Product Measure and Fubini’s Theorem

By Ng Tze Beng

This article discusses a technique to define measure from two given measures, similar in
principle to defining product topology from given topologies. Once we have defined the
product measure of two measure spaces, we can then consider measurable and integrable
function over a product measure space. Fubini’s Theorem then realizes the integral of a
measurable function, defined on a product measure space, as an iterated integral over the
given measure spaces.

We need some results concerning the uniqueness of given measure on a o-algebra to show
that the product measure so defined is unique.

Uniqueness of Measure.

We assume the familiarity of the notion of the constituent of a measure space, namely, that of
a o-algebra as introduced in my article, Introduction To Measure Theory.

Definition 1.

Suppose X is a non-empty set. A collection, -, of subsets of X is called a d-system or a
Dynkin class on X if it satisfies the following three conditions.

(i) Xe 7,

(i) if ABe “ andA> B,then A—B e ~ and

(iii) if {A,}is an increasing sequence of setsin ", i.e., forn>1, A c A, then UA e ~ .
n=1

A collection, .~ of subsets of X is called a z-system, if it is closed under the formation of

finite intersection.

If Xisasetand. 7 is a o-algebra on X, then certainly . / is a d-system and also a z-system.

It is easily shown that if # and vare finite (positive) measures on. 7 and that w(X)=v(X),
then the collection, .~/ of all set Aiin. / such that x(A)=v(A), is a d-system.

Our first result paving the way towards the uniqueness of measure is the following theorem.

Theorem 2. Suppose X is a non-empty set. Let ~ be a z-system on X. Then the o-algebra
generated by “~ coincides with the d-system generated by .



Proof.

It is easily seen that the intersection of non-empty d-systems is a d-system. Therefore, the
intersections of all d-systems containing ~ isthe d-system generated by . Let “ denote

this d-system. Let o ©) be the o-algebra generated by . Since o ) is also a d-system, it
must contain . We claim that 7 is a z=system on X, i.e., 7 is closed under the formation
of finite intersection.

Notethat X, @ e © . Nowlet ~1={Ae ~: AnC e = forallCin ~.}. Since v c
“,Xe 1 IfA,Be “1and Ao B, thenforany Cin v, (A-B)nC=ANC-BNC ¢

o0

“/ because ANC and B nCarein ©~ and ~ isad-system. Hence, A-B e 1. If {A}

is an increasing sequence in /1, then forany Cin ~, (@ A‘jmc = G(Aq NC) e &
n=1 n=1

because “/, is a d-system, each A, NC isin ©~ and {A1 mC}:’:l is an increasing sequence.
Thus, “ 1 is closed under the formation of proper difference and the union of increasing
sequence of setsin ~-1and so “1 is a d-system. Since ~ isclosed under the formation of
finite intersectionand © < 7, “ < “ 1. Note that by definition, 1 < 7. It follows that
1= . Let v2={Be ~: BnA € ~ forall Ain ~}. As =7, foranyAin &
andforallCin ©,CnA e 7. Hence, ¥ < /2. ltiseasy toshow that 7 is also a d-
system. Moreover, by definition ~ > < <. As 7 is the smallest d-system containing «,
= 7. Hence, 7~ is closed under the formation of finite intersection and so “~ is a 7-system
on X. Now X € “~ sothat ©  is closed under the formation of complement. Hence, © is
an algebra and since it is closed under the formation of union of increasing sequence of sets
in ~/, 7/ is a o-algebra containing ~. Thus, - 2> o( 7). As o( v ) is also a d-system
containing ', & =o( 7).

Corollary 3. Suppose (X, . #) is a measure space and ~ is a z-system on X such that. /=
o( 7). If pand vare finite positive measures on . 7 satisfying u(X) =v(X) and that

u(C)=v(C) forallC € v, then u=v.

Proof. Let © ={Ae.7: u(A)=v(A)}. Thenplainly, ~ < .7, X € ~ and © < * .
For A,B € ©,Bc Aimplies that u#(A—-B) = u(A)—u(B)=v(A)—v(B)=v(A—B)and so A
—~Be <. Thus, 7 is closed under the formation of proper difference. If {A,} " isan

increasing sequence in “, then by the continuity from below property of positive measure,

w(UA J=timauea) = timvea) v G A )



Hence, U A, € ©/. Thus, 7~ is closed under the formation of the union of increasing
n=1

sequence of sets in ~/. Hence, “ is a d-system containing . Since. 7= o( v ), by
Theorem 2, = o o 7). It follows that © =. 7 and so u(A) =v(A)forall Ain . 7.

Corollary 4. Suppose (X, . #) is a measure space and ~ is a z-system on X such that. /=
o( 7). If pand v are positive measures on . ~ that agree on ~ and if there exists an

increasing sequence of sets {Cn} in ~ such that X = G C, and u(C,)=v(C,) <o, forall
n=1
positive integer n > 1, then = v.

Proof.

Let {C,} be an increasing sequence of sets {C,_}in ~ such that X = GCH and

n=1

u(C.)=v(C,) <o, for all positive integer n > 1. For each integer n > 1, define for Ain. 7,
14, (A)=pu(ANC,) and v,(A)=v(ANC,). ThenforanyC e ~, x,(C)=v,(C) forall
integer n> 1. It is easily verified that for integer n> 1, g, and v, are positive measures on

.« thatagree on ~. Therefore, by Corollary 3, u, =v, forintegern> 1.

As X:GCn,forAe,//,
n=1

H(A) = u(AnX)= ﬂ(A“@lCnD

=limu(ANC,)=limy, (A),

nN—o0

by the continuity from below property of positive measure,

=limv, (A)=limv(ANC,)

nN—o0 n—

_ v(n@l(Aan)) S V(Am(n@lcnj]

=v(ANX)=v(A).

