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Introduction. 

The Riemann integral operates on some collection of functions, these functions 

are continuous or at most not very discontinuous, that is, discontinuous on at 

most a set of measure zero and be bounded with a domain usually bounded and 

if unbounded the function would be zero outside a bounded subset.  It produces 

a number, a scalar.  The functions on which it operates form a vector space; 

usually the vector space comes with some natural definition of a norm. Being a 

space of functions, the collection of real functions in the space comes with a 

natural partial order, f s  if and only if ( ) ( )f x s x  for all x in the domain.  The 

Riemann integral integrates the positive function to give a positive number C.  

More generally, if f g , then f g  .  The Riemann integration is linear. 

Hence the classical Riemann integral is a particular real linear functional on 

( )cC ℝ , the real vector space of all continuous real valued function on ℝ  with 

compact support.  Observe that from this definition of the Riemann integral we 

can derive the basic idea of the length of the interval.  

                    
[ , ]

[ , ] ( , )

Length of [ , ] inf supa b
a b f g a b

a b b a f g      ℝ ≺ ≺

 . 

By Urysohn’s Lemma, since ℝ  is a locally compact Hausdorff topological 

space, taking [ , ]K a b  and U be any open interval (c, d ) such that ( , ) [ , ]c d a b , 

there exists a function ( )cf C ℝ  such that [ , ] ( , )a b f c d≺ ≺ .  This means that 

[ , ] ( , )a b c df    .  Taking  [ , ] ( , )a b    ,  there exists  ( )cf C ℝ  such that 

[ , ] ( , )f a b  ≺ ≺ , that is, [ , ] ( , )a bf    .  We may thus define the length of [a, 

b] by taking it to be 
[ , ]
inf

a b f
f≺

  or  
( , )

sup
g a b

g
≺

. 

We then aim to construct a Lebesgue integral, which will integrate much more 

general functions, generalising this definition of a Riemann integral.  We shall 

consider complex vector space and complex linear functional.  Recall that a 

linear transformation from a real vector space to the real numbers ℝ  is called a 

real linear functional and that a linear transformation from a complex vector 

space to the complex numbers ℂ  is called a complex linear functional.  We 
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show approximately to any positive complex linear functional   on ( )cC X , the 

space of all continuous complex function on X with compact support, where X is 

a locally compact Hausdorff topological space, there corresponds a measure   

defined on some  - algebra M   containing the Borel sets of X such that  

                                            ( )
X

f f d    , 

for all f in ( )cC X .  Since ( )cC X  is dense in 1( , )L X   in the L1 norm as the 

measure   will have the additional properties that satisfies Theorem 23 of 

Convex Functions, Lp Spaces, Space of |Continuous Functions, Lusin’s 

Theorem, we can then extend the linear functional   from ( )cC X to 1( , )L X  . 

A complex linear functional, : ( )cC X ℂ  on ( )cC X , is said to be positive, if 

for any real valued function f in  ( )cC X , 0 ( ) 0f f    .  Similarly, a real 

linear functional ,: ( )cC X ℝ ℝ  on , ( )cC Xℝ , the space of all continuous real 

valued functions on X with compact support, is positive, if , ( )cf C X ℝ and 

0 ( ) 0f f    .   

The following trivial example gives a simplistic view of this correspondence.  

Let 0x X  be a fixed point.  Define 0( ) ( )f f x  for any function f.  This 

corresponds to the measure, ‘unit mass’ at 0x .  That is, for E  M   =  - algebra 

of all subsets of X, 

                   01  if  ,
( ) .

0,  otherwise

x E
E


 


  

For this case, any function :f X ℂ  is measurable and 0( )
X

f d f x  . 

We shall consider the function space of complex valued functions with compact 

support on a locally compact Hausdorff space X and positive complex linear 

functional on this function space.  Then we specialize to the function space of 

real valued functions on X with compact support and positive real linear 

functional on this function space and bounded real linear functional on this 

function space. 
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Riesz Representation Theorem 

We now state the association of a complex linear functional with a measure in 

more explicit terms. 

Theorem 1. (Riesz Representation Theorem) 

Let X be a locally compact Hausdorff topological space. Let 

 ( ) : ;   is continuous with compact supportcC X f X f ℂ .  Let : ( )cC X ℂ  be a 

positive complex linear functional on ( )cC X , i.e., whenever ( )cf C X  and f is 

real valued with f ≥ 0, then ( ) 0f  .  Then we have the following: 

(a) There exists a  - algebra M   on X, containing all the Borel sets of X and 

there exists a unique positive measure,  , on M   such that 

                              ( )
X

f f d    for all ( )cf C X .  

(b) For all compact K X , ( )K    . 

(c) For all E  M,  ( ) inf ( ) :  and  is openE V V E V   .  (Outer regularity) 

(d) For all E  M, such that either E is open or ( )E   , 

          ( ) sup ( ) :  and  is compactE K K E K   .  (Inner regularity) 

(e) M   is -complete, i.e., for all N  M   such that ( ) 0,N   for E N , E  M .  

Proof. 

We proceed with the proof in the following order. Firstly, we prove that the 

measure  is unique.  Then we show the existence of the measure  .  The 

remaining of the proof deals with the conclusions (b) (c) (d) and (e) of the 

theorem. 

A technical result that we need is partition of unity.  We shall state and prove 

this technical result at the end of this note. 

