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Recently I came across an interesting result of Daniel Lesnic, which one can prove using 

results not beyond that of the ideas of derivative and the Mean Value Theorem.  I state the 

result as follows. 

Theorem 1.  Suppose a < b  and  [a, b]  is a closed and bounded interval.  If  f  : [a, b] → R is 

a continuous function of bounded variation and g: [a, b] → R is a function that has a 

primitive, then the product   f ⋅ g  has a primitive on [a, b].   

Remark.  1. If g is continuous, then Theorem 1 is trivial.  This is because  f ⋅ g  is continuous 

and so it follows by the Fundamental Theorem of Calculus, that   f ⋅ g  has a primitive on [a, 

b].  

2.  If  f  is continuous and g is Riemann integrable, then  f ⋅ g is Riemann integrable and so 

has a primitive almost everywhere on [a, b], i.e., there exists a function H such that H’  = f g 

almost everywhere on [a, b]. 

3.  If  f  is continuous and  g is Lebesguue integrable, then   f ⋅ g is Lebesgue integrable and  f 

⋅ g  has a primitive almost everywhere on [a, b]. 

4.  Note that if  f  is Lebesgue integrable and g is bounded, then   f ⋅ g  has a primitive almost 

everywhere on [a, b].  This is because g has a primitive and so g is measurable by a Theorem 

of Banach and if g is bounded, then   f ⋅ g is Lebesgue integrable.   

We shall prove Theorem 1 for the special case when  f  : [a, b] → R is a continuous injective 

function.  Now a continuous injective function on [a, b] is strictly monotonic.  Thus we shall 

prove the special case of theorem 1 when  f  is continuous and strictly monotonic on  [a, b].   

Lemma  2.  Suppose f  : [a, b] → R is a continuous strictly increasing function and g: [a, b] 

→ R is a function that has a primitive.  Then the product   f ⋅ g  has a primitive on [a, b].   

The conclusion is also valid if  f  is a strictly decreasing function. 

Proof.   Since  f  : [a, b] → R is a strictly increasing and continuous function, the image f ([a, 

b] ) is a non-trivial interval [c, d] with c < d.   The inverse function   f  
−1
 : [c, d] → [a, b] is 

also continuous and strictly increasing.  Let G: [a, b] → R be a primitive of g.  Then  G’ = g 

on [a, b]. 

G is continuous and so the composite h = G )   f 
-1
 : [c, d] → R is a continuous function.  

Hence h has a primitive H: [c, d] → R .   This means H ‘ = h = G )   f  
−1
 . 
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Define a function K: [a, b] → R  by K(x) = f (x)G(x) − H )  f (x)  =  f (x)G(x) − H ( f (x)) for x 

in [a, b].  Then we claim that K ‘ (x) = f (x) g(x) for all x in [a, b]. 

Tale x in (a,  b).  We shall show that the left and right derivatives of K at x is f (x) g(x).  

Let y > x and y is in [a, b].  Then  

                 K(y) −  K(x) =  f (y)G(y) − H ( f (y)) − (f (x)G(x) − H ( f (x)) ) 

                                    =  f (x)(G(y) − G(x)) + ( f (y) − f (x))G(y) − ( H ( f (y)) − H ( f (x)) ) 

                                                                   --------------------------------------    (1) 

Now since H is differentiable and  f (y)  >   f (x)  because  f  is strictly increasing, by the Mean 

Value Theorem, there exists ζ such that f (y)  >  ζ  >  f (x) and 

             H ( f (y)) − H ( f (x)) =  ( f (y) − f (x)) H’(ζ) = ( f (y) − f (x)) G( f  
−1
 (ζ)) --------- (2) 

But since  f  is continuous and strictly increasing, by the Intermediate Value Theorem, there 

exists  ζ y  such that  y  >  ζ y    > x and f (ζ y ) =  ζ .   Hence it follows from (2) that  

      H ( f (y)) − H ( f (x)) = ( f (y) − f (x)) G( f  
−1
 ( f (ζ y ))) =  ( f (y) − f (x)) G( ζ y ).    ----- (3). 

Therefore, it follows from (1) and (3) that 

K(y) −  K(x) =  f (x)(G(y) − G(x)) + ( f (y) − f (x))G(y) −  ( f (y) − f (x)) G( ζ y )   

              =  f (x)(G(y) − G(x)) + ( f (y) − f (x))(G(y) − G(x))  −  ( f (y) − f (x)) (G( ζ y ) -− G(x))    

              =    f (y)(G(y) − G(x))  −  ( f (y) − f (x)) (G( ζ y ) -− G(x))   . 