Hence, u=v on. .



Product Measure

Given two measure spaces, say (X, .7, w) and (Y, . /7, v), we can form the product measure
space by specifying an appropriate o-algebra of subsets of X xY and define a positive
measure on this o-algebra. Note that. / is a o-algebra of subsets of X and . / is a o-algebra
of subsetsof Y. If A e. 7 and B €. / , we can form the Cartesian product Ax B, which is
called a measurable rectangle.

Let » ={AxB: Ae.~7and B . / '} be the set of all measurable rectangles. Note that if
A xB, and A, xB, are measurable rectangles, then

(AxB)N (A xB,)=(ANA)x(BNB,)

is also a measurable rectangle,as A N A, €. 7 and B,nB, . /. It follows that .~ is

closed under the formation of finite intersection and so .~ is a z-system. Note that .-~ is not
necessary a o-algebra of subsets of X xY . Let .~ be the o-algebra generated by the -
system .7, i.e., .# = o(.»). This is called the product of the o-algebras. 7 and. /. We
also denote it by . 7*. /. Observe that (X xY ,.7*. /) is a measure space. In due course,
we shall define a positive measure on . /*. / , which we call the product measure.

In the literature, it is often assumed that both (X, . 7, &) and (Y, . 7, v) are complete measure
spaces, i.e., . 7 is ucomplete and . / is vcomplete. This is to facilitate the application to
Lebesgue measure on R" and product measure of R" and R™. We shall take the general
approach when measures need not be complete, derive the general Fubini’s Theorem and then
proceed to rework the corresponding result, with the completion of the product measure, . 7
*. /., with respect to the positive measure defined on. 7*. / ". In this respect, all measure
spaces are assumed to be complete and some statements that hold when measures are not
required to be complete, need to be modified.

Sections in X xY

We shall be discussing Fubini’s Theorem. It is about when an integral of a function over a
product space can be taken as an iterated integral. The components, called sections of a
subset of X xY naturally are the ingredients that we need to use. We shall define this notion
and some related ideas.

Definition 5.

Suppose X and Y are non-empty sets. Suppose E is a non-empty subset of X xY . For each x
e X, the section, E, ={yeY :(x,y) e E} isasubset of Y and for each ye Y, the section,

EY ={xe X :(x,y) e E} is asubset of X.



Suppose f : X xY aR,I@,R or C isa function. Then for each x € X, the section,
f:Y aR,Rf,I@ or Cisgivenby f (y)=f(x,y) forye Y. Foreachy €Y, the section,
fY:X >R,R*,R orC isgivenby f¥(x)= f(x,y)forxe X.

Lemma 6. Suppose (X,. ) and (Y, . / ) are measure spaces.

(a) Suppose Ec X xY andE €.+ /. Thenforanyx € X, E, €./ and foranyye Y, E’
e ..

(b) Suppose f:XxY aR,@,R or C is. . 1 -measurable on X xY . Then forany x e

X, f, is. /-measurable and foranyy e Y, f” is . /-measurable.

Proof.

(a) Take any x € X . Let. be the collection of all subsets E of X xY suchthat E, €./ .

Then . /“contains all the measurable rectangles, i.e., .~ o .. This s because forany A €./
andany B €./, (AxB), iseither B or the empty set @ as (AxB), =Bif x e Aand

(AxB), =@ if x¢ A. Moreover, forany E < X xY, (E°)X =(E,)’. We can deduce this as

follows.

ye(EC)X<:>(x,y)eEc<:>(x,y)eE<:>yeEx<:>ye(Ex)°.

It follows that (E°)X =(E,)". For any countable collection, {E,}, of subsets of X xY,
ye(@ E”j < (X y) e G E, < (x,y) € E, for some integer k> 1,
n=1 M n=1
< ye(E,), for some integer k > 1,

ovye Ql(E”)x'

0

Therefore, (qEnj =U(E,), .

n=1 X
Thus, if E € ./, then E, . / sothat (E°) =(E,)" ./ . Thismeans ./ is closed under
the formation of complement. Moreover, if {E, }is a countable collection of sets in ./, then

(G Enj = D(En)x €. / . Itfollows that . /"is closed under the formation of countable
n=1

n=1



union. Hence, . /" is a o-algebra of subsets of X xY . Note that. 7*. / 'is the smallest o~
algebra generated by .7, i.e.,. 7. / ‘= o(.»). Hence,./ o.7* / . Therefore, for any E
e.»* |, E, e. /. Wecan prove similarly, that for any ye Y and forany E €. 7*. / |, E’

e ..
(b) Suppose f: X xY —>R,R_*,R or C isa.7*. / -measurable function. Then
f.:Y AR,R_*,I@ or C isgivenby f,(y)= f(x,y) forye Y. Forany opensetD in

R,@,R orC, f*(D)is.7*. / -measurable,ie., f*(D)e. 7« / . Now
f (D) ={(x,y) e XxY : f(x,y) e D} and so for afixed y €Y,

(D)) ={xeX:f(x,y)eD}={xeX: f'(x)eD}=(f") (D).

Thus, since f *(D)e. 7 / °, (ffl(D))y is . /-measurable and so (fy)fl(D) is . /-
measurable. It follows that f”is . /-measurable for eachy in Y. Similarly, using the fact
that (f‘l(D))X ={yeY:f(x,y)eD}={yeY:f(y)eD}=(f,)" (D), we can show that for

any x € X, f is . /-measurable.

