive measure, 

                 
1 1

lim ( ) lim ( )n n n n
n nn n

A A A A   
 

→ →= =

   
= = =   

   
. 
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Hence, 
1

n
n

A


=

  D  .  Thus, D   is closed under the formation of the union of increasing 

sequence of sets in D  .  Hence, D   is a d-system containing C  .  Since M  = (C   ),  by 

Theorem 2, D    (C   ). It follows that D   = M. and so ( ) ( )A A = for all A in  M  . 

 

Corollary 4.  Suppose (X, M  ) is a measure space and C   is a -system on X such that M  = 

(C   ).  If   and   are positive measures on M   that agree on C   and if there exists an 

increasing sequence of sets  nC in C   such that 
1

n
n

X C


=

=  and ( ) ( )n nC C =   , for all 

positive integer n ≥ 1, then  =  . 

Proof. 

Let  nC be an increasing sequence of sets  nC in C   such that 
1

n
n

X C


=

=  and 

( ) ( )n nC C =   , for all positive integer n ≥ 1.  For each integer n ≥ 1, define for A in M ,  

( )( )n nA A C =   and ( )( )n nA A C =  .  Then for any C  C   , ( ) ( )n nC C =  for all 

integer n ≥ 1.  It is easily verified that for integer n ≥ 1, n  and n  are positive measures on  

M    that agree on C  .   Therefore, by Corollary 3,  n n =  for integer n ≥ 1. 

As 
1

n
n

X C


=

= , for A  M ,  

       ( )
1

( ) n
n

A A X A C  


=

  
=  =   

  
  

               ( ) ( )lim limn n
n n

A C A 
→ →

=  = ,  

                              by the continuity from below property of positive measure, 

               ( ) ( )lim limn n
n n

A A C 
→ →

= =    

               ( )
1 1

n n
n n

A C A C 
 

= =

    
=  =     

    
  

                ( ) ( )A X A =  = . 

Hence,  =   on M  . 
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Product Measure 

Given two measure spaces, say (X, M  ,  ) and (Y, N  ,  ), we can form the product measure 

space by specifying an appropriate -algebra of subsets of X Y  and define a positive 

measure on this -algebra. Note that M   is a -algebra of subsets of X and N   is a -algebra 

of subsets of Y. If A  M   and B  N   , we can form the Cartesian product A B , which is 

called a measurable rectangle.  

Let R   = { A B :  A  M   and B  N    } be the set of all measurable rectangles.  Note that if 

1 1A B  and 2 2A B  are measurable rectangles, then    

                        ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2A B A B A A B B   =      

is also a measurable rectangle, as 1 2A A   M   and 1 2B B   N  .  It follows that R   is 

closed under the formation of finite intersection and so R   is a -system.  Note that R   is not 

necessary a -algebra of subsets of X Y .  Let B   be the -algebra generated by the -

system R  , i.e., B   =  (R ).  This is called the product of the -algebras M   and N  .   We 

also denote it by M N  .   Observe that ( X Y , M N   ) is a measure space.  In due course, 

we shall define a positive measure on M N   , which we call the product measure.  

In the literature, it is often assumed that both (X, M  , ) and (Y, N  ,  ) are complete measure 

spaces, i.e.,  M   is  complete and N    is  complete.   This is to facilitate the application to 

Lebesgue measure on n  and product measure of  and n m
.  We shall take the general 

approach when measures need not be complete, derive the general Fubini’s Theorem and then 

proceed to rework the corresponding result, with the completion of the product measure, M 

N   ,  with respect to the positive measure defined on M N    .  In this respect, all measure 

spaces are assumed to be complete and some statements that hold when measures are not 

required to be complete, need to be modified.   

 

Sections in X Y   

We shall be discussing Fubini’s Theorem.  It is about when an integral of a function over a 

product space can be taken as an iterated integral.  The components, called sections of a 

subset of X Y naturally are the ingredients that we need to use.  We shall define this notion 

and some related ideas. 

Definition 5. 

Suppose X and Y are non-empty sets.  Suppose E is a non-empty subset of X Y .  For each x 

 X, the section,  : ( , )xE y Y x y E=    is a subset of Y and for each y Y, the section,  

 : ( , )yE x X x y E=    is a subset of X. 
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Suppose : , ,   or f X Y + →  is a function.   Then for each x  X, the section,

: , ,   or xf Y +→  is given by ( ) ( , )xf y f x y=  for y Y.  For each y  Y, the section,

: , ,   or yf X +→  is given by ( ) ( , )yf x f x y= for x X.   

 

Lemma 6.  Suppose (X, M  ) and (Y, N   ) are measure spaces.   

(a)  Suppose E X Y   and E  M N .   Then for any x  X, xE   N    and for any y Y, yE  

 M . 

(b)  Suppose : , ,   or f X Y + →  is M N    -measurable on X Y .  Then for any x  

X,  xf  is N  -measurable and for any y  Y,  yf  is  M -measurable. 

Proof. 

(a) Take any x  X .  Let F   be the collection of all subsets E of  X Y  such that xE   N    .  

Then F   contains all the measurable rectangles, i.e., F    R  .  This is because for any A  M   

and any B  N   ,  ( )xA B  is either B or the empty set Ø as ( )xA B B = if  x  A and 

( )xA B =  if x A .  Moreover, for any E X Y  , ( ) ( )
cc

xx
E E= .  We can deduce this as 

follows.  

         ( ) ( )( , ) ( , )
cc c

x xx
y E x y E x y E y E y E         .  

It follows that ( ) ( )
cc

xx
E E= .  For any countable collection,  nE , of subsets of X Y , 

               
1 1

( , ) ( , )n n k
n n

x

y E x y E x y E
 

= =

 
     
 

 for some integer k ≥ 1, 

                                    ( )k x
y E   for some integer k ≥ 1, 

                                    ( )
1

n x
n

y E


=

  . 

Therefore,  ( )
1 1

n n x
n n

x

E E
 

= =

 
= 

 
 . 