Uniqueness of  . 
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Suppose 1 2 and    are two measures on M    satisfying the conclusion of the 

theorem.  Note that the value of the measure,  , is entirely determined by the 

value of  on compact subsets of X by part (d).  Thus, it is sufficient to show 

that 1 2( ) ( )K K   for any compact subset K of X. 

Take any compact subset K of X.  By part (b), 1 2( ), ( )K K    .  Therefore, given 

any 0  , by part (c), there exists an open set V containing K such that   

                   1 1( ) ( )V K    . 

Now we appeal to Urysohn’s Lemma (Lemma 22, Convex Function, Lp  Spaces, 

Space of Continuous Functions, Lusin’s Theorem).  Since X is a locally compact 

Hausdorff topological space, and K V , with K compact and V open, by 

Urysohn’s Lemma, there exists a continuous function ( )cf C X  such that 

K f V≺ ≺  .  This means that K Vf   .  Note that 

       2 2 2 1 1 1 1( ) ( ) ( ) ( )K V
X X X X

K d f d f f d d V K                     .   

Since  is arbitrary, it follows that  2 1( ) ( )K K  . 

Similarly, by reversing the role of 1 2 and   , we can show that 1 2( ) ( )K K  .  

Hence 1 2( ) ( )K K   for any compact subset K of X.  Thus, the uniqueness of 

the measure  is established. 

Now we shall define   first on open set, then on any subset of X.  Subsequently 

we shall define the -algebra M  . 

Let V be an open set of X.  Define ( )V by 

                ( ) sup ( ) : ( ) and cV f f C X f V    ≺ . 

For any subset E X , define 

                    ( ) inf ( ) :  and  is open in E V E V V X   . 

Let  M F =   : ( )  and ( ) sup ( ) :  and  is compactE X E E K K E K         and 

M  = { :E X E K  M F for all compact K  X }. 

Observe that (a)  (b).  
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Take any compact subset K of X.  Take any open set U K .  By Urysohn’s 

Lemma, there exists a continuous function with compact support ( )cf C X  such 

that K f U≺ ≺ .  That is, K Uf   . Therefore, 

                    ( ) ( )K
X X

K d f d f          . 

Now suppose U and V are open subsets of X and V U , then ( ) ( )V U  .  This 

is because    : ( ) and : ( ) and c cf f C X f V f f C X f U  ≺ ≺  so that 

    ( ) sup ( ) : ( ) and sup ( ) : ( ) and ( )c cV f f C X f V f f C X f U U       ≺ ≺ . 

Therefore, if E is open,  ( ) inf ( ) :  and  is open in E U E U U X   .  Thus, our 

definition of ( )E  for any subset E of X is consistent with the open sets in X. 

We shall prove that  is countably additive on M   and that M   is a  - algebra in 

stages.   

We note the following properties of the positive (real or complex) linear 

functional   and the function,  , which is defined on all subsets of X.   

(1)   is monotone, i.e., for  and ( )cf g C X  and f and g are real valued,  

( ) ( )f g f g     .  This is because by linearity, ( ) ( ) ( ) ( )g f g f f        

as ( ) 0g f   . 

(2)   is monotone, i.e., for any subsets A and B of X, ( ) ( )A B A B    . 

If A B , then { :  and  is open in } { :  and  is open in }V B V V X V A V V X   .  

Therefore,    

             ( ) inf{ ( ) :  and  is open in }B V B V V X    

             inf{ ( ) :  and  is open in } ( )V A V V X A    . 

We can prove part (e) easily. 

Proof of part (e)  

Suppose ( ) 0E  . Plainly, by the monotonicity of   , E  M F and that for any 

N E , ( ) 0N  .  Obviously for any compact subset K of X, ( ) 0E K   . It 

follows that E  M   and that for any N E , E  M  . 
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Part (c) of the theorem plainly holds by the definition of   . 

Therefore, we only need to prove parts (a) and (d).  That is, we need to prove 

that   is a positive measure on M  , M   is a -algebra, ( )
X

f f d   for all 

( )cf C X and  satisfies part (d). 

Note that  is defined on all subsets of X.  We need to show that  is countably 

additive on M  .  We have the following consequence of the definition of  on all 

subsets of X, which will contribute to part of the proof of the countable 

additivity of  on M  .   

(1)  For any family  
1i i

E
 

 of subsets of X,  
1 1

( )n n
n n

E E 


 

   
 

∪ . 

To prove (1), we begin by considering open sets in X.  If 1 2 and V V  are two open 

sets in X, then  1 2 1 2( ) ( )V V V V     .  We shall prove this as follows.  Recall 

that  1 2 1 2( ) sup ( ) : ( ) and  cV V g g C X g V V     ≺ .   Suppose ( )cg C X  and  

1 2g V V≺ .  Then support g  1 2V V . Since support g is compact and plainly,  

 1 2,V V is an open cover for support g, we can take a partition of unity  1 2,h h  on 

support g subordinate to the covering  1 2,V V , such that ( )i ch C X , 0 1ih  , 

i ih V≺ ,    0
c

i ih V  , i = 1, 2   and 1 2 1h h   on support g.  Note that support ih  

Vi  , i = 1, 2.  Hence, we get i ih g V≺  for  i = 1, 2 and 1 2h g h g g  .  Therefore, 

1 2 1 2( ) ( ) ( ) ( ) ( )g h g h g V V       .  This is true for any ( )cg C X  with  

1 2g V V≺ .  Hence, 

                   1 2 1 2 1 2sup ( ) :  and ( )cV V g g V V g C X V V        ≺ . 