Proposition 7. Suppose (X, .7, x) and (Y, . /, v) are o-finite measure spaces. IfE €. 7. /
then the function x> v(E,)is . 7-measurable and the function y+ p(E”)is. / -
measurable.

Proof.

We shall prove that the function x> v(E,) is. /-measurable.

We shall consider the case when 1(Y) < oo and then extend the proof to the case when Y is o~
finite.

We now assume that Y) <o .

Let ./ be the collection of all subsets E of X xY in. 7./ , for which the function
x+—v(E,)is . 7-measurable. By Lemma 6 part (a), E, €./ and so v(E,) is defined.

Thus, x+— v(E,) is a non-negative function.
IfAe.7andBe. /|

v((AxB),)=v(B)za(x),



as (AxB),=Bifxe Aand (AxB), =J if xg A. Since y,(X)is.~-measurable, the
function x > v((Ax B)X) =v(B)y,(x) is. 7-measurable. It follows that AxB e./. Hence,

XxY e.7and .~ c.~. Suppose the subsets E and F are measurable rectangles in .-~ such
that Ec F. Then

(F—E)X:{y:(x,y)eF—E}:{y:(x,y)eFmE°}
={y:(xy)eF}n{y:(x y) eE*}=F,n(E*) =F,n(E,) =F,-E,.

Note that E,  F, and so v((F —E),)=v(F,)-v(E,). As x—v(E,)is. 7-measurable

X

and x+— v(F,)is also. 7-measurable, it follows that x+— v ((F —E),)=v(F,)—v(E,)is. 7-

measurable. Thus, F—-E . /.

If {E,}is an increasing sequence of sets in ./, then we claim that UE, € . /.

n=1

00

We note that (G E”j =U (En)X e . / . By the continuity from below property of measure,
n=1

X n=1

(08 (0, )-ime(ie).).

Since each x> v(( E, )X) is. ~-measurable and the limit of a sequence of measurable

functions is also measurable, x+» v[(U En) j is. ~/-measurable. ( See Corollary 14 of
=1

Introduction To Measure Theory.) Thus, U E, € .. Hence, ./is closed under the
n=1

formation of proper differences and the formation of unions of increasing sequences of sets.
It follows that . /is a d-system. Therefore, by Theorem 2, .~ > o #)=.7* / . Butby
definition, ./ .7+ / andso.  =.7* / . It follows that x+— v(E,) is. 7-measurable for

allEin. 7/~
Now suppose vis o-finite. Therefore, there exists a sequence of disjoint sets in . /, ‘{Dn} :

such that U D, =Y and that v(D,) <o for each integer n> 1. For each integer n > 1, define

n=1
a finite measure, v, on. / , by v,(B)=v(BuD,) forBin. / . Note thateach v, isa
positive measure on. / . By what we have just proved, for each integer n > 1, the function
X+ v,(E,) is.7-measurable. Since v(E,) = ZVH(EX) , it follows that x — v(E,) , being

n=1

the limit of . /-measurable functions, is . 7/~-measurable.



We can prove in a similar fashion that y+— x(EY) is. / -measurable.

Theorem 8. Suppose (X, . 7, w) and (Y, . /, v) are o-finite measure spaces. Then there is a
unique positive measure on the o-algebra. 7*. / ', denoted by uxv, such that

uxv(AxB)=u(A)v(B),

forany A €. 7 and B €. / . Furthermore, the measure under g xv of an arbitrary setE in. 7/
*./ "is given by

pxv(E) = v(EJdu() = [ w(E")dv(y)
The measure g xv is called the product measure of zand v.

Proof.

The measurability of the functions, x> v(E,)and y+ x(E”) is given by Proposition 7.
Thus, we can now define two functions using these two functions as follows.

We define (uxv) and (uxv),on. 7 / by
(uxv) (E)=[ u(E* Jv(y)
and  (uxv),(E)=| u(E,)du(x)

forE e. 7 /. Plainly, (uxv), (&)=(uxv), () =0. We shall show next theses two
functions are o-additive on. 7*. / .

Suppose {En} is a sequence of pairwise disjoint setsin. 7. / . Take afixedy inY. Then
{(En )y} is also a sequence of pairwise disjoint sets in. / , as each (E,)"isin . 7 and

members of {(En)y} are pairwise disjoint. We note that for i= j , EENE; =& and so as

(E) ={x:(x,y)eE} and (E;) ={x:(x,y) € E,}, we deduce that (E,)’ ~(E;) =2.

00

© y
Moreover, (U En) =U (En)y. Since u is a positive measure and so is o-additive on . 7,
=1

n=1
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j z/,z( ) Hence, if we let E:glEn,then

1

>
Il
>
Il

{(Ge) )i

(uxv),(E)= IY #(EY)dv(y). Aseach yr y((En)y) is a non-negative . / -measurable

function, by Bepo Levi’s Theorem or a use of the Monotone Convergence Theorem,
(xv), (E) = Zj #((B) vy = Z (xv), (E,).

Therefore, (uxv), is a o-additive function on. 7+ / "and so is a positive measure.

A, yeB,
. Hence,
&,yeB

Observe thatforA e. 7andB e. /, (Ax B)y ={
1((AxB)) = u(A) 25 (y) -

it follows that (zzxv), (AxB) = |, ,u((Ax B)y>dv(y) = [ () 2 (y)IV(y) = se(A)V(B)

We can prove similarly that (/,¢><v)2 IS o-additive on . ~7*. / ‘and so is a positive measure that

satisfies the conclusion of the theorem.

Note that the set of measurable rectangles .-~ in. 7+*. / isa z-system and . 7*. / = o(.#).
Since (X, .7, w)and (Y, . 7, v) are o-finite measure spaces, we can write X xY asa

countable union of measurable rectangles on which (,uxv)l and (,uxv)z agree. Therefore,

by Corollary 4, (uxv), =(uxv), on. 7 /.