Thus, if E  F  , then xE   N    so that  ( ) ( )
cc

xx
E E=    N    .  This means F   is closed under 

the formation of complement.  Moreover, if  nE is a countable collection of sets in F  ,  then 

( )
1 1

n n x
n n

x

E E
 

= =

 
= 

 
 N    .   It follows that F   is closed under the formation of countable 
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union.  Hence, F   is a -algebra of subsets of  X Y .  Note that M N     is the smallest -

algebra generated by R  , i.e., M N     = ( R  ).  Hence, F    M N     .  Therefore, for any E 

 M N   , xE   N   .  We can prove similarly, that for any y Y and for any E  M N   , yE  

 M . 

(b)  Suppose : , ,   or f X Y + →  is a M N   -measurable function.   Then 

: , ,   or xf Y +→  is given by ( ) ( , )xf y f x y=  for y Y.   For any open set D in 

, ,   or + , 1( )f D−  is M N   -measurable, i.e., 1( )f D−  M N     .   Now 

 1( ) ( , ) : ( , )f D x y X Y f x y D− =     and so for a fixed y Y,  

           ( )     ( )
1

1( ) : ( , ) : ( ) ( )
y

y yf D x X f x y D x X f x D f D
−

− =   =   = . 

Thus, since 1( )f D−  M N     ,  ( )1( )
y

f D−  is  M  -measurable and so ( )
1

( )yf D
−

 is  M -    

measurable.  It follows that yf is  M -measurable for each y in Y.  Similarly, using the fact 

that ( )     ( )
11( ) : ( , ) : ( ) ( )x xx

f D y Y f x y D y Y f y D f D
−− =   =   = , we can show that for 

any x  X, xf is  N  -measurable. 

 

Proposition 7.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite measure spaces.  If E  M N  , 

then the function ( )xx E is  M  -measurable and the function ( )yy E is N  -

measurable.   

Proof. 

We shall prove that the function ( )xx E is M  -measurable.  

We shall consider the case when (Y) < ∞ and then extend the proof to the case when Y is -

finite. 

We now assume that (Y) < ∞ . 

Let F   be the collection of all subsets E of X Y in M N   , for which the function 

( )xx E is  M -measurable.  By Lemma 6 part (a), xE   N    and so ( )xE  is defined.  

Thus, ( )xx E is a non-negative function.   

If A  M   and B  N   ,   

                              ( )( ) ( ) ( )x AA B B x   = , 
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as ( )xA B B = if x  A and ( )xA B =  if x A .   Since ( )A x is M -measurable, the 

function ( )( ) ( ) ( )Ax
x A B B x   =  is M  -measurable.  It follows that A B F  .  Hence, 

X Y F   and R   F .  Suppose the subsets E and F are measurable rectangles in R  such 

that E F . Then  

     ( ) : ( , ) : ( , ) c

xF E y x y F E y x y F E− =  − =               

                      ( ) ( ): ( , ) : ( , )
cc c

x x x x xx
y x y F y x y E F E F E F E=    =  =  = −  . 

Note that x xE F  and so ( ) ( ) ( )( )x x xF E F E  − = − .  As  ( )xx E is M  -measurable 

and ( )xx F is also M  -measurable, it follows that ( ) ( ) ( )( )x x xx F E F E  − = − is M - 

measurable.  Thus, F – E F  . 

If  nE is an increasing sequence of sets in F  , then we claim that 
1

n
n

E


=

  F  .  

We note that ( )
1 1

n n x
n n

x

E E
 

= =

 
= 

 
 N    .  By the continuity from below property of measure, 

                     ( ) ( )( )
1 1

limn n nx xnn n
x

E E E  
 

→= =

    
= =    

    
. 

Since each ( )( )n x
x E  is M  -measurable and the limit of a sequence of measurable 

functions is also measurable, 
1

n
n

x

x E


=

  
  
  

is M  -measurable.  ( See Corollary 14 of 

Introduction To Measure Theory.)  Thus, 
1

n
n

E


=

  F  .  Hence, F   is closed under the 

formation of proper differences and the formation of unions of increasing sequences of sets.  

It follows that F  is a d-system.  Therefore, by Theorem 2, F    (R  ) = M N    .   But by 

definition, F    M N    and so F   = M N    .  It follows that ( )xx E is M  -measurable for 

all E in M N    . 

Now suppose  is -finite.  Therefore, there exists a sequence of disjoint sets in N ,  nD , 

such that 
1

n
n

D Y


=

= and that ( )nD   for each integer n ≥ 1.  For each integer n ≥ 1, define 

a finite measure, n  on N   ,  by  ( ) ( )n nB B D =   for B in N   .  Note that each n  is a 

positive measure on N   .  By what we have just proved, for each integer n ≥ 1, the function 

( )n xx E  is M  -measurable.  Since 
1

( ) ( )x n x

n

E E 


=

= , it follows that ( )xx E , being 

the limit of  M  -measurable functions, is M -measurable.  
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We can prove in a similar fashion that ( )yy E is N  -measurable.   

 

Theorem 8. Suppose (X, M  , ) and (Y, N  ,  ) are -finite measure spaces.  Then there is a 

unique positive measure on the -algebra M N    , denoted by   , such that   

               ( ) ( ) ( )A B A B     = , 

for any A  M   and B N   .  Furthermore, the measure under   of an arbitrary set E in M 

N     is given by  

                        ( )( ) ( ) ( ) ( )y

x
X Y

E E d x E d y      = =  . 

The measure   is called the product measure of  and  . 

Proof. 

The measurability of the functions, ( )xx E and ( )yy E is given by Proposition 7.  

Thus, we can now define two functions using these two functions as follows. 

We define ( )
1

   and ( )
2

  on M N     by 

                   ( ) ( )1
( ) ( )y

Y
E E d y    =    

and          ( ) ( )
2
( ) ( )x

X
E E d x    =    

for E  M N    .  Plainly, ( ) ( )
1 2
( ) ( ) 0.     =   =  We shall show next theses two 

functions are -additive on M N    . 