It then follows by induction that for a finite family of open sets,  
1i i n

V
 

,

1 1

( )
nn

i i
i i

V V 
 

   
 

∪ .  With this proven, we shall apply this to arbitrary family of 

subsets  
1i i

E
 

. 

If there exists an integer i such that ( )iE   , then trivially, 
1 1

( )n n
n n

E E 


 

   
 

∪ . 

So, we now assume that ( )iE   for all integer i ≥ 1.   By the definition of 

( )iE , given  > 0, there exists open set iV  such that i iE V   



7 

 

                               ( ) ( )
2

i i i
V E


    . 

Let 
1

i
i

V V



 ∪  .  Then V is an open subset of X.  Take any ( )cf C X  such that 

f V≺ .  Since support f  is compact and support f   V, a set of finite number of 

the open subsets  
1i i

V
 

covers support  f.   Hence, there exists a positive integer 

n such that support f  
1

n

i
i

V


 ∪ .  Therefore, 
1

n

i
i

f V


≺ ∪  .  Hence, 

                  
1 1 1 1 1

( )
2

n n nn

i i i ii
i i i i i

f V V E E


    


    

        
 

   ∪ . 

It follows that    
1

i

i

V E  




  .  Since 
1

i
i

E V



∪ ,    

1 1

i i
i i

E V E   


 

     
 

∪ . 

As  is arbitrary,  
1 1

i i
i i

E E 


 

   
 

∪ . 

(2) Every compact subset of X belongs to M F . 

Take any compact subset K of X.  Take any ( )cf C X  with .K f≺   Let 

1
: ( )

2
V x X f x

    
 

 .  Since f  is continuous, V is open in X.  Take any 

( )cg C X with g V≺ .  Then for x V  , ( ) 1 2 ( )g x f x  .  Since g(x) = 0 for  

cx V  , ( ) 2 ( )g x f x  for all x in X , i.e., 2g f .  Hence,  ( ) 2g f     for any 

( )cg C X with g V≺ .  It follows that 

              ( ) sup ( ) :  and ( ) (2 )cV g g V g C X f       ≺ . 

Since K V , it follows that ( ) ( )K V    .  Plainly, 

 sup ( ) :  and  is compact ( )L L K L K    and so K is in M F .  Incidentally, this 

also shows that for any compact subset K, (K) < ∞ . 

(3) Every open subset V of X with  V    belongs to M F . 

Take any open subset V of X with  V   .  By definition of   on open subset, 

given  > 0, there exists a continuous function  f  with compact support such that 

f V≺  and ( ) ( ) ( )V f V      .  Let K = support  f.  Then K V  and so 

( ) ( ).K V    Suppose now W is any open set containing K.  Then f W≺ .  By 
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the definition of  W , ( ) ( )f W  .  Therefore, ( )f  is a lower bound for 

 ( ) :  and  is open in V K V V X   and so 

            ( ) ( ) inf ( ) :  and  is open in f K V K V V X     . 

It follows that ( ) ( ) ( ) ( )V f K V        .   This means 

 ( ) sup ( ) :  and  is compactV K K V K   .  Hence, V  M F . 

(4)  is countably additive on M F . That is, suppose E1, E2, ….., are in M F and 

are pairwise disjoint, then  
1 1

i i
i i

E E 


 

   
 

∪ .   Moreover, if 
1

i
i

E




    
 
∪ , then 

1
i

i

E



∪   M F . 

We shall prove this in stages.  First on compact subsets since compact subsets 

are contained in M F  by (2). 

Suppose 1 2,K K  are disjoint compact subsets of X.  We shall show that 

     1 2 1 2K K K K     .  Since X is Hausdorff and 1 2K K   , for a fix 

2y K , for each 1x K , there exists open sets,  ,x xU V  with xx U  , xy V such that 

x xU V   .   Hence,   1:xU x K  is an open cover for K1 .  Therefore, since K1 

is compact,  1:xU x K has a finite subcover, 
1 21 nx x xK U U U   ⋯ .  Let 

1 2 ny x x xU U U U   ⋯ .  Then 1 yK U  and 
1

i

n

y x
i

U V


  ∩ .  Let 
1

i

n

y x
i

V V


 ∩ .  Then 

 and y yU V  are open with 1  and y yK U y V   and y yU V   .   It follows that 

 2:yV y K is an open cover for K2 .  As K2 is compact, it has a finite subcover  

1 2 2jy y yV V V K   ⋯ .  Let 
1 22 2jy y yV V V V K    ⋯  and 1 1

1
i

j

y
i

V U K


 ∩ .  Plainly, 

1 2V V   .  As 1 2K K  is compact, 1 2K K  is in M F .  As

   1 2 1 2inf ( ) :  and  is open in K K V K K V V X     , given  > 0, there exists 

open set 1 2W K K   such that 

                        1 2 1 2( )K K W K K        . 

Note that 1 2 and  W V W V  are open in X and are disjoint.  Plainly, 

 ( )iW V W      for i = 1, 2.  Therefore, by definition of   on open set, 

there exists ( )i cf C X  such that i if W V≺   and  ( )i if W V      for i = 1, 2. 
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Note that support if   WVi , for i = 1, 2, and so support f1  and support f2 are 

disjoint.  It follows that 1 2f f W ≺ . 

