On The Primitive Of Product Of Two Functions

By Ng Tze Beng

Recently I came across an interesting result of Daniel Lesnic, which one can prove using results not beyond that of the ideas of derivative and the Mean Value Theorem. I state the result as follows.

Theorem 1. Suppose $a<b$ and $[a, b]$ is a closed and bounded interval. If $f:[a, b] \rightarrow \mathbf{R}$ is a continuous function of bounded variation and $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function that has a primitive, then the product $f \cdot \mathrm{~g}$ has a primitive on $[a, b]$.

Remark. 1. If g is continuous, then Theorem 1 is trivial. This is because $f \cdot \mathrm{~g}$ is continuous and so it follows by the Fundamental Theorem of Calculus, that $f \cdot \mathrm{~g}$ has a primitive on $[a$, $b]$.
2. If f is continuous and g is Riemann integrable, then $f \cdot \mathrm{~g}$ is Riemann integrable and so has a primitive almost everywhere on $[a, b]$, i.e., there exists a function H such that $H^{\prime}=f g$ almost everywhere on $[a, b]$.
3. If f is continuous and g is Lebesguue integrable, then $f \cdot \mathrm{~g}$ is Lebesgue integrable and f $\cdot \mathrm{g}$ has a primitive almost everywhere on $[a, b]$.
4. Note that if f is Lebesgue integrable and g is bounded, then $f \cdot \mathrm{~g}$ has a primitive almost everywhere on $[a, b]$. This is because g has a primitive and so g is measurable by a Theorem of Banach and if g is bounded, then $f \cdot \mathrm{~g}$ is Lebesgue integrable.

We shall prove Theorem 1 for the special case when $f:[a, b] \rightarrow \mathbf{R}$ is a continuous injective function. Now a continuous injective function on $[a, b]$ is strictly monotonic. Thus we shall prove the special case of theorem 1 when f is continuous and strictly monotonic on $[a, b]$.

Lemma 2. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a continuous strictly increasing function and $\mathrm{g}:[a, b]$ $\rightarrow \mathbf{R}$ is a function that has a primitive. Then the product $f \cdot \mathrm{~g}$ has a primitive on $[a, b]$.

The conclusion is also valid if f is a strictly decreasing function.
Proof. Since $f:[a, b] \rightarrow \mathbf{R}$ is a strictly increasing and continuous function, the image $f([a$, $b]$) is a non-trivial interval $[c, d]$ with $c<d$. The inverse function $f^{-1}:[c, d] \rightarrow[a, b]$ is also continuous and strictly increasing. Let $G:[a, b] \rightarrow \mathbf{R}$ be a primitive of g . Then $G^{\prime}=\mathrm{g}$ on $[a, b]$.
G is continuous and so the composite $h=G \circ f^{-1}:[c, d] \rightarrow \mathbf{R}$ is a continuous function.
Hence h has a primitive $H:[c, d] \rightarrow \mathbf{R}$. This means $H^{\prime}=h=G \circ f^{-1}$.

Define a function $K:[a, b] \rightarrow \mathbf{R}$ by $K(x)=f(x) G(x)-H \circ f(x)=f(x) G(x)-H(f(x))$ for x in $[a, b]$. Then we claim that $K^{\prime}(x)=f(x) \mathrm{g}(x)$ for all x in $[a, b]$.

Tale x in (a, b). We shall show that the left and right derivatives of K at x is $f(x) \mathrm{g}(x)$.
Let $y>x$ and y is in $[a, b]$. Then

$$
\begin{align*}
K(y)-K(x) & =f(y) G(y)-H(f(y))-(f(x) G(x)-H(f(x))) \\
& =f(x)(G(y)-G(x))+(f(y)-f(x)) G(y)-(H(f(y))-H(f(x))) \tag{1}
\end{align*}
$$

Now since H is differentiable and $f(y)>f(x)$ because f is strictly increasing, by the Mean Value Theorem, there exists ζ such that $f(y)>\zeta>f(x)$ and

$$
\begin{equation*}
H(f(y))-H(f(x))=(f(y)-f(x)) H^{\prime}(\zeta)=(f(y)-f(x)) G\left(f^{-1}(\zeta)\right) \tag{2}
\end{equation*}
$$