Suppose  nE is a sequence of pairwise disjoint sets in M N    .  Take a fixed y in Y.  Then  

( ) y

nE  is also a sequence of pairwise disjoint sets in M   , as each ( )
y

nE is in  M   and 

members of ( ) y

nE are pairwise disjoint.   We note that for i j  , i jE E =  and so as 

( )  : ( , )
y

i iE x x y E=   and ( )  : ( , )
y

j jE x x y E=  , we deduce that ( ) ( )
yy

i jE E = .   

Moreover, ( )
1 1

y
y

n n
n n

E E
 

= =

 
= 

 
.   Since  is a positive measure and so is -additive on M  ,  
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( ) ( )( )
1 1 1

y
y y

n n n
n n n

E E E  
 

= = =

    
= =         

 .  Hence, if we let 
1

n
n

E E


=

= , then

( ) ( )1
( ) ( )y

Y
E E d y    =  .    As each ( )( )y

ny E  is a non-negative N  -measurable 

function, by Bepo Levi’s Theorem or a use of the Monotone Convergence Theorem, 

               ( ) ( )( ) ( )
1 1

1 1

( ) ( ) ( )
y

n n
Y

n n

E E d y E     
 

= =

 = =   . 

Therefore, ( )
1

   is a -additive function on M N     and so is a positive measure.   

Observe that for A  M   and B N  , ( )
 ,  ,

.
 ,  

y A y B
A B

y B


 = 

 
   Hence,                   

                               ( )( ) ( ) ( )y

BA B A y   =  . 

It follows that  ( ) ( )( )1
( ) ( ) ( ) ( ) ( ) ( ) ( )

y

B
Y Y

A B A B d y A y d y A B          =  = =  . 

We can prove similarly that ( )
2

  is -additive on M N    and so is a positive measure that 

satisfies the conclusion of the theorem. 

Note that the set of measurable rectangles R  in M N     is a -system and M N     = (R  ) .  

Since (X, M  , ) and (Y, N  ,  ) are -finite measure spaces, we can write X Y  as a 

countable union of measurable rectangles on which ( )
1

   and ( )
2

  agree.  Therefore, 

by Corollary 4, ( ) ( )
1 2

    =   on M N  . 

 

Non-negative Measurable Function 

 

Theorem 9.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite measure spaces.  Suppose 

: [0, ]f X Y + →  =   is a M N   -measurable function.  Then 

(a) the function ( ) ( )x
Y

x f y d y  is M  -measurable and the function ( ) ( )y

X
y f x d x  

is N  -measurable  and  f  satisfies  

(b)  ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )y

x
X Y Y X X Y

f d f x d x d y f y d y d x     


 = =     . 

Proof.    
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By Lemma 6, part (b),  
xf  is N -measurable and yf  is M -measurable.  Hence, 

( ) ( )x
Y

f y d y  is defined for each x in X and ( ) ( )y

X
f x d x is defined for each y in Y.   Note 

that the integral may take the value +∞ .  

Suppose E X Y   is in M N     and  f  is the characteristic function of E, i.e., Ef =  . 

Then ( )( ) ( ) ( , ) ( )
xx E E Ex

f y y x y y  = = =  for all y in Y and this shows that 
xx Ef = .  

Similarly, we can show that  y

y

E
f = .  It follows that 

( ) ( ) ( ) ( ) ( )
xx E x

Y Y
f y d y y d y E   = =  .  Therefore,  

( ) ( ) ( )x x
Y

x f y d y E =  is M -measurable by Proposition 7.  Similarly, we can show that  

( ) ( )y

X
y f x d x  is N  -measurable.  Moreover, 

       ( ) ( ) ( )( ) ( ) ( )E x
X Y X Y X

f d d E E d x        
 

 =  =  =    by Theorem 8 

                               ( )( ) ( ) ( )x
X Y

f y d y d x =   .   

Also, we have, ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )y y

X Y Y Y X
f d E E d y f x d x d y       


 =  = =    . 

This proves Theorem 9 when f is a characteristic function.   

 

Suppose f is a simple function, i.e., 
1

i

n

i E

i

f a 
=

= , where iE  M N     and 0ia   for 1 i  n.  

Then ( )
1

i

n

x i E
x

i

f a 
=

= and ( )
1

i

n y
y

i E

i

f a 
=

= .  Thus, 

                   ( )
1

( ) ( ) ( ) ( )
i

n

x i E
Y Y x

i

f y d y a y d y  
=

=     

and since ( ) ( ) ( )
iE

Y x
x y d y   is M  -measurable for 1 i  n,  ( ) ( )x

Y
x f y d y is M  -

measurable. Moreover, 

                ( ) ( )
1

i

n

i E
X Y X Y

i

f d a d    
 

=

 =     

               ( ) ( )( )
1 1

( ) ( ) ( )
i i

n n

i E i E
X Y X Y x

i i

a d a y d y d x     


= =

=  =      
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               ( ) ( )
1 1

( ) ( ) ( ) ( ) ( ) ( )
i i

n n

i E i E
X Y X Yx x

i i

a y d y d x a y d y d x     
= =

   
= =   

   
       

               ( )( ) ( ) ( )x
X Y

f y d y d x =   . 

In a similar fashion, we can show that  ( ) ( )y

X
y f x d x  is N  -measurable and that  

              ( ) ( )( ) ( ) ( )y

X Y Y X
f d f x d x d y   


 =   . 

Suppose now that  : [0, ]f X Y + →  =   is a M N   -measurable function.  Then by 

Theorem 16 of Introduction To Measure Theory, there exists an increasing sequence of non-

negative measurable simple functions,  nf  converging pointwise to f.   Note that if nf  are 

simple functions, then so are ( ) ( ) and 
y

n nx
f f .    As  1n nf f +  for integer n ≥ 1,  

( ) ( )1n nx x
f f +  and ( ) ( )1

y y

n nf f +  for integer n ≥ 1.  Thus,  ( ) n x
f  and  ( ) y

nf  are 

increasing sequence of measurable functions.  We have thus, nf f  , ( )n xx
f f  and 

( )
y y

nf f  .   Therefore, by the Lebesgue Monotone Convergence Theorem, for each x in X,

( ) ( ) ( ) ( ) ( )n x
Y Yx

f y d y f y d y    and for each y in Y, ( ) ( ) ( ) ( ) ( )
y

y

n
X X

f x d x f x d x   .   