Now, 1 1 1 2( ) ( ) ( ) ( )K K W V W V         as 1 2 2 2 and K W V K W V    , 

                              1 2 1 2( ) ( ) ( ) 2f f f f            

                               ( ) 2W    ,   by definition of ( )W , 

                                 1 2 3K K    . 

Since  is arbitrary,      1 2 1 2K K K K     .  We have already proved as in 

(1) that      1 2 1 2K K K K      and so      1 2 1 2K K K K     .  By a 

simple mathematical induction, if K1, K2, ….., Kn  are compact subsets of X and 

are pairwise disjoint, then  
1 1

nn

i i
i i

K K 
 

   
 

∪  

Now suppose E1, E2, ….., are in M F and are pairwise disjoint.   Let 
1

i
i

E E



 ∪  .  

Suppose ( )E   . Then it follows by the inequality in part (1), 

1 1

( ) ( )n n
n n

E E E  


 

   
 

∪ that  
1

i

i

E




  .  Hence, trivially 
1

( ) ( )n

n

E E 




   . 

Suppose now ( )E   .  Since each Ei   M F , 

 ( ) sup ( ) :  and  is compacti iE K K E K   .  Given  > 0, there exists compact 

subset i iK E  such that  

                                ( ) ( ) ( )
2

i i i i
E K E


      . 

For each integer n ≥ 1, let 
1

n

n i
i

H K


 ∪ .   Then  
1 1

n

n i i
i i

H E E E


 
  ∪ ∪ .  Therefore, 

     
1 1

nn

n i i
i i

E H K K   
 

    
 

∪ , since K1, K2, …, Kn are pairwise disjoint,  

        
1 1 1

1
( ) ( )

2

n n n

i ii
i i i

E E   
  

      . 
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It follows that 
1

( ) ( )i

i

E E  




  .  Since  is arbitrary, 
1

( ) ( )i

i

E E 




 .  Hence 

this together with part (1) gives 
1

( ) ( )i

i

E E 




 .  We now show that if ( )E   , 

then E   M F . 

If ( )E   , given any  > 0, there exists an integer N such that n ≥ N implies 

that      
1 1

( ) 2 2
n n

i i n

i i

E E K H      
 

       .  Here Hn is compact and  

nH E .  It follows that   ( ) sup :  and  is compactE K K E K   .  Therefore, E  

 M F . 

(5) For all E   M F , given  > 0, there exists compact subset K of X and open 

subset V with K E V  such that ( )V K   . 

For E   M F ,   ( ) sup :  and  is compactE K K E K   .  Hence given  > 0, 

there exists compact subset K E  such that 

                        ( ) ( ) ( )
2

E K E


     . 

Since  ( ) inf ( ) :  and  is open in E V E V V X   , there exists open set V such that 

E V  and  

                               ( ) ( )
2

V E


   . 

Hence, ( ) ( ) ( )
2 2

V E K
 

      .   Now by (2), K   M F .  Since X is 

Hausdorff,  K is closed in X.  Therefore, V K  is open in X.  

( ) ( ) ( )V K V E         .  It follows from (3) that V K  M F .  By part (4), 

( ) ( ) ( )V K V K      and so ( ) ( ) ( )V K V K       . 

(6)  If A1 , A2  M F, then A1  A2 , A1  A2 and A1  A2   M F . 

By (5), given  > 0, there exist compact Ki , open Vi such that Ki  Ai  Vi and 

( )i iV K   for i = 1, 2.  

Then  1 2 1 2 1 1 1 2 2 2( ) ( )A A V K V K K V V K         .  Therefore, 
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                1 2 1 1 1 2 2 2( ) ( )A A V K K V V K           

                             1 2 12 ( ) 2 ( )K V K          . 

Note that 1 2K V  is compact, 1 2 1 2K V A A    and 1 2 1 2( ) ( ) 2K V A A      .   This 

shows that given any  > 0, there exists a compact set L such that 1 2L A A   and 

1 2 1 2( ) ( ) ( )A A L A A        .  Hence, 

                     1 2 1 2( ) sup :  and  is compactA A L L A A L     . 

Therefore, A1  A2  M F . 

Now,  1 2 1 2 2A A A A A     and as      1 2 1 2A A A A       , A1  A2, A2  

M F  and A1  A2, A2 are disjoint and so by part (4),  1 2 1 2 2A A A A A     M F . 

Next,   1 2 1 1 2A A A A A      M F , since A1  A2 and A1  M F . 

(7)  M  is a -algebra containing all Borel sets of X. 

Recall that A  M  if  AK  M F for all compact subset K of X.  Take A  M  .  

We shall show that the complement Ac  M . Now cA K K A K      M F by 

part (6) since K and AK  M F .  Hence, Ac  M .  Suppose  iA  is a countable 

collection of members of M  .  If  
1

n

i i
A


 is a finite collection, then by part (6) for 

any compact K, 
1 1

n n

i i
i i

A K A K
 

    
 
∪ ∪  M F and so 

1

n

i
i

A

∪  M  .  So, we now 

assume that  
1i i

A



is a collection of infinitely countable number of members of 

M  .  We shall show that 
1

i
i

A A



 ∪   M  .   Let 1 1B A K   .   Inductively, define 

1 2 1n n nB A K B B B      ⋯  .  Then 
1

i
i

A K B



  ∪  .  Since nA K  M F for all 

integer n ≥ 1, it follows from part (6) that Bi  M F for all integer i ≥ 1.  