Non-negative Measurable Function

Theorem 9. Suppose (X, .7, g)and (Y, . /, v) are o-finite measure spaces. Suppose
f: X xY —[0,:] —R* isa.* / -measurable function. Then

(a) the function X > IY f (y)dv(y) is. 7 -measurable and the function y jx £ (x)d z(X)

is. /-measurable and f satisfies
() [, Fd(uxv)=[ ([, ©00du0oiviy)=] ([, f.mdv(y)jdu0d.

Proof.



By Lemma 6, part (b), f, is. /-measurableand f” is. -measurable. Hence,

J'Y f,(y)dv(y) is defined for each x in X and IX fY(x)d z(x) is defined for each y in Y. Note

that the integral may take the value +oo .

Suppose E < X xY isin. 7+ / ‘and f is the characteristic function of E, i.e., f =y .

Then f,(y)=(xc), (V) =x:(xY) = ¢ (y) forallyinY and this shows that f, = z .
Similarly, we can show that f” = y_,. It follows that

[ £ dv(y) =, ze, (Y)dv(y) =v(E,). Therefore,

X IY f, (y)dv(y)=v(E,) is.7~-measurable by Proposition 7. Similarly, we can show that

y|—>J'X fY(x)d u(x) is. /-measurable. Moreover,
J.xw fd(uxv)=| zed(uxv)=(uxv)(E) :jx v(E,)d u(x) by Theorem 8
= [ (], fndv(y))duto.

Also, we have, [ fd(uxv)=(uxv)(E)=] u(E")dv(y) :L(Ix fy(x)d,u(x))dv(y) .

This proves Theorem 9 when f is a characteristic function.

Suppose f is a simple function, i.e., f =Zaiza ,Where E. € . 7% / ‘and a, >0 for 1<i<n.
i=1

Then f, :Zn:ai (%) and :Zn:ai (ze ). Thus,
i=1 i=1

[ . ndv(y) =iai [ () (dv(y)

and since X+ L (;(Ei )X (y)dv(y) is.7-measurable for 1<i<n, x> '[Y f (y)dv(y)is. /-

measurable. Moreover,

n

J‘XXY f d('uxV)ZZJ‘xXY aiZEid(/JXV)

i=1

:ifm aizad(ﬂxv)ﬁ [ (], 3 (z), (Ndvy) )

10



-[. (Z [a(r). (y)dv(y)]d,tt(x)= [, ( jza (7 )X(y)dv(y)jdu(x)

:Ix (L fx(Y)dV(Y))dﬂ(x) :

In a similar fashion, we can show that y jx fY(x)d u(x) is. /-measurable and that

[, fd(wxv)=] ([ #0dut))av(y).

Suppose now that f : X xY —[0,00] —R* isa.* / -measurable function. Then by
Theorem 16 of Introduction To Measure Theory, there exists an increasing sequence of non-
negative measurable simple functions, {fn} converging pointwise to f. Note that if f  are

simple functions, thenso are (f,) and (f,)’. As f <f , forintegern>1,
(f,), <(f,..), and (f,)" <(f,,,)" forintegern>1. Thus, {(f,) } and {( fn)y} are
increasing sequence of measurable functions. We have thus, f, ./ f , (f, ), ~” f, and

(f )y /" £Y . Therefore, by the Lebesgue Monotone Convergence Theorem, for each x in X,

j (f.) (Mdv(y) ./ j f (y)dv(y) and for eachy in Y, j ) ()d p(x) j Y (x)d u(x).

Now, by what have just proved, each function x+— j (y)dv(y) is. ~#-measurable and

y |—>I (x)dy(x) is. /-measurable. Thus, g, : X|—>_[ (y)dv(y) is an increasing

sequence of . /-measurable functions converging to x> IY f, (y)dv(y). Therefore, by the

Lebesgue Monotone Convergence Theorem,

[ 9090209 =] ([.(f,) (avn)dut) A, ([, fnavn ) ue) -

Similarly, h :y Hj (x)d,u(x) is an increasing sequence of . / -measurable functions
converging to yHIX f (x)dy(x) and

[, mdvn =, (], (£,)0d0))dvy) 2 (], £ 00du0ojav(y) -

Since Part (b) is true for simple functions,

(I, (1), 0avin)dued =, ([ () 00du)dviy) =], f,d(sev) /[ f

XxY ILI X V)
and so we have that

([, favnuc =[ ([, £ 0oduto vy =, fd(uxv).

11



This completes the proof of Theorem 9.

Fubini’s Theorem
Theorem 10. Fubini’s Theorem.

Suppose (X, .7, g) and (Y, . /, v) are o-finite measure spaces. Suppose
f: X xY —[-0,0]=R isa.7* / -measurable function and s xv -integrable. Then

(a) for p-almost every x in X, the section f, is v-integrable and for 1-almost every y in Y, the

section f”’ is g-integrable,
(b) the functions, I, and J, defined by,

J' f (y)dv(y), if f, is v-integrable,
I f (X) =47
0, otherwise

fY(x)d , if Y is u-integrable,
and Jf(y)_{[x ()du(x) , i IS p-integrable

0, otherwise
belongto L* (X, . 7, &1, R)and L (Y,. 7, v, R) respectively and

®) [ fd(wxv)=] 1 du=] 3.dv.

Proof.