Now, by what have just proved, each function ( ) ( ) ( )n
Y x

x f y d y is M -measurable and 

( ) ( ) ( )
y

n
X

y f x d x is N  -measurable.  Thus, ( ): ( ) ( )n n
Y x

g x f y d y is an increasing 

sequence of M -measurable functions converging to  ( ) ( )x
Y

x f y d y .  Therefore, by the 

Lebesgue Monotone Convergence Theorem,  

           ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n x
X X Y X Yx

g x d x f y d y d x f y d y d x    =      . 

Similarly, ( ): ( ) ( )
y

n n
X

h y f x d x is an increasing sequence of N  -measurable functions 

converging to ( ) ( )
y

X
y f x d x  and 

         ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
y y

n n
Y Y X Y X

h y d y f x d x d y f x d x d y    =      .    

Since Part (b) is true for simple functions,     

( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
y

n n nxX Y Y X X Y X Y
f y d y d x f x d x d y f d f d       

 
= =       

 and so we have that  

            ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )y

x
X Y Y X X Y

f y d y d x f x d x d y f d     


= =      . 
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This completes the proof of Theorem 9. 

 

Fubini’s Theorem 

Theorem 10. Fubini’s Theorem.      

 Suppose (X, M  , ) and (Y, N  ,  ) are -finite measure spaces.  Suppose 

: [ , ]f X Y → −  =  is a M N   -measurable function and   -integrable.  Then 

(a) for -almost every x in X, the section xf   is -integrable and for -almost every y in Y, the 

section yf  is -integrable, 

(b) the functions,  and f fI J  defined by, 

                  
( ) ( ) ,  if   is -integrable,

( )
0,  otherwise

x x
Y

f

f y d y f
I x

 
= 


    

and           
( ) ( ) ,  if   is -integrable,

( )
0,  otherwise

y y

X
f

f x d x f
J y

 
= 


   

belong to L1 (X, M, , , ) and  L1 (Y, N, , , ) respectively and 

(b)  ( ) f f
X Y X Y

f d I d J d   


 = =    .   

 

Proof. 

Suppose : [ , ]f X Y → −  =    is a    integrable function.   Let   and f f+ −  be the 

positive and negative parts of  f . Then  f f f+ −= −  and   and f f+ −  are    integrable and 

of course M N   -measurable.  By Lemma 6 (b), xf  ,  ( )
x

f +  and ( )
x

f −  are N  -measurable 

and yf  , ( )
y

f +  and ( )
y

f −  are M  -measurable.   Note that ( ) ( )x x
f f

+ += , ( ) ( )x x
f f

− −= ,

( ) ( )
y

yf f
+

+=  and ( ) ( )
y

yf f
−

−=  for x in X and y in Y.   By Theorem 9 (a), the functions,  

( ) ( ) ( )
xY

x f y d y+

  and ( ) ( ) ( )
xY

x f y d y−

  are M  -measurable and 

( ) ( ) ( )
y

X
y f x d x+

  and ( ) ( ) ( )
y

X
y f x d x−

  are N  -measurable.   Moreover, by 

Theorem 9 (b),  

    ( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
y

xX Y Y X X Y
f d f x d x d y f y d y d x     + + +


 = =        and  
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  ( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
y

xX Y Y X X Y
f d f x d x d y f y d y d x     − − −


 = =       . 

It follows that the functions  ( ) ( ) ( )
xY

x f y d y+

  and ( ) ( ) ( )
xY

x f y d y−

 are -

integrable and ( ) ( ) ( )
y

X
y f x d x+

  and ( ) ( ) ( )
y

X
y f x d x−

  are -integrable. 

Hence, ( ) ( ) ( )
xY

f y d y+

  and ( ) ( ) ( )
xY

f y d y−

  are finite for  almost everywhere x,  

and ( ) ( ) ( )
y

X
f x d x+

 and ( ) ( ) ( )
y

X
f x d x−

 are finite for  almost everywhere y.   It 

follows that  ( ) ( ) ( ) ( )x x x x x
f f f f f

+ − + −= − = −  is -integrable for  almost everywhere x 

and that ( ) ( ) ( ) ( )
y y

y y yf f f f f
+ −

+ −= − = −  is -integrable for  almost everywhere y. 

Let N be the subset of X such that ( ) ( ) ( )
xY

f y d y+ =  or ( ) ( ) ( )
xY

f y d y− = .  Then N 

is M  -measurable, ( ) 0N = and for x N .  

               ( ) ( )( ) ( ) ( ) ( ) ( ) ( )x x xY Y Y
f y d y f y d y f y d y  + −= −    .   

Define  

        
( ) ( ) ,  if  ( ) ( ) ,  if   is -integrable,

( )
0,  if 0,  otherwise

x x x
Y Y

f

f y d y x X N f y d y f
I x

x N

    − 
= = 

  

   . 

Then for all x in X, ( )fI x  and ( )fI x  is M  -integrable and  

( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f x xX X N X N Y X N Y
I x d I x d f y d y d x f y d y d x     + −

− − −
= = −        

             ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
x xX Y X Y

f y d y d x f y d y d x   + −= −      

             ( ) ( )
X Y X Y

f d f d   + −

 
=  −   , by Theorem 9 part (b),  

               ( ) ( ) ( )
X Y X Y

f f d f d   + −

 
= −  =    .  

Therefore,  fI    L1 (X, M, , , ). 

Similarly, we can show that fJ   L1 (Y, N, , , ).  We elaborate this below. 