Moreover, the collection  
1

n

i i
B


 are pairwise disjoint.  By part (4),  

 since  
1

( )i
i

B A K 




      
 
∪ , 

1
i

i

B A K



 ∪  M F .  Hence, 

1
i

i

A A



 ∪   M  .    

Next we shall show that if C X  is closed in X, then C  M  .  In particular, X  

M  .   

If C is closed, then CK is compact for any compact subset K of X and so CK 
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 M F.   Thus C  M  .  Hence, X  M   and M  is a -algebra containing all 

closed subsets of X, hence all open subsets of X.  So, it contains all Borel sets of 

X. 

(8) M F = { E   M  : (E) < ∞ }. 

Suppose E  M F. Then by (6), since by (2) any compact K  M F , EK  M F .  

Hence, E M.  That is, M F  M   and M F   { E   M  : (E) < ∞ }. 

Conversely, suppose E  M   and ( )E   .  As  

 ( ) inf ( ) :  and  is open in E V E V V X   , there exists an open set V in X such 

that E V  and ( )V   .  Since V is open, by (3), V  M F .  Hence, 

  ( ) sup :  and  is compactV K K V K   .  Therefore, given any  > 0, there 

exists a compact set K  V such that   ( )K V    so that  V K   .  Since 

by definition of M, EK  M F, there exists compact H E K   such that  

  ( )H E K     .   Since    E E K V K    , 

                 ( ) ( ) 2E E K V K H          .  

As H is compact and H E , this shows that  

               ( ) sup :  and  is compactE H H E H   . 

Therefore, E  M F.  Hence, { E   M  : (E) < ∞ } M F .  Thus, { E   M  : (E) 

< ∞ } = M F .   

Remark.  Thus, part (d) holds if ( )E   .  If E is open and ( )E   , then the 

conclusion obviously holds too.  We are left with the case E is open and 

( )E   .  Now  ( ) sup ( ) : ( ) and cE f f C X f E     ≺ implies that given any 

M > 0, there exists ( ) and cf C X f E ≺  such that ( )f > M.  Let K = support f  

and so K E .  Since ( )K   , there exists open set V containing K such that    

                          ( ) ( )V K      

Let  U V E  . Then U is open and support f = K  U so that f U≺  and 

( ) ( )U K    .  Therefore, ( ) ( )U f M    . It follows that  

( ) ( )K U M       .  We can now conclude that 
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 sup ( ) :  and  is compactK K E K     and so 

 ( ) sup ( ) :  and  is compactE K K E K     . 

(9)  is a measure on M . 

We have proved that  is countably additive on M F and that M is a -algebra. 

Suppose E1, E2, … , are in M  and are pairwise disjoint. 

If for some integer i, ( )iE   , then plainly, 
1 1

( )n n
n n

E E 


 

     
 

∪ .  We now 

assume ( )iE   for all integer i ≥ 1.  By part (8), Ei  M F for all integer i ≥ 1. 

It follows by part (4) that  
1 1

i i
i i

E E 


 

   
 

∪ .  Hence,  is countably additive on 

M  and so  is a measure on M . 

(10) For all ( )cf C X ,  ( )
X

f f d   . 

We note that it is sufficient to prove this for real f.   For complex f we may write 

Re Imf f i f  .  Then the real part of  f, Re f , and the imaginary part of  f, Im f 

, are continuous real functions with compact support.  Then, 

          ( ) Re Im Re Im Re Im
X X X

f f i f f i f f d i f d f d               . 

Let f be a continuous real valued function with compact support in ( )cC X .  Let 

K = support f and so K is compact.  Since f is continuous, f(K) is compact and is 

a compact subset of ℂ  and resides in the real line.  f(K) is closed and bounded 

on the real line. Therefore, ( )f X  is a bounded subset on the real line.  Thus, we 

may assume that ( ) [ , ]f X a b . Given  > 0, partition [ , ]a b  as follows 

      1 2 na y y y b    ⋯   with 1i iy y    for 2  i  n . 

and add a point 0y a  so that 1 0y y   . 

Let  1: ( )i i iE x X y f x y K      for 1  i  n.  That is,  1

1( , ]i i iE f y y K
  .  

Since f is continuous and so is Borel measurable, it follows that each Ei is a 

Borel set.  Moreover  iE are pairwise disjoint and covers K.  Since K is 

compact, ( ) ( )iE K    by part (2).  Therefore, by part (8), Ei  M F for 1  i  

n.  By the definition of ( )iE , given  > 0, there exists open set i iW E  such that 
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( ) ( )i iW E
n


   .   Let  1 1

1 12 2
: ( ) ( )i i i i iD z z y y y y         ℂ .  Then iD  is 

an open disk and so  1

i iU f D  is open and 1 ( )i iy f x y     for all x in iU . 

Then i iU E . Let  i i iV W U   and we have ( ) ( ) ( )i i iV W E
n


      and

( ) if x y    for all x in Vi .  Note that 
1 1

n n

i i
i i

V E K
 

 ∪ ∪ . Take a partition of unity 

 
1i i n

h
 

 on K subordinate to the covering  
1i i n

V
 

 such that, for 1  i  n, 0 1ih 

, i ih V≺  and 1 1nh h  ⋯  on K.  Then we have 

           
1

n

i

i

h f f


  since 
1

1
n

i

i

h


  on K, and for 1  i  n, 

            ( ) ( ) ( )i i ih x f x h x y    since i ih V≺  and ( ) if x y    for all x in Vi  and 

            ( )i iy f x y      for all x in Ei . 