But since f is continuous and strictly increasing, by the Intermediate Value Theorem, there exists ζ_{y} such that $y>\zeta_{y}>x$ and $f\left(\zeta_{y}\right)=\zeta$. Hence it follows from (2) that

$$
\begin{equation*}
H(f(y))-H(f(x))=(f(y)-f(x)) G\left(f^{-1}\left(f\left(\zeta_{y}\right)\right)\right)=(f(y)-f(x)) G\left(\zeta_{y}\right) \tag{3}
\end{equation*}
$$

Therefore, it follows from (1) and (3) that

$$
\begin{aligned}
K(y)- & K(x)=f(x)(G(y)-G(x))+(f(y)-f(x)) G(y)-(f(y)-f(x)) G\left(\zeta_{y}\right) \\
& =f(x)(G(y)-G(x))+(f(y)-f(x))(G(y)-G(x))-(f(y)-f(x))\left(G\left(\zeta_{y}\right)--G(x)\right) \\
& =f(y)(G(y)-G(x))-(f(y)-f(x))\left(G\left(\zeta_{y}\right)--G(x)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{K(y)-K(x)}{y-x}=f(y) \frac{G(y)-G(x)}{y-x}-(f(y)-f(x)) \frac{G\left(\zeta_{y}\right)-G(x)}{y-x} \tag{4}
\end{equation*}
$$

Now $\operatorname{Lim}_{y \rightarrow x^{+}} f(y) \frac{G(y)-G(x)}{y-x}=f(x) g(x)$.
Note that $\quad \frac{G\left(\zeta_{y}\right)-G(x)}{y-x}=\frac{G\left(\zeta_{y}\right)-G(x)}{\zeta_{y}-x} \cdot \frac{\zeta_{y}-x}{y-x}$. Since $G^{\prime}(x)$ exists and is equal to $\mathrm{g}(x)$, there exists $\delta>0$ such that for $x<y<x+\delta,\left|\frac{G(y)-G(x)}{y-x}\right|<|g(x)|+1$. It follows that for $0 x<y<x+\delta,\left|\frac{G\left(\zeta_{y}\right)-G(x)}{\zeta_{y}-x} \cdot \frac{\zeta_{y}-x}{y-x}\right|<|g(x)|+1$. That is, $\frac{G\left(\zeta_{y}\right)-G(x)}{y-x}$ is bounded on $(x, x+\delta)$. Therefore,

$$
\begin{equation*}
\operatorname{Lim}_{y \rightarrow x^{+}}(f(y)-f(x)) \frac{G\left(\zeta_{y}\right)-G(x)}{y-x}=0 \tag{6}
\end{equation*}
$$

because $\operatorname{Lim}_{y \rightarrow x^{+}}(f(y)-f(x))=0$ by continuity at x.
Thus it follows from (4), (5) and (6) that,

$$
\operatorname{Lim}_{y \rightarrow x^{+}} \frac{K(y)-K(x)}{y-x}=f(x) g(x) .
$$

This proves that the right derivative of K at x is $f(x) \mathrm{g}(x)$.

If $x=a$, the above argument shows that $K^{\prime}(a)=f(a) \mathrm{g}(a)$. Similarly we can show that the left derivative of K at x is $f(x) \mathrm{g}(x)$. The same argument shows that $K^{\prime}(b)=f(b) \mathrm{g}(b)$.

Hence for x in $(a, b), K^{\prime}(x)=f(x) \mathrm{g}(x)$ and so $K^{\prime}=f \mathrm{~g}$. That is, K is a primitive of $f \mathrm{~g}$.

If f is strictly decreasing and continuous, then $-f$ is strictly increasing and continuous. Therefore, by what we have just proved, $-f g$ has a primitive say K, Then $-K$ is a primitive for $f g$.

Next we show that the conclusion of Lemma 2 is valid for an increasing and continuous function.

Corollary 3. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a continuous increasing function and $\mathbf{g}:[a, b] \rightarrow \mathbf{R}$ is a function that has a primitive. Then the product $f \cdot \mathrm{~g}$ has a primitive on $[a, b]$.