Let M be the subset of Y such that ( ) ( ) ( )
y

X
f x d x+ =    or ( ) ( ) ( )

y

X
f x d x− =  .  Then  

M is N  -measurable, ( ) 0M =  and for y M ,   
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                ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
y y

y

X X X
f x d x f x d x f x d x  + −= −     . 

Define  

         
( ) ( ) ,  if  ( ) ( ) ,  if   is -integrable,

( )
0,  if 0,  otherwise

y y y

X X
f

f x d x y Y M f x d x f
J y

y M

    − 
= = 

  

   . 

Then for all y in Y, ( )fJ y   and ( )fJ y is N  -integrable and               

( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
y y

f f
Y Y M Y M X Y M X

J y d J y d f x d x d y f x d x d y     + −

− − −
= = −        

             ( )( ) ( )( )( ) ( ) ( ) ( ) ( ) ( )
y y

Y X Y X
f x d x d y f x d x d y   + −= −      

             ( ) ( )
X Y X Y

f d f d   + −

 
=  −   , by Theorem 9 part (b),  

               ( ) ( ) ( )
X Y X Y

f f d f d   + −

 
= −  =    .  

Therefore,  fJ   L1 (Y, N, , , ). 

 

Completion of Product Measure 

Now we examine the case when all measures involved are to be complete.   We shall assume 

that (X, M  , ) is complete with respect to  and (Y, N  ,  ) is complete with respect to .   

We assume that they are -finite measure spaces.  Then ( X Y , M N    ,   )  is a measure 

space.  Now take M  #N     to be the completion of M N     with respect to the product measure 

  .  We extend the measure    to M  #N     in the usual way and denote the extended 

positive measure on the completion M  #N      by the same symbol,   . 

Lemma 11. Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  Let 

E X Y   be a subset in M  #N     , the   -completion of M N    . Then for -almost all x,  

xE   N    and for -almost all y, yE  M  .  

Proof. 

By Lemma 6 (a), if E X Y   and E  M N    .  Then for any x  X,  xE   N    and for any 

y Y, yE   M .   

Suppose now E  M  #N    .  Then there exist A, B  M N    such that  A E B   and 

( )( ) 0B A  − = .   
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Observe that if N M  #N    and ( ) 0N  = , then there exists C  M N    such that N C

and ( ) 0C  = . Then by Theorem 8, ( )( ) ( ) ( ) ( ) 0y

x
X Y

C C d x C d y      = = =  .   

Hence, for -almost all x, ( ) 0xC =  and for -almost all y,  ( ) 0yC = .  

Therefore, by the above deduction, for -almost all x, (( ) ) ( ) 0x x xB A B A − = − =  and for -

almost all y,  (( ) ) ( ) 0y y yB A B A − = − = .  Note that x x xA E B   and 
y y yA E B  .   

By Lemma 6 (a),  and x xA B  are N  -measurable and so for -almost all x, xE   N     because 

N   is -complete.  Similarly,  and y yA B  are M  -measurable and so for -almost all y, yE  

M    because M  is -complete.   

 

Thus, if E  M  #N    and A, B  M N     are such that A E B   and ( )( ) 0B A  − = , 

then there exists C   M  such that ( ) 0C =  and xE   N     for all x X C −  and there exists 

D  N  such that ( ) 0D =  and yE  M     for all y Y D − .  Moreover,  

( ) ( ) ( )A E B      =  =  , for all x X C − , ( ) ( ) ( )x x xA E B  = =  and for all 

y Y D − , ( ) ( ) ( )y y yA E B  = = .    

Note that  

         ( ) ( )E B    =    

                       ( ) ( ) ( ) ( )y

x
X Y

B d x B d y   = =   , by Theorem 8, 

                       ( ) ( ) ( ) ( )y

x
X C Y D

B d x B d y   
− −

= =   

                       ( ) ( ) ( ) ( )y

x
X C Y D

E d x E d y   
− −

= =  . 

By Proposition 7, ( )xx B  is a M  -measurable function.  As ( ) ( )x xE B = for all 

x X C − and (C) = 0,  *( )xx E  defines a M  -measurable function on X if we let  

*( )xE  to be the outer measure of xE  or 
( ) ( ),

*( )
0,

x x

x

E B x X C
E

x C

 


=  −
= 


 . 

Similarly, we deduce that *( )yy E defines a N  -measurable function on Y if we let  

*( )yE to be the outer measure of yE or  
( ) ( ),

*( )
0,

y y

y E B y Y D
E

y D

 


 =  −
= 


 . 

If  ( )E    , then 

*( ) ( ) *( ) ( ) *( ) ( ) *( ) ( ) ( )x x x x
X X C X C X

E d x E d x B d x B d x E         
− −

= = = =      . 
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Therefore,  *( )xx E  defines a  -integrable function on X.   In a similar manner we can 

show that,  *( )yy E  defines a  -integrable function on Y.    

We have thus proved the following. 

Lemma 12. Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  Let 

E X Y   be a subset in M  #N     , the   -completion of M N    .  Suppose ( )E    . 

Then *( )xx E  defines a  -integrable function on X and *( )yy E  defines a  -

integrable function on Y.  Furthermore, 

                       ( ) *( ) ( ) *( ) ( )y

x
X Y

E E d x E d y      = =  < ∞. 

Hence, for -almost all x, *( )xE   and for -almost all y, *( )yE   .  

Lemma 13.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  Let 

E X Y   be a subset in M  #N   .  Let E  be the characteristic function of E.  Let        

       
( , ),

*( , )
0,

E

E

x y x X C
x y

x C




 −
= 


  and 

( , ),
*( , )

0,

E

E

x y y Y D
x y

y D




 −
= 


 , where C and D 

are as given in the proof of Lemma 11, with ( ) 0C =  and ( ) 0D = .  Then 

   ( ) ( ) ( )( ) *( , ) ( ) ( ) **( , ) ( ) ( )E E E
X Y X Y Y X

E d x y d y d x x y d x d y          


 =  = =     . 

Proof.   