Therefore, 

                  
( ) ( )( ) ( ) ( ) ( )

( ) ( ( ) ( ))
yG G xK y K x G y G x

f y f y f x
y x y x y x

ζ −− −
= − −

− − −
    -------------  (4) 

Now   
( ) ( )

( ) ( ) ( )
y x

G y G x
Lim f y f x g x

y x+→

−
=

−
.    ---------------------  (5) 

Note that 
( ) ( ) ( ) ( )y y y

y

G G x G G x x

y x x y x

ζ ζ ζ

ζ

− − −
= ⋅

− − −
.    Since G’(x) exists and is equal to 

g(x), there exists δ > 0 such that for  x <  y  <  x + δ,  
( ) ( )

| ( ) | 1
G y G x

g x
y x

−
< +

−
.   It follows 

that for  0 x <  y  <  x + δ,   
( ) ( )

| ( ) | 1
y y

y

G G x x
g x

x y x

ζ ζ

ζ

− −
⋅ < +

− −
.  That is, 

( ) ( )yG G x

y x

ζ −

−
 is 

bounded on (x, x + δ).  Therefore, 
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( ) ( )

( ( ) ( )) 0
y

y x

G G x
Lim f y f x

y x

ζ
+

→

−
− =

−
 ---------------------- (6) 

because ( ( ) ( )) 0
y x
Lim f y f x

+→
− =  by continuity at x. 

Thus it follows from (4), (5) and (6) that, 

                                              
( ) ( )

( ) ( )
y x

K y K x
Lim f x g x

y x+→

−
=

−
. 

This proves that the right derivative of K at x is  f (x) g(x). 

 

If x = a, the above argument shows that K’ (a) = f (a) g(a).   Similarly we can show that the 

left derivative of K at x is  f (x) g(x).  The same argument shows that  K’ (b) = f (b) g(b).    

Hence for x in (a,  b),  K ‘ (x) = f (x) g(x) and so K’ = f  g.  That is, K is a primitive of  f  g. 

 

If  f  is strictly decreasing and continuous, then  −  f  is strictly increasing and continuous.  

Therefore, by what we have just proved,  −  f g  has a primitive say K,  Then  − K is a 

primitive for  f g. 

Next we show that the conclusion of Lemma 2 is valid for an increasing and continuous 

function. 

Corollary 3.  Suppose  f  : [a, b] → R is a continuous increasing function and g: [a, b] → R 

is a function that has a primitive.  Then the product   f ⋅ g  has a primitive on [a, b].   

Proof,   If  f  is increasing and continuous, then  h(x) =  f (x) + x  is strictly increasing and 

continuous on [a, b].  Therefore, by Lemma 2, h(x) g(x) has a primitive, say K(x) on [a, b].  

Also since x is strictly increasing and continuous,  x g(x) has a primitive H(x) on [a, b].  Then 

K – H is a primitive for f ⋅ g as (K - H)’(x) = K’(x) – H’(x) = h(x)g(x) −  xg(x)= f (x)g(x).  

 

Proof of Theorem 1.   

 If  f  : [a, b] → R is continuous and of bounded variation, then  f   is the difference of two 

continuous increasing functions.  Hence  f   = f 1  – f 2, where f 1  and  f 2 are increasing 

continuous functions.  If  g has a primitive, then by Corollary 3,  f 1 g and  f 2 g  both have 

primitives.  It follows that      f  g  = f 1 g –  f 2 g  has a primitive. 
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We next present a special characterization of a function of bounded variation satisfying the 

conclusion of Theorem 1. 

First a technical lemma. 

Lemma 4.  Suppose  f  : [a, b] → R is of bounded variation and has the Darboux property, 

i.e.,  f   has the intermediate value property.  Then f   is continuous. 

Proof.   If  f  is of bounded variation, then it can have only jump discontinuities.  But since  f  

has the intermediate value property,  f  cannot have any jump discontinuity and so  f  is 

continuous. 

Lemma 5.  Suppose  f  : [a, b] → R  can be represented as the quotient of two functions 

having primitives.  That is,  f   =  g / h , g and h have primitives and h ≠ 0.   Then  f  is a 

Darboux function, i.e.,  f   has the intermediate value property. 

Proof.   Suppose  f ( c ) <  f (d)  for some c , d in [a, b], and c ≠ d.   For any k such that   f ( c ) 

< k <   f (d) .  That is,   

                                      g(c) / h(c) < k < g(d) / h(d). ------------------------------------  (1) 

Define  H(x) =  g(x) – k⋅ h(x)  for x in [a, b].  Then since g and h have primitives, H too has a 

primitive.  Therefore, by Darboux Theorem, H  has the intermediate value property.   

Since h ≠ 0 and h has the intermediate value property,  h  > 0  or h  <  0.  Therefore, it follows 

from (1) that  

                                 g(c)  < k  h(c)   and   k h(d) < g(d) , if  h  > 0   --------------------  (2) 

or 

                                   g(c)  > k  h(c)   and   k h(d). > g(d) , if  h < 0. ---------------------  (3) 

Hence, it follows from (2) and (3) that 

                                 H(c ) < 0 < H(d)     or         H(c ) > 0 >  H(d) . 