Proof, If f is increasing and continuous, then $h(x)=f(x)+x$ is strictly increasing and continuous on $[a, b]$. Therefore, by Lemma 2, $h(x) \mathrm{g}(x)$ has a primitive, say $K(\mathrm{x})$ on $[a, b]$. Also since x is strictly increasing and continuous, $x \mathrm{~g}(x)$ has a primitive $H(x)$ on $[a, b]$. Then $K-H$ is a primitive for $f \cdot \mathrm{~g}$ as $(K-H)^{\prime}(x)=K^{\prime}(x)-H^{\prime}(x)=h(x) \mathrm{g}(x)-x g(x)=f(x) \mathrm{g}(x)$.

Proof of Theorem 1.

If $f:[a, b] \rightarrow \mathbf{R}$ is continuous and of bounded variation, then f is the difference of two continuous increasing functions. Hence $f=f_{1}-f_{2}$, where f_{1} and f_{2} are increasing continuous functions. If g has a primitive, then by Corollary $3, f_{1} \mathrm{~g}$ and $f_{2} \mathrm{~g}$ both have primitives. It follows that $f \mathrm{~g}=f_{1} \mathrm{~g}-f_{2} \mathrm{~g}$ has a primitive.

We next present a special characterization of a function of bounded variation satisfying the conclusion of Theorem 1.

First a technical lemma.
Lemma 4. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation and has the Darboux property, i.e., f has the intermediate value property. Then f is continuous.

Proof. If f is of bounded variation, then it can have only jump discontinuities. But since f has the intermediate value property, f cannot have any jump discontinuity and so f is continuous.

Lemma 5. Suppose $f:[a, b] \rightarrow \mathbf{R}$ can be represented as the quotient of two functions having primitives. That is, $f=\mathrm{g} / h, \mathrm{~g}$ and h have primitives and $h \neq 0$. Then f is a Darboux function, i.e., f has the intermediate value property.

Proof. Suppose $f(\mathrm{c})<f(d)$ for some c, d in $[a, b]$, and $c \neq d$. For any k such that $f(\mathrm{c})$ $<k<f(d)$. That is,

$$
\begin{equation*}
\mathrm{g}(c) / h(c)<k<\mathrm{g}(d) / h(d) . \tag{1}
\end{equation*}
$$

Define $H(x)=\mathrm{g}(x)-k \cdot h(x)$ for x in $[a, b]$. Then since g and h have primitives, H too has a primitive. Therefore, by Darboux Theorem, H has the intermediate value property.

Since $h \neq 0$ and h has the intermediate value property, $h>0$ or $h<0$. Therefore, it follows from (1) that

$$
\begin{equation*}
\mathrm{g}(c)<k h(c) \text { and } k h(d)<\mathrm{g}(d), \text { if } h>0 \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{g}(c)>k h(c) \text { and } k h(d) .>\mathrm{g}(d), \text { if } h<0 . \tag{3}
\end{equation*}
$$

Hence, it follows from (2) and (3) that

$$
H(c)<0<H(d) \quad \text { or } \quad H(c)>0>H(d) .
$$

Therefore, since H has the intermediate value property, there exists x between c and d such that $H(x)=0$. That is, $\mathrm{g}(x)=k \cdot h(x)$ and so $f(x)=\mathrm{g}(x) / h(x)=k$. This shows that f has the intermediate value property.

Corollary 6. Suppose $f:[a, b] \rightarrow \mathbf{R}$ can be represented as the quotient of two functions having primitives. That is, $f=\mathrm{g} / h, \mathrm{~g}$ and h have primitives and $h \neq 0$. Furthermore if f is of bounded variation, then f is continuous.

Proof. By Lemma 5, f has the intermediate value property. Since f is also of bounded variation, by Lemma $4, f$ is continuous.

Now we state the characterization theorem.
Theorem 7. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is of bounded variation. Suppose there exists a nonzero function $h:[a, b] \rightarrow \mathbf{R}$ possessing primitives such that the product $f \cdot h$ possesses primitives. Then $f \cdot g$ possesses primitives for any g possessing primitives.