Suppose f: X xY —>[—oo,oo]=@ isa uxv integrable function. Let f*" andf~ be the
positive and negative parts of f. Then f=f"—f  and f"andf™ are uxv integrable and

of course . 7. / -measurable. By Lemma 6 (b), f, , (f*)X and (f*)X are . /-measurable
and f', () and (f-)" are. /-measurable. Note that (f,)’ =(f7)., (f.) =(f").,
(fy)+ :(f+)y and (fy)_ :(1")y forxinXandyinY. By Theorem 9 (a), the functions,
XI—)I (y)dv(y) and XI—>J‘ (y)dv(y) are . ~/-measurable and

yHJ' (x)dy(x) and yHJ‘ (x)dy(x) are. /-measurable. Moreover, by
Theorem 9 (b),

.[xxy f+d(“XV)ZJ.Y(J‘ () (X)dﬂ(x))dV(Y) I (y)dV(y))d,u(X)<oo and

12



[, fd(wv)=] ( [.(t) (X)du(X))dV(y) [(L(F7), 0dviy) futg <eo.
It follows that the functions XHI (y)dv(y) and xn—>j (y)dv(y) are p-
integrable and y|—>J. (x)du(x) and ij (x)dy(x) are wintegrable.

Hence, dv(y) and dv(y) are finite for ¢ almost everywhere x,
[.(£7), (ndw(y (y)dw(y

and '[ (x)d u(x)and '[ (x)dy(x) are finite for valmost everywherey. It
follows that f, =(f,)"—(f,) =(f") —(f") _is wintegrable for  almost everywhere x

and that f¥ =( f V)+ -(7) =(f +)y ~(f ’)y is z-integrable for valmost everywhere y.

Let N be the subset of X such that I (y)dv(y) o Of I (y)dv(y) oo. Then N
is. ~-measurable, ¢#(N)=0and for x N .

[, fndvy) = (7) Mdvin-[ () dv(y) <.

Define

{j f (y)dv(y), if xe X —N {j f (y)dv(y), if f, is v-integrable,
If(x): v =37 .

0, ifxeN 0, otherwise

Then for all x in X, I, (x) e Rand I, (x) is. 7-integrable and
[ reodu=  1eodu=[ _ ([,(F) ;dvin)ueo-[,  (f,(), 0dviy) u

=L (1 (F), v lduea- ([, (F7), (Ddvin a9

= f+d(,u><v)—jmf‘d(,uxv),byTheorem9part (b),

XxY

—I d(uxv) I fd(uxv)<ow
Therefore, |, € LY (X,. 7, u, R).
Similarly, we can show that J, L' (Y,. /, v, R). We elaborate this below.
Let M be the subset of Y such that I (x)d,u(x) © or I (x)dy(x) . Then
M is. /-measurable, v(M)=0 and for yg M,

13



J £00duC)=[ (1) (0dutx)=[ () (9dpu(x) <o0.
Define

j £Y(x)du(x), if yeY —M j £Y(x)du(x) , if £ is u-integrable,
Ji(y)=9"% =< X .

0, ifyeM 0, otherwise

ThenforallyinY, J;(y)eR andJ, (y)is. /-integrable and
Jo3edv = 3dv=[(J.(1) eduoo v -, ([ (1) codu vy

= (1.7 eodaeolivtn - ([ () ®dutoiviy)

= f+d(,u><v)—j f~d(uxv), by Theorem 9 part (b),

XxY XxY

=[ (= )d ()=

X

fd(,uxv)<oo

Therefore, J, eL(Y,. 7/, v, R).

Completion of Product Measure

Now we examine the case when all measures involved are to be complete. We shall assume
that (X, . 7, w) is complete with respect to wand (Y, . 7, v) is complete with respect to v.
We assume that they are o-finite measure spaces. Then (X xY ,.7* / |, uxv) isameasure

space. Now take . 7# / 'to be the completion of . 7*. / "with respect to the product measure
uxv . We extend the measure uxv to.# / "in the usual way and denote the extended

positive measure on the completion. 7#. / ~ by the same symbol, uxv .

Lemma 11. Suppose (X, . 7, g) and (Y, . /, v) are o-finite complete measure spaces. Let
E < XxY beasubsetin. 7# / ', the uxv -completion of . 7+ / . Then for x-almost all x,

E, €./ and for v-almostally, E’ €. 7.

Proof.

By Lemma6 (a), if Ec X xY andE €. 7% / . Thenforanyx € X, E, €./ and for any
yeY, EY €. 7

Suppose now E € . 7#. / . Then there exist A, B €. 7+ / 'suchthat Ac Ec< B and
(,uxv)(B—A)ZO.

14



Observe that if N €. 7# / and uxv(N) =0, then there exists C €. 7*. / 'suchthatN cC
and uxv(C)=0. Then by Theorem 8, uxv(C) :IX v(C,)d u(x) :IY #(CY)dv(y)=0.
Hence, for g-almost all x, v(C,) =0 and for v-almost all y, x(C”)=0.

Therefore, by the above deduction, for g-almost all x, v((B—-A),) =v(B, —A,) =0 and for v
almostally, u((B—A)’)=u(B’—A’)=0. Notethat A cE B and A" cE’ cB’.
By Lemma 6 (a), A and B, are. /-measurable and so for z-almost all x, E, €. / "because

./ is w-complete. Similarly, A” and B” are . /-measurable and so for v-almostall y, E’ €
. because . 7is u-complete.

Thus, ifE €. 7# / ‘andA B e. 7+ / "aresuchthat AcEcB and (uxv)(B—A)=0,
then there exists C € . 7such that 4(C)=0 and E, €./ forall xe X —C and there exists
D e. /suchthat v(D)=0 and E* €.~ forall yeY —D. Moreover,
uxv(A)=uxv(E)=uxv(B), forall xe X-C, v(A)=v(E,)=v(B,) and for all
yeY-D, u(A)=u(E")=u(B’).