Recall that ( ) *( ) ( ) *( ) ( )y

x
X Y

E E d x E d y      = =  .  For -almost all x in X, i.e., for x 

in X – C,  *( ) ( ) ( , ) ( )x x E
Y

E E x y d y   = =  .  According to Lemma 12, *( )xx E  

defines a  -integrable function on X and so *( , ) ( )E
Y

x x y d y  is a  -integrable function 

on X.  Likewise, we can show that  **( , ) ( )E
X

y x y d x  is a  -integrable function on Y.  

Thus,  

  ( )( ) *( ) ( ) ( ) ( ) ( , ) ( ) ( )x x E
X X C X C Y

E E d x E d x x y d y d x        
− −

 = = =      

                ( )*( , ) ( ) ( )E
X Y

x y d y d x  =    and 

( )( ) *( ) ( ) ( ) ( ) ( , ) ( ) ( )y y

E
Y Y D Y D X

E E d y E d y x y d x dv y       
− −

 = = =      

                ( )**( , ) ( ) ( )E
Y X

x y d x d y  =   .  
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Corollary 14.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  Let 

E X Y   be a subset in M  #N    and ( )E     .  Let E  be the characteristic function of 

E.  Then       

( ) ( ) ( )( ) *( , ) ( ) ( ) **( , ) ( ) ( )E E E
X Y X Y Y X

E d x y d y d x x y d x d y          


 =  = =     , 

       
( , ),

*( , )
0,

E

E

x y x X C
x y

x C




 −
= 


  and 

( , ),
*( , )

0,

E

E

x y y Y D
x y

y D




 −
= 


 , where C and D  

satisfy  ( )xE  is defined and finite for all x X−C , ( )yE   is defined and finite for all  y in Y 

−D,  ( ) 0C =  and ( ) 0D = . 

Proof.  By Lemma 13, ( ) *( ) ( )x
X

E E d x    =  .   Therefore, for -almost all x in X ,  

*( )xE   and so for -almost all x in X ,  ( )xE   .  Likewise, we deduce that  for -

almost all y in Y ,  ( )yE  .  Corollary 14 then follows from Lemma 13. 

Remark.   

In view of the fact that xE  is  N  -measurable for  almost all x and yE is  M  -measurable for 

 almost all y,  we may replace the two functions, *( , ) and **( , )E Ex y x y   by the following 

simpler looking definitions,  
( , ), ( )

*( , )
0,otherwise

E x

E

x y E
x y

 


 
= 


  and 

( , ), ( )
**( , )

0,otherwise

y

E

E

x y E
x y

 


  
= 


 . 

 

Lemma 15.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.   

Suppose : [0, ]f X Y + →  =   is a non-negative, simple M  #N    -measurable function. 

Suppose f  is   -integrable.   Then  

the functions,  and f fI J  defined by, 

                  
( ) ( ) ,  if   is -integrable,

( )
0,  otherwise

x x
Y

f

f y d y f
I x

 
= 


    

and          
( ) ( ) ,  if   is -integrable,

( )
0,  otherwise

y y

X
f

f x d x f
J x

 
= 


   

belong to L1 (X, M, , , ) and  L1 (Y, N, , , ) respectively and 
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           ( ) f f
X Y X Y

f d I d J d   


 = =   . 

Proof.   

Suppose f is a non-negative simple M  #N   -measurable function, i.e., 
1

i

n

i E

i

f a 
=

= , where 
iE

 M  #N     , 0ia  and ( )iE    for 1 i  n.  Then ( )
1

i

n

x i E
x

i

f a 
=

= and 

( )
1

i

n y
y

i E

i

f a 
=

= .   

By Corollary 14, for each i, there exist iC X , iD Y  such that ( ) 0iC = , ( ) 0iD = ,    

( ) ( ) ( )( ) *( , ) ( ) ( ) **( , ) ( ) ( )
i i ii E E E

X Y X Y Y X
E d x y d y d x x y d x d y          


 =  = =     , 

        
( , ),

*( , )
0,

i

i

E i

E

i

x y x X C
x y

x C




 −
= 


  and 

( , ),
**( , )

0,

i

i

E i

E

i

x y y Y D
x y

y D




 −
= 


  , where   

( )( )i x
E  is defined and finite for all x X−Ci and ( )( )y

iE  is defined and finite for all 

yY−Di . 

Let 
1

n

i
i

C C
=

=  and 
1

n

i
i

D D
=

= .  Then, ( ) 0C =  and ( ) 0D = .   Now let 

                  
*( , ),

*( , )
0,

i

i

E

E

x y x X C
x y

x C




 −
= 


 and 

**( , ),
**( , )

0,

i

i

E

E

x y y Y D
x y

y D




 −
= 


 . 

Note that *( , ) ( )
iE

Y
x x y d y   is a -integrable function for 1 i  n and    

                        ( ) ( )*( , ) ( ) ( ) ( )
i iE E i

X Y X Y
d x y d y d x E       


 = =      . 

Thus, ( ) ( ) ( )
1 1

*( , ) ( ) ( )
i i

n n

i E i E
X Y X Y X Y

i i

f d a d a x y d y d x       
 

= =

 =  =       

            
1 1

*( , ) ( ) ( ) *( , ) ( ) ( )
i i

n n

i E i E
X Y X Y

i i

a x y d y d x a x y d y d x     
= =

    
= =     

    
      

             
1

*( , ) ( ) ( )
i

n

i E
X Y

i

a x y d y d x  
=

  
=   

  
  . 

Observe that for x  X – C, 
1 1

( ) *( , ) *( , )
i i

n n

x i E i E

i i

f y a x y a x y 
= =

= =  . 
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Now define for each x in X, 
1

( ) *( , ) ( )
i

n

f i E
Y

i

I x a x y d y 
=

 
=   

 
 . 