Proof. Let $K=f \cdot h$. Then K has primitives by hypothesis. Then $f=K / h$ since $h \neq 0$. And so f is a quotient of two functions possessing primitives and is also of bounded variation and so by Corollary $6, f$ is continuous. This means that f is a continuous function of bounded variation. Therefore, by Theorem $1, f \cdot g$ possesses primitives for any g possessing primitives.

Remark. By Theorem 7, a function of bounded variation having the property that there exists a non-zero function h possessing primitives such that the product $f \cdot h$ has primitives is necessarily continuous. Thus if f is a discontinuous function of bounded variation, then for any non zero function h possessing primitives, $f \cdot h$ has no primitives.

Corollary 6 is a criterion of deciding when a function of bounded variation is continuous. By isolating the use of the intermediate value property we can prove the following weaker result in exactly the same way.

Theorem 8. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a function of bounded variation that can be represented as the quotient of two Darboux functions, i.e., $f=\mathrm{g} / h$, where h is a non-zero Darboux function possessing primitives and g is a Darboux function satisfying that $\mathrm{g}+k$ is a Darboux function for any non-zero Darboux function k possessing primitives. Then f is continuous.

Following A. Bruckner, we can use the product formula for derivatives to deduce the following result.

Theorem 9. Suppose $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function possessing primitives and is Lebesgue integrable. Then for any differentiable function $F:[a, b] \rightarrow \mathbf{R}, F \cdot g$ possesses primitives, which are all absolutely continuous. In particular, if g is the derivative of a differentiable function of bounded variation or equivalently a differentiable absolutely continuous function, then for any differentiable $F, F \cdot g$ possesses primitives, which are all absolutely continuous..

Proof. Suppose $G:[a, b] \rightarrow \mathbf{R}$ is a primitive of g. Then since g is Lebesgue integrable, G is absolutely continuous and so G is continuous of bounded variation.. Since F is differentiable, by Theorem 1, $G \cdot F$ ' possesses primitives. Now by the product rule for derivatives,

$$
(G \cdot F)^{\prime}=G^{\prime} \cdot F+G \cdot F^{\prime}=F \cdot g+G \cdot F^{\prime} .
$$

Thus, if H is a primitive of $G \cdot F^{\prime}$, then $G \cdot F-H$ is a primitive of $F \cdot g$ since

$$
(G \cdot F-H)^{\prime}=(G \cdot F)^{\prime}-H^{\prime}=F \cdot g+G \cdot F^{\prime}-G \cdot F^{\prime}=F \cdot g .
$$

Since F is differentiable and so is continuous, F is a bounded Lebesgue integrable function. Because g is Lebesgue integrable, $F \cdot g$ is Lebesgue integrable. It follows by Theorem 6 of "Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallé Poussin;s Theorem" that $G \cdot F-H$ is absolutely continuous. Therefore, $F \cdot g$ possesses an absolutely continuous primitive for any differentiable F. Hence all its primitives are absolutely continuous.

In particular if G is differentiable and is of bounded variation, then $G^{\prime}=\mathrm{g}$ is Lebesgue integrable and so G is absolutely continuous. Note that a differentiable function on $[a, b]$ is absolutely continuous if and only if it is of bounded variation. It follows as above that $F \cdot g$ possesses absolutely continuous primitives for any differentiable F.

Remark. Note that any differentiable function $G:[a, b] \rightarrow \mathbf{R}$ is necessarily a continuous N function. (See lemma 4 of " When is a function on a closed and bounded interval be of bounded variation, absolutely continuous?".) Therefore, by Theorem 6 of "Functions Having Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallé Poussin;s Theorem", such a differentiable function G is absolutely continuous if and only if G^{\prime} is Lebesgue integrable.

In view of the remark above we may state Theorem 9 as follows.
Theorem 10. Suppose $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is the derivative of a differentiable absolutely continuous function. Then for any differentiable function $F:[a, b] \rightarrow \mathbf{R}, F \cdot g$ possesses primitives, which are all absolutely continuous.

If g is positive and g possesses primitives, then any primitive of g is strictly increasing. For such function we have the following result.