Note that

puxv(E)=uxv(B)
= IX v(B)du(x) = L 1(BY)dv(y) , by Theorem 8,
= [ V(BIu(X) =, #(B")dv(Y)

= VENDu) =] | u(E)dv(y).

By Proposition 7, x+ v(B,) isa. 7-measurable function. As v(E,) =v(B,) for all
xe X —Cand 4(C) =0, x+>v*(E,) defines a.-measurable function on X if we let
v(E,)=v(B,), xe X-C

v*(E,) to be the outer measure of E, or v*(E,) =
0,xeC

Similarly, we deduce that y +— x*(E”) defines a. / -measurable function on Y if we let

vy — y _
1*(E”) to be the outer measure of E” or y*(Ey)={g(E )D #B).yeY-D .
AS

If uxv(E)<oo,then
Jor*€Xue)=[ v*E)u() =], v*BIdu(x)=[ v*(B)du(x)=puxv(E)<o0.

15



Therefore, x> v*(E,) defines a x-integrable function on X. In a similar manner we can

show that, y+> u*(E”) defines a v-integrable functionon'Y.
We have thus proved the following.

Lemma 12. Suppose (X, . 7, w) and (Y, . /, v) are o-finite complete measure spaces. Let
Ec XxY beasubsetin. 7# / ', the uxv -completion of. 7+ / . Suppose uxv(E)<oo.

Then x> v*(E,) defines a u-integrable function on X and y > x*(E”) definesa v-
integrable function on Y. Furthermore,

pxv(E)=[ v (E)du() = [ 4*(E")du(y) <o
Hence, for g-almost all X, v*(E, ) <ooand for v-almost all y, #*(E”) <.

Lemma 13. Suppose (X, .7, x)and (Y, . /, v) are o-finite complete measure spaces. Let
E < XxY beasubsetin. 7# /. Let y. be the characteristic function of E. Let

Ze(X,y),xe X -C 2e(X,y),yeY -D
*(X,y)= and y-*(Xx,y) =

are as given in the proof of Lemma 11, with x#(C)=0 and v(D)=0. Then

, Wwhere C and D

wxv(B) = xed (uxv) = ([, e * 0 v a0 = [ ([ 2e **0x Y)du0) Jiv(y)
Proof.

Recall that uxv(E) =IX v*(E,)du(x) =L u*(EY)dv(y). For g-almostall xin X, i.e., for x
inX-C, v*(E)=v(E) =IY e (X, y)dv(y). According to Lemma 12, x> v*(E,)
defines a u-integrable function on X and so X+ L e (X, y)dv(y)is a u-integrable function

on X. Likewise, we can show that y— jx e **(X, y)d u(x) is a v-integrable function on Y.

Thus,

puxv(E) = [ v*E)u0) =, VEXu()=[ (], 206 y)dv(y) a9
= [ (], e *(x y)v(y) () and
puxv(E) = [ )v(y) = [ @ )v(y) =] ([, 200 y)dut)iv(y)

= [ ([ e 0 1)d ) Javy).
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Corollary 14. Suppose (X, .7, w) and (Y, . /, v) are o-finite complete measure spaces. Let
E < XxY beasubsetin. 7# / and uxv(E)<oo . Let y. be the characteristic function of

E. Then
uxv(€) = zed (uxv)=[ ([, ze* 0o a9 = [ ([ 2e **xy)duCo jv(y)

re(X,¥),xe X-C
0,xeC

xe(Xy),yeY-D

, Where C and D
0,yeD

Xe ¥ (X, Y)={ and g *(x, Y):{

satisfy v(E,) is defined and finite for all x eX-C, u(E”) is defined and finite for all yinY
-D, #(C)=0 and v(D)=0.

Proof. By Lemma 13, uxv(E) =jxv*(EX)dy(x) <oo. Therefore, for g-almost all x in X,

v*(E,) <owoand so for u-almost all x in X, v(E,) <. Likewise, we deduce that for v-

almostallyinY, u(E”)<w. Corollary 14 then follows from Lemma 13.
Remark.

In view of the fact that E, is . / -measurable for xalmost all x and E”is . /-measurable for

valmost all y, we may replace the two functions, y. *(x,y) and y **(x,y) by the following

Ze (X Y),v(E,) <o
0, otherwise

simpler looking definitions, y. *(X,y) :{ and

Ze (% Y) t(EY) <0
0, otherwise

Xe ¥ (X y) :{

Lemma 15. Suppose (X, .7, x) and (Y, . 7, v) are o-finite complete measure spaces.

Suppose f : X xY —[0,.0]=R" isanon-negative, simple. 7# / -measurable function.
Suppose f is g xv -integrable. Then

the functions, I, and J, defined by,

I f (y)dv(y), if f, is v-integrable,
I f (X) =17
0, otherwise

and J, (%) ={L Fr(x)du(x) , if 7 is p-integrable,

0, otherwise

belongto Lt (X,. 7, 4, R)and L (Y,. /, v, R) respectively and
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IXXY f d(,uxv)=.[X Ifdy=IYdev.

Proof.

n
Suppose f is a non-negative simple . 7/#. / -measurable function, i.e., f = Zaila , Where E,
i=1

e.7# 1/ ,a>0and uxv(E) <o for1<i<n. Then fX:Zai(;(Ei) and
i1 X

n

fy=2ai(;(Ei)y.

i=1

By Corollary 14, for each i, there existC, < X, D, <Y suchthat x(C,))=0, v(D,)=0,

pxv(€)=[  zed(uxv)= ([ xe *(x v o) = (], 2z 0 n)du0)v(y),

Xe, (X, ¥),xe X =-C,
0,xeC

ZEi (X! y)!yEY _Di
0,y e D,

Ze T (X y) = { and e **(x,y) = { , where

v((E)),) is defined and finite for all x eX~Ciand 4((E,)" ) is defined and finite for all
yeY-Di.