Similarly, we can deduce that for y  X – D, 
1 1

( ) **( , ) **( , )
i i

n n
y

i E i E

i i

f x a x y a x y 
= =

= =  and 

that  ( ) ( ) ( )
1 1

**( , ) ( ) ( )
i i

n n

i E i E
X Y X Y Y X

i i

f d a d a x y d x d y       
 

= =

 =  =       

                                   
1

**( , ) ( ) ( )
i

n

i E
Y X

i

a x y d x d y  
=

  
=   

  
   . 

Define for each y in Y, 
1

( ) **( , ) ( )
i

n

f i E
X

i

J y a x y d x 
=

 
=   

 
 . 

We then have, ( )( ) ( ) ( ) ( )f f
X Y X Y

I x d x J y d y f d   


= =     .  

Observe that 

( ) ( ), , ( ) ( ), when ( ) ( ) is defined and finite
( )

0, 0,  otherwise

x x x
Y Y Y

f

f y d y x X C f y d y f y d y
I x

x C

    − 
= = 

  

     

for  -almost all x and that 

( ) ( ), , ( ) ( ), when ( ) ( ) is defined and finite
( )

0, 0,  otherwise

y y y

X X X
f

f x d x y Y D f x d x f x d x
J y

y D

    − 
= = 

  

  

 for -almost all y . 

This completes the proof of Lemma 15. 

Remark.  We have shown that if : [0, ]f X Y + →  =   is a non-negative, simple M  #N   -

measurable function, then for -almost all x, xf  is N  -measurable,  for -almost all y, yf   is 

M  -measurable  and if  f  is   -integrable, then for -almost all x, xf  is -integrable and 

for -almost all y, yf is -integrable. 

Theorem 16.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  

Suppose : [0, ]f X Y + →  =   is a M  #N   -measurable and   -integrable function.  

Then 

(a) for -almost every x in X, the section xf   is -integrable and for -almost every y in Y, the 

section yf  is -integrable, 

(b)  ( ) ( ) ( ) ( ) ( )f f
X Y X Y

f d I x d x J y d y   


 = =   , 
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Where, 

    
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

x x
Y Y

f

f y d y f y d y
I x

 
= 


    

and
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

y y

X X
f

f x d x f x d x
J y

 
= 


   . 

Proof.   Since : [0, ]f X Y + →  =   is a   -integrable function, there exists an 

increasing sequence of M  #N   -measurable and   -integrable simple function  nf  such 

that nf  converges pointwise to  f. 

By Lemma 15, for each integer n, ( ) ( ) ( ) ( ) ( )
n nn f f

X Y X Y
f d I x d x J y d y   


 = =   , 

where  
( ) ( ) ( ) , ,

( )
0,

n

n nxY
f

n

f y d y x X C
I x

x C

    −
= 



  ,  

( ) ( ) ( ) , ,
( )

0,
n

y

n n
X

f

n

f x d x y Y D
J y

y D

    −
= 



  , ( ) 0nC =  and ( ) 0nD = . 

Since  nf is increasing, the sections, ( ) n x
f  and ( ) y

nf  are increasing sequences of 

functions.  By Lemma 15,  ( )( ) ( ) ( ) ( )
n nf f n

X Y X Y
I x d x J y d y f d   


= =      . 

Let 
1

n
n

C C


=

=  and 
1

n
n

D D


=

= .   

For a fixed x in X − C,  ( ) ( )1( ) ( )n nx x
f y f y+ for all y in Y and for each integer n ≥ 1.  

Moreover ( ) ( )n x
f y  is a -integrable function on Y for each integer n ≥ 1.   As ( )n xx

f f  , it 

follows by the Monotone Convergence Theorem that for each x in X − C,  

( ) ( ) ( )
nf x

Y
I x f y d y .   Let 

( )( ), , ( ) ( ) , ,
( )

0, 0,

n

n

f n xY
f

I x x X C f y d y x X C
I x

x C x C

 −    − 
= = 

  

  

Then, for -almost all x, ( ) ( )
n nf fI x I x=  and   

( ) ( ), ,
( )

0,
n

x
Y

f

f y d y x X C
I x

x C

  −




  . 

Moreover, for all x in X and for all integer n ≥ 1, 
1

( ) ( )
n nf fI x I x

+
 .   Since ( )

nf
I x  is -

integrable,  ( )
nf

I x  is also -integrable.  Therefore,  ( )
nf

I x  is an increasing sequence of 

integrable functions. Note that 
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          ( ) ( )( ) ( ) ( ) ( )
n nf f n

X X X Y X Y
I x d x I x d x f d f d     

 
= =        . 

Therefore, ( ) ( )
nn fg x I x= converges to a -integrable function g and 

                 ( ) ( ) ( ) ( ) ( ) ( )
nn f

X X X
g x d x I x d x g x d x  =   . 

But ( ) ( )( ) ( ) ( ) ( )
nn f n

X X X Y X Y
g x d x I x d x f d f d     

 
= =       and so 

( )( ) ( )
X X Y

g x d x f d  


=   .  Observe that 
( ) ( ), ,

( )
0,

x
Y

f y d y x X C
g x

x C

  −
= 



  .  Thus, 

( )( ) ( ) ( ) ( ) ( ) ( )x
X C Y X C X

f y d y d g x d x g x d x   
− −

= =      . It follows that for -almost all 

x, ( ) ( )x
Y

f y d y  . This means that for -almost all x, xf  is -integrable. 

This means that there exists a M-measurable set A  X , with (A) = 0 such that xf  is -

integrable for all x in X – A and  ( ) ( ) ( )n x
Y

g x f y d y .    Thus, we may take 

      
( ) ( ), when  is -integrable

( )  
0,  otherwise

x x
Y

f y d y f
g x

 
= 


  and we have 

                   ( ) ( ) ( ) ( ) ( )f
X Y X X

f d g x d x I x d x   


 = =   . 