Lemma 11. Suppose $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function possessing primitives and $\mathrm{g}>0$ or $\mathrm{g}(x)$ $>.0$ for $x \neq a, b$. Then for any continuous function $f:[a, b] \rightarrow \mathbf{R}, f \cdot g$ possesses primitives, which are all absolutely continuous.

Proof. Suppose $G:[a, b] \rightarrow \mathbf{R}$ is a primitive of g . Then $G^{\prime}(x)=\mathrm{g}(x)>.0$ for $x \neq a$, b. It follows that G is strictly increasing and continuous. Hence $G([a, b])$ is compact and so a closed and bounded interval $[c, d]$ and $G^{-1}:[c, d] \rightarrow[a, b]$ is also strictly increasing and continuous. Thus, for any continuous function $f:[a, b] \rightarrow \mathbf{R}, f \circ G^{-1}:[c, d] \rightarrow \mathbf{R}$ is continuous and so has a primitive $H:[c, d] \rightarrow \mathbf{R}$ such that $H^{\prime}=f \circ G^{-1}$. Then $H \circ G:[a, b]$ $\rightarrow \mathbf{R}$ is differentiable and by the Chain Rule,

$$
(H \circ G)^{\prime}(x)=H^{\prime}(G(x)) \cdot G^{\prime}(x)=f \circ G^{-1}(G(x)) \cdot \mathrm{g}(x)=f(x) \cdot \mathrm{g}(x) .
$$

It follows that $H \circ G$ is a primitive of $f \cdot g$. Note that g being the derivative of a monotone function is Lebesgue integrable. Since f is continuous and so is integrable and bounded, $f \cdot g$
is Lebesgue integrable. It follows that $H \circ G$ is absolutely continuous. Hence all primitives of $f \cdot g$ are absolutely continuous. We can also deduce that $H \circ G$ is absolutely continuous by observing that H satisfies a Lipschitz condition and G is absolutely continuous so that their composite $H \circ G$ is absolutely continuous.

Theorem 12. Suppose $g:[a, b] \rightarrow \mathbf{R}$ is a function possessing primitives and $g \geq 0$ Then for any continuous function $f:[a, b] \rightarrow \mathbf{R}, f \cdot g$ possesses primitives, which are all absolutely continuous.

Proof. Let $h=g+1$. Then $h>0$. Therefore, by Lemma 11, $f \cdot h$ possesses an absolutely continuous primitive, say H. Since f is continuous, f has an absolutely continuous primitive, say F. Then $H-F$ is absolutely continuous, differentiable and

$$
(H-F)^{\prime}=H^{\prime}-F^{\prime}=f \cdot h-f=f \cdot g+f-f=f \cdot g .
$$

Thus, $f \cdot g$ possesses an absolutely continuous primitive and so all its primitives are absolutely continuous.

The proof of Theorem 12 suggests the following slight generalization of Theorem 12.
Theorem 13. Suppose $g:[a, b] \rightarrow \mathbf{R}$ is a function possessing primitives. Suppose there exists a function $h:[a, b] \rightarrow \mathbf{R}$ possessing primitives such that $h \leq 0$ and $\mathrm{g} \geq h$. Then for any continuous function $f:[a, b] \rightarrow \mathbf{R}, f \cdot g$ possesses primitives, which are all absolutely continuous.

Proof. Let $k=g-h \geq 0$. Then for any continuous function $f:[a, b] \rightarrow \mathbf{R}$, by Theorem 12, $f \cdot k$ has an absolutely continuous primitive K and $-f \cdot h$ has an absolutely continuous primitive H. Hence $K-H$ is absolutely continuous and $(K-H)^{\prime}=f \cdot g$ and so $f \cdot g$ has an absolutely continuous primitive. It follows that all its primitives are absolutely continuous.

Note that in the proof of Theorem 13, both K and H are differentiable increasing (therefore absolutely continuous) functions. We can prove the following in exactly the same way as Theorem 13.

Theorem 14. Suppose $\mathrm{g}:[a, b] \rightarrow \mathbf{R}$ is a function possessing a primitive expressible as the difference of two differentiable increasing functions. Then for any continuous function f : $[a, b] \rightarrow \mathbf{R}, f \cdot g$ possesses primitives, which are all absolutely continuous.