Let C =LnJCi and D:ODi. Then, #(C)=0 and v(D)=0. Now let
i=1 i=1

Ze *(X,y),xe X -C
0,xeC

Ze TF(%y),yeY-D

and **(X,y) =
V43 (x,y) {O,yED

Ze, * (%) :{
Note that X +— IY Xe, (X, y)dv(y) is a p-integrable function for 1<i <nand
o 2ed () =[ ([ 2 * 00 vV () = uxv(E) <0

Thus, [, fd(xv) =3[ azed(uxv)= 2], ([ aze *0ydvm)ued
L[S e " o <], ( J(Sae y)jdv(y)jdu(x)

- Ix UY (an:@ZE *(x, Y)jdV(y)]du(x) :

Observe that forx € X - C, f,(y)=> aze *(X,¥) =D a e *(X,Y).
i=1 i=1

18



Now define for each x in X, I, (x) = IY (Zai Xe (X y)jdV(Y) <.
i=1

Similarly, we can deduce that fory e X—D, fY(x) = Zaila *x(y,y) = Zai Ze, **(x,y) and

that jXXYf pUxV) ZIXY a,yed(uxv) ZI (j a e **(x, y)d/t(X))dV(y)

- J.Y (J.x (ia’ X, (X, y))dy(x)]dv(y) .
Define foreachyinY, J, (y) = J'x (Zn:ai e ¥4 (%, y)jdu(x) .

We then have, jx I, (x)d z(x) =jY 3, (y)dv(y) =jXXY fd(uxv)<o

Observe that
(0= [, £.(ydv(y) xe X =C, _[[ 1,(y)dv(y),when [ f,(y)dw(y) is defined and finite
0,xeC 0, otherwise

for u -almost all x and that

J.(y)= IX P(dp(x),y €Y =D, - J.x f¥(x)d (x), when _[X f¥Y(x)d u(x) is defined and finite
0,yeD
for v-almost all y .

0, otherwise

This completes the proof of Lemma 15.

Remark. We have shown that if f: X xY —[0,o0] —R" isa non-negative, simple . 7#. / -
measurable function, then for g-almost all x, f,_ is. /-measurable, for v-almostally, f” is
.#-measurable and if f is uxv -integrable, then for g-almost all x, f, is v-integrable and

for v-almost all y, f?is g-integrable.

Theorem 16. Suppose (X, .7, @) and (Y, . 7, v) are o-finite complete measure spaces.

Suppose f: X xY —[0,0]=R" isa.7# / -measurable and uxv -integrable function.
Then

(a) for w-almost every x in X, the section f, is v~integrable and for 1-almost every y in Y, the

section f” is g-integrable,

® [ f

XxY

d(uxv)=[ 1 (0du(x) =], 3, (dvy).
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Where,

I f, (y)dv(y),when _[ f, (y)dv(y) is defined and finite
I f (X) =97 v
0, otherwise

jx f¥(x)d u(x), when jx fY(x)d w(x) is defined and finite

0, otherwise

and‘]f(Y)_{

Proof. Since f: X xY —[0,0]=R" isa uxv -integrable function, there exists an
increasing sequence of . /#. / -measurable and wxv -integrable simple function { fn} such

that f, converges pointwise to f.

By Lemma 15, for each integer n, jXXY f.d(uxv)= IX I, ()d(x) = L Ji ()dv(y),

where 1, (x) {L( f.), (Y)dv(y) <eoo,xe X -C,, |
n 0,xeC,

an(y){jx(fn) OOt <2y <=0 e, =0 and v(D,) -o0.

0,yeD,

Since { f, }is increasing, the sections, {( fn)x} and {( fn)y} are increasing sequences of

functions. By Lemma 15, J.X I (x)du(x) = IY J; (y)dv(y) :IX ,fod (uxv)<o .
Let C=UC, and D=UD,.
n=1 n=1

Fora fixed x in X - C, (f,) (y)<(f,.,), (y)forallyinY and foreach integer n> 1.

Moreover ( f, )X (y) isa v-integrable function on Y for each integern>1. As ( f, )X Af it

X !

follows by the Monotone Convergence Theorem that for each x in X — C,

1007 ] ). Let (X)_{Ifn(x),XeX—C,_{J.Y(fn)x(y)dv(y)<oo,xeXC,
" Y " 0,xeC 0,xeC

[, f.(dv(y), xe X -C, |

Then, for g-almost all x, 1, (x)=1, (x) and I, x)”
! 0,xeC

Moreover, for all x in X and for all integern> 1, 1, (x) <1, (x). Since I, (X) is -
integrable, 1, (x) is also -integrable. Therefore, {Ifn (x)} is an increasing sequence of

integrable functions. Note that

20



jl (x)d z(x) = jl (x)d z(X) = j d(uxv)< J'Nf d(uxv)<e
Therefore, g,(x) =, (x)converges to a u-integrable function g and
[, 9.00du0)=[ 1, (0du(x) /[ 9(x)d pu(x)
But [ g,00du()=[ 1, (du() =] f,d(uxv) [ fd(uxv)<wandso

_[ Q(X)dﬂ(x)z_[ f d(uxv). Observe that g(x)_{L f,(y)dv(y),xe X -C,
X XxY 0xeC

. Thus,

IH( [ fx(y)dv(y))d p=[ _9(x)du()=[ g(x)du(x) <o . It follows that for z-almost al

X, L f, (y)dv(y) <oo. This means that for g-almost all x, f, is v-integrable.