Therefore, since H has the intermediate value property, there exists x between c and d such 

that  H(x) = 0.    That is,  g(x) = k⋅ h(x) and so  f (x) = g(x)/h(x) = k.  This shows that   f   has 

the intermediate value property.       

Corollary 6.   Suppose  f  : [a, b] → R  can be represented as the quotient of two functions 

having primitives.  That is,  f   =  g / h , g and h have primitives and h ≠ 0.   Furthermore if  f 

is of bounded variation, then  f   is continuous.  

Proof.   By Lemma 5,   f   has the intermediate value property.   Since  f  is also of bounded 

variation,  by Lemma 4,  f   is continuous. 
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Now we state the characterization theorem. 

Theorem 7.  Suppose  f  : [a, b] → R is of bounded variation.  Suppose there exists a non-

zero function  h : [a, b] → R possessing primitives such that the product  f ⋅ h  possesses 

primitives.   Then  f ⋅ g   possesses primitives for any g possessing primitives. 

Proof.    Let  K  =  f ⋅ h.  Then  K has primitives by hypothesis.   Then  f  =  K /  h  since h ≠ 0.   

And so  f  is a quotient of two functions possessing primitives and is also of bounded 

variation and so by Corollary 6,  f  is continuous.  This means that  f  is a continuous function 

of bounded variation.  Therefore, by Theorem 1,  f ⋅ g   possesses primitives for any g 

possessing primitives. 

Remark.  By Theorem 7, a function of bounded variation having the property that there 

exists a non-zero function h possessing primitives such that the product   f ⋅ h has primitives 

is necessarily continuous.   Thus  if  f  is a discontinuous function of bounded variation, then 

for any non zero function   h   possessing primitives,   f ⋅ h  has no primitives.  

Corollary 6 is a criterion of deciding when a function of bounded variation is continuous.  By 

isolating the use of the intermediate value property we can prove the following weaker result 

in exactly the same way. 

Theorem 8.  Suppose  f  : [a, b] → R  is a function of bounded variation that can be 

represented as the quotient of two Darboux functions, i.e.,  f   =  g / h ,  where h is a non-zero 

Darboux function possessing primitives and g  is a Darboux function satisfying that  g  +  k  is 

a Darboux function for any non-zero Darboux function k possessing primitives.   Then  f   is 

continuous.  

Following A. Bruckner, we can use the product formula for derivatives to deduce the 

following result. 

Theorem 9.   Suppose  g : [a, b] → R  is a function possessing primitives and is Lebesgue 

integrable.  Then for any differentiable function  F: [a, b] → R,  F⋅⋅⋅⋅ g  possesses primitives, 

which are all absolutely continuous.  In particular, if g is the derivative of a differentiable 

function of bounded variation or equivalently a differentiable absolutely continuous function, 

then for any differentiable  F,  F⋅⋅⋅⋅ g  possesses primitives, which are all absolutely 

continuous..    

Proof.   Suppose G : [a, b] → R is a primitive of g.  Then since g is Lebesgue integrable, G is 

absolutely continuous and so G is continuous of bounded variation..   Since  F is 

differentiable, by Theorem 1,  G⋅ F’  possesses primitives.  Now by the product rule for 

derivatives,                    

                                   (G⋅ F)’ = G’⋅ F + G⋅F’  = F⋅g  + G⋅F’ .   

Thus, if  H is a primitive of  G⋅ F’  , then  G⋅F  − H is a primitive of  F⋅g  since  
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                          (G⋅F  − H) ‘ = (G⋅ F)’  −  H’ =  F⋅g  + G⋅F’  −  G⋅F’ = F⋅g . 

Since F  is differentiable  and so is continuous, F is a bounded  Lebesgue  integrable function.  

Because g is Lebesgue integrable,  F⋅g  is Lebesgue integrable.  It follows by Theorem 6 of   

“Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach 

Zarecki Theorem and de La Vallé Poussin;s Theorem”  that  G⋅F  − H is absolutely 

continuous. Therefore,  F⋅⋅⋅⋅ g  possesses an absolutely continuous primitive for any 

differentiable  F.   Hence all its primitives are absolutely continuous.   

In particular if G is differentiable and is of  bounded variation, then  G’ =  g is Lebesgue 

integrable and so G is absolutely continuous.  Note that a differentiable function on [a, b] is 

absolutely continuous if and only if it is of bounded variation.  It follows as above that  F⋅⋅⋅⋅ g  

possesses absolutely continuous primitives for any differentiable  F.    