By linearity,  
1

( )
n

i

i

f h f


   .  As  is a positive functional and   i i ih f h y   , 

   ( ) ( ) ( )i i i i ih f y h y h         for 1  i  n.  Therefore,  

                             
1 1

( )
n n

i i i

i i

f h f y h
 

       . 

Since  i ih V≺  for 1  i  n, by definition of  iV , ( ) ( )i ih V   for 1  i  n.   For 

1  i  n, ia y b   so that 0iy a   .  Therefore,  

          
1 1 1

n n n

i i i i i

i i i

y h y a h a h 
  

           

                                
1 1

n n

i i i

i i

y a h a h
 

 
      

 
   

                               
1 1

( )
n n

i i i

i i

y a V a h 
 

 
     

 
   

                                    
1 1 1

n n n

i i i i

i i i

y a E y a a h
n


  

  

 
        

 
        

                                      
1 1 1 1

2
n n n n

i i i i i

i i i i

y E a E y a a h
n
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1 1

2
n n

i i i

i i

y E a K b a a h     
 

 
         

 
   

                                    
1 1

2
i

n n

i
E

i i

f d K b a a K a h    
 

 
        

 
      

                                  
1

2
n

i
X

i

f d K b a a K a h    


 
        

 
 . 

Now we claim that  
1

n

i

i

K h


 
  

 
 .   Note that 

1

0 1
n

i

i

h h


    and K h≺ .  Take    

0 < k < 1.  Let   : ( )kV x X h x k   .  Since h is continuous, Vk is open.  For any 

( )kg C X such that kg V≺ , 
1

( ) 1 ( )g x h x
k

   for x in Vk .  Since ( ) 0g x   for  c

kx V , 

1
( ) ( )g x h x

k
  for all x in X.  Therefore, 

1 1
( ) ( )g h h

k k

      
 

.  Hence, for any

( )cg C X such that kg V≺ , 
1

( ) ( )g h
k

    and so 

  1
( ) sup ( ) : , ( ) ( )k k cV g g V g C x h

k
     ≺ .  As 1h   on K, for any 0 < k < 1, 

kK V .  Therefore, 
1

( ) ( ) ( )kK V h
k

    .  Letting 1k  , we deduce that 

( ) ( )K h   . 

 Hence,   

         
1

( ) 2
n

i
X

i

f f d K b a a K a h    


 
         

 
  

                 2
X

f d K b a        . 

Since  is arbitrary, ( )
X

f f d   .    

As    is linear,  ( ) ( )
X X

f f f d f d           and so ( )
X

f f d   ,  

Thus, ( )
X

f f d   . 

We say a positive Borel measure   is regular, if the conclusion (c) and (d) 

holds for any Borel measurable set E without any condition.  
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Remark. 

1.  Take the space of all continuous real-valued functions with compact support 

on a locally compact Hausdorff topological space X,    

          , ( ) : ;  is continuous with compact supportcC X f X f ℝ ℝ . 

Take ,: ( )cC X ℝ ℝ to be a positive real linear functional on , ( )cC Xℝ .  Then the 

above proof applies equally well to this positive linear functional to give the 

same conclusion (a) to (d).    

2.  If X is a compact Hausdorff space and : ( )cC X ℂ  is a positive linear 

functional, then by the Riesz Representation Theorem (Theorem 1), there exists 

a -algebra M   on X, containing all the Borel sets of X and a unique positive 

measure,  , on M   such that ( )
X

f f d   .  Since X is compact, (X) < ∞ and 

so  is a finite positive regular Borel measure, meaning part (c) and (d) of Riesz 

Theorem hold without any condition.   Moreover, ( ) ( )cC X C X , the space of 

continuous function with the sup norm,  sup ( ) :
u

f f x x X  , is a Banach 

space.  Furthermore, ( ) ( )
uX X

f f d f d f X       .  This means  is 

bounded and so is continuous and ( )X  .  Actually, as ( ) (1)X     , 

              sup ( ) : 1, ( ) ( ) ( )cu
f f f C X C X X         . 

Thus, : ( )cC X ℂ  is a bounded complex linear functional. In this case, we 

have a one-one map from the collection of positive complex linear functionals 

to the collection of finite positive regular Borel measures with the norm 

( )X  .  Furthermore, this map preserves norm. 

 

Suppose X is a compact Hausdorff topological space.  Then  

             , ( ) : ;  is continuous with compact supportcC X f X f ℝ ℝ  

                        ( ) : ;  is continuousC X f X f  ℝ ℝ . 

Suppose : ( )C X ℝ ℝ  is a positive real linear functional.  As remark before, 

the Riesz Representation Theorem for positive real linear functional on the 

space of real valued functions on the locally compact topological space X 
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follows from Theorem 1 as the proof is exactly the same.  That is, we have 

conclusion (a) to (d) of Theorem 1. Then the Riesz Representation Theorem 

applies to give a positive Borel mesure, , such that ( )
X

f f d    for all 

( )f C X ℝ . Note that for a positive real linear functional , for any f in ( )C Xℝ , 

 ( ), ( ) ( )f f f f       . Thus, if 1f  ,   ( ) (1)f f      and since 

 sup ( ) : 1 and  ( )
u

f f f C X     ℝ ,  (1)     .  This means any positive 

real linear functional is a bounded real linear functional.  Thus, 

( ) 1 (1)
X

X d       and so  is a finite, positive and hence regular Borel 

measure by part (d) since ( ) ( )E X     for all E in M .  Thus, any positive 

real linear functional : ( )C X ℝ ℝ  is represented by a unique finite positive 

regular Borel measure. 