This means that there exists a. #measurable set A < X, with g(A) = 0 such that f,_ is 1~

integrable for all xin X —Aand g, (x) ./ _[Y f,(y)dv(y). Thus, we may take

and we have

I f, (y)dv(y),when f, is v-integrable
g(x) =1
0, otherwise

[ td(uw)=] g0du)= [ 1, (ddu(x).

Similarly, we can show that J; (y) /'jx fY(x)d(x) and if we let

(3, (n.yeY-D, I(fn)y(x)d,u(x)<oo,er—D,
Je (V)= =X
0,yeD 0,yeD

we see that {J 0 (y)} is an increasing sequence of integrable functions such that

[ £7(0du(x).y Y -D,

and h,(y) =J, (y)converges to a v-integrable
0,yeD

J()/{

function h. Furthermore, jY h (y)dv(y) = jY J, (y)dv(y) / jy h(y)dv(y) so that as

jh(y)dv(y) jJ (y)dv(y) = j d(uxv /j f d(uxv)<oo, we have that

_[Y h(Y)dV(Y)ijxY fd(uxv)<ow . Thus, since h(y)_{gx y(é)d,u(x),er -D, |
y X E

21



L_D( jx f¥(x)d ,u(x))dv(y) = L_Dh(y)dv(y) = jY h(y)dv(y) <. It follows that for y-almost

ally, ¥ is u-integrable. Thus, we may take

j fY(x)d u(x), when f ¥ is z-integrable
h(y) =1°% _
0, otherwise

and consequently, _[XxY fd(uxv)= JY h(y)dv(y) = J'Y J. (y)dv(y).

Theorem 17. Suppose (X, .7, @) and (Y, . /, v) are o-finite complete measure spaces.
Suppose f:XxY >R isa.7# / -measurable and uxv -integrable function. Then

(a) for p-almost every x in X, the section f, is w-integrable and for 1-almost every y in Y, the

section f” is g-integrable,

®) [, fd(uxv)=[ 109409 = 3, (1dv(y),

Where,

j f (y)dv(y), when j f (y)dv(y) is defined and finite
I f (X) =4 v
0, otherwise

jx f¥(x)d z(x), when jx f(x)d z(x) is defined and finite

and J, (y) =
0, otherwise

Proof.

f:XxY >R is uxv-integrable if and only if both f* and f~ are uxv -integrable. Note
that both f* andf~ are. /# / -measurable. Moreover,

.[xXY f d('uxv):.[xw f+d(,u><v)—J.XXY f_d(,uxv),

By Theorem 16, for  almost everywhere x, ( f,) and (f,) are ~integrable and forv almost
everywhere y, ( f y)+ and () are u-integrable. It follows that for . almost every x,

fo=(f) =(f,) =(f"), —(f") is wintegrable and that for valmost everywhere y,
£ =(fY) —(£7) =(f) =(f")" is rintegrable.
By Theorem 16,

[ £ () =[ 1.0 =] 3, (n)dv(y)
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and [t d(uxv)=] 1.00du()=] 3, (y)dv(y).

Therefore,

jXXY f o|(ﬂ><v):jXXY f+o|(y><v)—jXXY f’d(uxv):jx If+(x)dy(x)—_|‘x I, (x)dz(x)
= (1,.00-1,00)d (3.

Note that there exists subsets of X, A and B in. 7 with ¢(A)=wu(B) = 0, such that

- {I( ), (V)dv(y) <o, xe X —A and 1 ()= {j( ), (dv(y) <o xeX -B
0,xe A 0 xecB

Let C=AuUB . Then u(C)=u(AuUB)=0. Define

{|f+(x)—|f(x)<oo,x6x -C { (1) v -, (f), (Ndv(y)xeX -C
If(x): Y g
0,xeC

xeC

f LYdv(y),xe X — C
0 xeC

Then [ 1,00du0) =, (1, (9=1,-00)du() = [, 1, (9 ()~ [ 1, (9d u()

=| frd(uxv)- Xfo d(uxv)= I fd(uxv)du(x)<o .

XxY

j f (y)dv(y), when jY f,(y)dv(y) s defined and finite _

Since u(C) =0, If(x)—{ Y or u

0, otherwise
almost everywhere Xx.

Similarly,
fm f o|(ﬂxv):jXXY f+o|(ﬂ><v)—jXXY f‘d(yxv)zjxJf+(y)dv(y)—J.xJf,(y)dv(y)
=[ (9. M-I, W)dv(y).

By Theorem 16, there exist subsets of Y, Eand F in. / with {E) = «F) = 0, such that

3.(y)= J(£) (0dux) <coyeY-E ()= [ (1) 0dut) <oy ey -F
| O.yeE f 0,yeF
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Define

Jf(Y)={Jf+(y)_Jf(y)<oo’yEY_D: [ (1) 0odu( - (1) (0dp(x),y Y ~D
0,yeD 0,yeD

~ jx fY(x)du(x),yeY -D
0,yeD 1

where D=EUF . Observe that v(D)=0 and

[ £700d(x), when [ £7(x)d z(x) is defined and finite
Ji(y)=1"% ) X .
0, otherwise

Then

[ 3 dviy) =] (3, =3, M)dviy) =[ 3. Mdv(y)-[ I, (ndr(y)

= f+d(ﬂxv)—IxXYf_d(luxv):J.xXYfd(yxv)d,u(X)<oo.

XxY

This completes the proof of Theorem 17.

24