Remark.  Note that any differentiable function G : [a, b] → R is necessarily a continuous N 

function.  (See lemma 4 of “ When is a function on a closed and bounded interval be of 

bounded variation, absolutely continuous?”. )  Therefore, by Theorem 6 of “Functions 

Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki 

Theorem and de La Vallé Poussin;s Theorem”, such a differentiable function G is absolutely 

continuous if and only if G’  is Lebesgue integrable. 

In view of the remark above we may state Theorem 9 as follows.   

Theorem 10.   Suppose  g : [a, b] → R  is the derivative of a differentiable absolutely 

continuous function.  Then for any differentiable function  F: [a, b] → R,  F⋅⋅⋅⋅ g  possesses 

primitives, which are all absolutely continuous.   

If g is positive and g possesses primitives, then any primitive of g is strictly increasing. For 

such function we have the following result. 

Lemma 11.   Suppose  g : [a, b] → R  is a function possessing primitives and  g  > 0 or g (x) 

>. 0 for x ≠ a, b.   Then for any continuous function   f : [a, b] → R,   f⋅⋅⋅⋅ g  possesses 

primitives, which are all absolutely continuous.   

Proof.    Suppose G : [a, b] → R is a primitive of g.  Then G’(x) = g(x)  >. 0 for x ≠ a, b.   It 

follows that G is strictly increasing and continuous.  Hence G([a, b]) is compact and so a 

closed and bounded interval [c, d] and G 
−1
 :  [c, d] → [a, b] is also strictly increasing and 

continuous.  Thus, for any continuous function  f: [a, b] → R,   f  )  G 
−1
 :  [c, d] →R  is 

continuous and so has a primitive H:  [c, d] →R such that H ‘  = f  )  G 
−1
.  Then H )G: [a, b] 

→ R is differentiable and by the Chain Rule, 

                    (H ) G)’(x) = H’(G(x))⋅G’(x) = f  ) G 
−1
(G(x)) ⋅ g(x) = f  (x)⋅g(x). 

It follows that H )G is a primitive of   f⋅⋅⋅⋅ g .  Note that g being the derivative of a monotone 

function is Lebesgue integrable.  Since  f  is continuous and so is integrable and bounded,  f⋅⋅⋅⋅ g 
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is Lebesgue integrable.  It follows that H )G is absolutely continuous.  Hence all primitives of 

f⋅⋅⋅⋅ g  are absolutely continuous.   We can also deduce that H )G is absolutely continuous by 

observing that H satisfies a Lipschitz condition and G is absolutely continuous so that their 

composite H )G is absolutely continuous. 

Theorem 12.  Suppose  g : [a, b] → R  is a function possessing primitives and  g  ≥ 0   Then 

for any continuous function  f : [a, b] → R,   f⋅⋅⋅⋅ g  possesses primitives, which are all 

absolutely continuous.   

Proof.   Let h  =  g +1.  Then h > 0.   Therefore, by Lemma 11,   f⋅⋅⋅⋅ h  possesses an absolutely 

continuous  primitive, say H.   Since  f   is continuous,  f     has an absolutely continuous 

primitive, say F.  Then  H  − F  is absolutely continuous, differentiable  and 

                      ( H  −  F ) ‘  =  H’ −  F’ =   f⋅⋅⋅⋅ h −  f  = f⋅⋅⋅⋅ g  +  f   −  f  = f⋅⋅⋅⋅ g  . 

Thus,  f⋅⋅⋅⋅ g  possesses an absolutely continuous primitive and so all its primitives are 

absolutely continuous. 

The proof of Theorem 12 suggests the following slight generalization of Theorem 12. 

Theorem 13.  Suppose  g : [a, b] → R  is a function possessing primitives.  Suppose there 

exists a function  h: [a, b] → R possessing primitives such that h ≤ 0 and g ≥ h.  Then for any 

continuous function   f : [a, b] → R,   f⋅⋅⋅⋅ g  possesses primitives, which are all absolutely 

continuous.   

Proof.    Let k = g − h ≥ 0.   Then for any continuous function  f : [a, b] → R,  by Theorem 

12,    f⋅⋅⋅⋅ k  has an absolutely continuous primitive K and  − f⋅⋅⋅⋅ h  has an absolutely continuous 

primitive H.   Hence  K − H is absolutely continuous and (K − H )’ = f⋅⋅⋅⋅ g  and so f⋅⋅⋅⋅ g  has an 

absolutely continuous primitive.  It follows that all its primitives are absolutely continuous.   

 

Note that in the proof of Theorem 13, both K and H are differentiable increasing (therefore 

absolutely continuous) functions.  We can prove the following in exactly the same way as 

Theorem 13.  

Theorem 14.  Suppose  g : [a, b] → R  is a function possessing a primitive expressible as the 

difference of two differentiable increasing functions.  Then for any continuous function   f : 

[a, b] → R,   f⋅⋅⋅⋅ g  possesses primitives, which are all absolutely continuous.   

 

 

             

 