 

If we consider just bounded real linear functional : ( )C X ℝ ℝ , the situation is 

somewhat different.  We may not apply Theorem 1 directly.  But if we can write 

 as the difference of two positive real linear functionals, we may proceed to 

apply Riesz Representation Theorem (Theorem 1).   We may decompose a 

bounded real linear functional  on ( )C Xℝ  for any compact Hausdorff 

topological space X as the difference of two positive real linear functionals. 

 

Proposition 2.  Suppose X is a compact Hausdorff topological space and 

 ( ) : ;  is continuousC X f X f ℝ ℝ .  Suppose : ( )C X ℝ ℝ  is a bounded real 

linear functional.  Then we can decompose  as       such that  and     

are positive real linear functionals and (1) (1)           . 

Proof.   

Let ( )C X
ℝ denote the set of non-negative functions in ( )C Xℝ . 

Define for  f  in ( )C X
ℝ ,   

   ( ) sup ( ) : ( ) and 0 sup ( ) : ( ) and 0f h h C X h f h h C X h f           ℝ ℝ .   

This is well defined since  is bounded so that the supremum above exists.  
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Since (0) 0  , ( ) 0f   for all ( )f C X ℝ .  Plainly, ( ) ( )f f    for all 

( )f C X ℝ .  Obviously, for k > 0, ( ) ( )k f k f    . 

We need to show that 1 2 1 2( ) ( ) ( )f f f f       for 
1 2, ( )f f C X ℝ .   

By definition of  ( )if
 , given  > 0, there exists  ( )ih C X ℝ  such that 0 i ih f   

and ( ) ( )i if h    for i = 1, 2.  Then we have, as 1 2 1 20 h h f f    , 

           1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) 2 ( ) 2 ( ) 2f f h h h h f f                  . 

Since  is arbitrary, 1 2 1 2( ) ( ) ( )f f f f       . 

Take ( )h C X ℝ  with 1 20 h f f   .  Let  1 2: ( ) ( ) 0V x f x f x   .  Then V is open 

in X.   

Let 1 2

( ) ( )
 , 

( ) ( )( )

0,  

i

i

c

f x h x
x V

f x f xh x

x V

   
 

  .   

We claim that ih  is non-negative, continuous with compact support, 0 i ih f    

for i = 1, 2. 

Plainly, ( ) 0ih x  for all x X , ( ) ( )i ih x f x  for x V  and ( ) ( ) 0i ih x f x  for cx V  

for i=1, 2.     

Since 
1 2

( )

( ) ( )

if x

f x f x
 and h(x) is continuous on the open set V, 

1 2

( ) ( )

( ) ( )

if x h x

f x f x
 is 

continuous on V so that ih  is continuous on V for i = 1, 2.  Now we show that 1h  

is continuous at any point 0

cx V . For such a 0

cx V , 1 0( ) 0h x   and also 0( ) 0h x  .   

Since h is continuous at 0x , given any open interval ( , )I    , 0  , containing 

0( ) 0h x  , there exists an open set U containing 0

cx V  such that ( )h U I .  Now 

for x  U, 1( ) ( )h x h x    implies that 1( )h x I  and so 1( )h U I .  Hence, 1h  is 

continuous at x0.   Therefore, 1h  is continuous on X.  Similarly, we can show that 

2h  is continuous on X.  Therefore, ( )ih C X ℝ  for i = 1,2.  Then 

1 2( ) ( ) ( )h x h x h x   for all x in X and 1 2 1 2( ) ( ) ( ) ( ) ( )h h h f f        . 

This means that for all ( )h C X ℝ  with 1 20 h f f   , 1 2( ) ( ) ( )h f f     .  

Therefore, 1 2 1 2( ) ( ) ( )f f f f       .  Thus, 1 2 1 2( ) ( ) ( )f f f f       . 
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We now extend this definition of   to all of ( )f C X ℝ .  For ( )f C X ℝ , ( )f x  

is bounded above, say by a positive constant, N.  Then 0f N  . We define 

( ) ( ) ( )f f N N       .  This is well defined.  For suppose 0f M  ,  then  

( ) ( ) ( ) ( ) ( )f N M f N M f M N               so that  

               ( ) ( ) ( ) ( )f N N f M M          . 

It is clear that  is linear on ( )C Xℝ . Suppose 1 2, ( )f f C X ℝ  and 

1 20, 0f N f M    .  Then 1 2 1 2( ) ( ) ( )f f f f M N M N            

              1 2( ) ( ) ( ) ( )f N f M M N           

              1 2( ) ( )f f    . 

Plainly, (0) 0   and for c ≥ 0, ( ) ( )c f c f     for all ( )f C X ℝ . 

In particular, for ( )f C X ℝ ,         0 0f f f f              so that 

   f f     .  Thus,  is a linear functional on ( )C Xℝ .  Since ( ) 0f   

for 0f  ,  is a positive linear functional on ( )C Xℝ .  Note that by definition of  

  for 0f  , ( ) ( )f f   .  Define ( ) ( ) ( )f f f      for  ( )f C X ℝ . 

Then for 0f  , ( ) ( ) ( ) 0f f f      , it follows that   is also a positive 

linear functional on ( )C Xℝ  and      . 