Similarly, we can show that ( ) ( ) ( )
n

y

f
X

J y f x d x  and if we let  

                
( )( ), , ( ) ( ) , ,

( )
0, 0,

n

n

y

f n
X

f

J y y Y D f x d x y Y D
J y

y D y D

 −    − 
= = 

  

   

we see that  ( )
nf

J y is an increasing sequence of integrable functions such that 

( ) ( ), ,
( )

0,
n

y

X
f

f x d x y Y D
J y

y D

  −




   and ( ) ( )
nn fh y J y= converges to a -integrable 

function h.  Furthermore,  ( ) ( ) ( ) ( ) ( ) ( )
nn f

Y Y Y
h y d y J y d y h y d y  =    so that as  

( ) ( )( ) ( ) ( ) ( )
nn f n

Y Y X Y X Y
h y d y J y d y f d f d     

 
= =       , we have that  

( )( ) ( )
Y X Y

h y d y f d  


=     .  Thus, since 
( ) ( ), ,

( )
0,

y

X
f x d x y Y D

h y
x D

  −
= 



  ,  
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( )( ) ( ) ( ) ( ) ( ) ( ) ( )y

Y D X Y D Y
f x d x d y h y d y h y d y   

− −
= =     .  It follows that for -almost 

all y, yf  is -integrable.  Thus, we may take 

                       
( ) ( ), when  is -integrable

( )  
0,  otherwise

y y

X
f x d x f

h y
 

= 


  

and consequently,  ( ) ( ) ( ) ( ) ( )f
X Y Y Y

f d h y d y J y d y   


 = =   .  

Theorem 17.  Suppose (X, M  , ) and (Y, N  ,  ) are -finite complete measure spaces.  

Suppose  :f X Y →   is a M  #N   -measurable and   -integrable function.  Then 

(a) for -almost every x in X, the section xf   is -integrable and for -almost every y in Y, the 

section yf  is -integrable, 

(b)  ( ) ( ) ( ) ( ) ( )f f
X Y X Y

f d I x d x J y d y   


 = =   , 

Where, 

    
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

x x
Y Y

f

f y d y f y d y
I x

 
= 


    

and
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

y y

X X
f

f x d x f x d x
J y

 
= 


   . 

Proof. 

:f X Y →  is   -integrable if and only if both  and f f+ −  are   -integrable.  Note 

that both  and f f+ −  are M  #N   -measurable.  Moreover,  

                    ( ) ( ) ( )
X Y X Y X Y

f d f d f d     + −

  
 =  −    .  

By Theorem 16, for  almost everywhere x, ( ) ( )and x xf f
+ −

 are -integrable and for almost 

everywhere y, ( ) ( )and y yf f
+ −

are -integrable. It follows that for  almost every x, 

( ) ( ) ( ) ( )x x x x x
f f f f f

+ − + −= − = −  is -integrable and that for  almost everywhere y, 

( ) ( ) ( ) ( )
y y

y y yf f f f f
+ −

+ −= − = −  is -integrable. 

By Theorem 16,  

                        ( ) ( ) ( ) ( ) ( )
f fX Y X Y

f d I x d x J y d y   + +

+


 = =     
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and                  ( ) ( ) ( ) ( ) ( )
f fX Y X Y

f d I x d x J y d y   − −

−


 = =   . 

Therefore, 

( ) ( ) ( ) ( ) ( ) ( ) ( )
f fX Y X Y X Y X X

f d f d f d I x d x I x d x       + −

+ −

  
 =  −  = −      

                        ( )( ) ( ) ( )
f fX

I x I x d x+ −= − .   

Note that there exists subsets of X, A and B in M   with (A)=(B) = 0, such that  

 
( ) ( ) ( ) ,

( )
0,

xY
f

f y d y x X A
I x

x A


+

+    −
= 



 and 
( ) ( ) ( ) ,

( )
0,

xY
f

f y d y x X B
I x

x B


−

−    −
= 



   . 

Let C A B=   . Then ( ) ( ) 0C A B =  = .  Define 

                   

( ) ( )( ) ( ) , ( ) ( ) ( ) ( ),
( )

0, 0,

f f x xY Y
f

I x I x x X C f y d y f y d y x X C
I x

x C x C

 + −

+ −−    − −  − 
= = 

  

     

                                                               
( ) ( ),

0,

x
Y

f y d y x X C

x C

  −
= 



  . 

Then  ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f fX X X X
I x d x I x I x d x I x d x I x d x   + − + −= − = −      

                                  ( ) ( ) ( ) ( )
X Y X Y X Y

f d f d f d d x      + −

  
=  −  =      . 

Since ( ) 0,C =  
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

x x
Y Y

f

f y d y f y d y
I x

 
= 


    for  

almost everywhere x. 

Similarly,  

( ) ( ) ( ) ( ) ( ) ( ) ( )
f fX Y X Y X Y X X

f d f d f d J y d y J y d y       + −

+ −

  
 =  −  = −       

                         ( )( ) ( ) ( )
f fX

J y J y d y+ −= − . 

 By Theorem 16, there exist subsets of Y, E and F in N    with (E) = (F) = 0, such that  

( ) ( ) ( ) ,
( )

0,

y

X
f

f x d x y Y E
J y

y E


+

+    −
= 



  and 
( ) ( ) ( ) ,

( )
0,

y

X
f

f x d x y Y F
J y

y F


−

−    −
= 



 .   
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Define   

                          

( ) ( )( ) ( ) , ( ) ( ) ( ) ( ),
( )

0, 0,

y y

f f
X X

f

J y J y y Y D f x d x f x d x y Y D
J y

y D y D

 + −
+ −−    − −  − 

= = 
  

    

                                                                 
( ) ( ),

0,

y

X
f x d x y Y D

y D

  −
= 



 , 

where D E F=  .  Observe that ( ) 0D =  and  

              
( ) ( ), when ( ) ( ) is defined and finite

( )
0,  otherwise

y y

X X
f

f x d x f x d x
J y

 
= 


   . 

Then  

             ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f fY Y Y Y
J y d y J y J y d y J y d y J y d y   + − + −= − = −        

                                     ( ) ( ) ( ) ( )
X Y X Y X Y

f d f d f d d x      + −

  
=  −  =     .  

This completes the proof of Theorem 17. 