Note that 

             ( ) ( ) ( ) ( ) ( )f f f f f            

                       u u u
f f f           . 

Therefore,       .  Note that since X is compact, for positive linear 

functionals,  and    , (1)     and (1)    .  (If   is a positive linear 

functional, then for any f  in ( )C Xℝ ,  ( ), ( )f f f     .  Thus, if  1f  ,  

 ( ) (1)f f      and since  sup ( ) : 1 and  ( )
u

f f f C X     ℝ  and   

1 ( )C X ℝ , (1)   .) 

Recall that  (1) sup ( ) : ( ) and 0 1h h C X h     ℝ . 
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Take any ( ) with 0 1h C X h  ℝ .   Then 1 2 1 1h     .   Therefore, by definition 

of  ,  (2 1) 2 1
u

h h         so that (2 1) (2 1 2 1
u

h h h          .  

This means,  2 ( ) (1) (2 1)h h        for all ( ) h C X ℝ such that 0 1h  . 

Therefore, by definition of (1) , 2 (1) (1)    , that is to say, 

(1) (1) 2 (1) (1)         .  Consequently, (1) (1)     . 

This completes the proof of Proposition 2. 

 

Suppose X is a compact Hausdorff topological space.  

Suppose : ( )C X ℝ ℝ  is a bounded real linear functional. Then by Proposition 

2, we can decompose  as       such that   and     are positive real 

linear functional and (1) (1)           .  By the Riesz 

Representation Theorem (Theorem 1), there are unique positive regular finite 

Borel measures, 1 and 2, on M   such that 1( )
X

f f d    and   

2( )
X

f f d   .  Thus, 1 2 1 2( ) ( )
X X X

f f d f d f d          .  Let 1 2    . 

Then  is a real measure. 

Then for all ( )f C X ℝ , 

              ( )
X

f f d    and 

             1 2 1 2 1 2( ) ( ) ( ) ( )
X X X

f f d f d f d                

                      
X X X X X

f d f d f d f d f d                 

                       ( )
u uX

f d f X   . 

Note here that for a real measure,  , the variation measure of  , is defined to 

be  :  M    ℝ   given by  

                           
 All partitions  of 

( ) sup ( )
i

i
E E i

E E    . 

Note that   is a measure.  (See Theorem 1, Complex Measure, Dual Space of 

Lp Space, Radon-Nikodym Theorem and Riesz Representation Theorem.) 
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Hence, ( )X  .  But  1 2( ) ( ) ( ) (1) (1)X X X            and so 

1 2( ) ( ) ( )X X X      .   

Note that it is easy to see that if 1 and 2 are positive finite regular Borel 

measure, then 1 2     is a positive regular measure.  (See Proposition 21, 

Complex Measure, Dual Space of Lp Space, Radon-Nikodym Theorem and Riesz 

Representation Theorem.) For a signed measure or real measure , we say  is 

regular if   is regular and  is finite if   is finite.  As 

1 2 1 2( ) ( ) ( ) ( )E E E E         for all E  M  ,  if 1 and 2 are finite 

positive measures,   is finite and so 1 2     is a finite real measure. 

We shall now show that  is unique.   

Suppose there exists finite regular real Borel measures, 1 2 and    such that  

1 2( )
X X

f f d f d     .   Let 1 2     , then 0
X

f d  .   is a finite regular 

real Borel measure.  Then by the Jordan decomposition of measure (see 

Theorem 13, Complex Measure, Dual Space of Lp Space, Radon-Nikodym 

Theorem and Riesz Representation Theorem), 

                 , where  and      are positive measures. 

As 0
X

f d   for all ( )f C X ℝ , 
X X

f d f d     for all ( )f C X ℝ  and both 

define the same positive real linear functional.  Therefore, by the uniqueness 

part of Theorem 1 (Riesz Representation Theorem),    , consequently 0   

and so 1 2  . 

Hence, we conclude that the real dual space of ( )C Xℝ , that is, the space of all 

bounded real linear functional on ( )C Xℝ  is isometrically isomorphic (i.e., via a 

norm preserving map) with the space of all regular real (signed) finite Borel 

measures, expressible as the difference of two finite positive regular measures, 

on the -algebra M   on X, with norm given by ( )X  .    

Thus, we have proved: 

Theorem 3.  Suppose X is a compact Hausdorff topological space and 

 ( ) : ;  is continuousC X f X f ℝ ℝ .  Suppose : ( )C X ℝ ℝ  is a bounded real 

linear functional. Then there exists a -algebra M   on X, containing all the Borel 
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sets of X and a unique regular finite real Borel measure (signed measure),  , on 

M  ,  expressible as the difference of two finite positive regular Borel measures, 

such that ( )
X

f f d    and  ( )X  .  Let M be the collection of all regular 

finite real Borel measures, expressible as the difference of two finite positive 

regular Borel measures, with a norm on M given by ( )X   for  in M.  

Then the association  *: ( )C X M ℝ , where *( )C Xℝ  is the real dual space of 

( )C Xℝ
, given by ( )    , where ( )

X
f f d   , is a linear isometric 

isomorphism preserving norm.         

 

Note that given a finite regular real Borel measure, , we can decompose 

      by the Jordan Decomposition Theorem (Theorem 13, Complex 

Measure, Dual Space of Lp Space, Radon-Nikodym Theorem and Riesz 

Representation Theorem) where  and     are finite positive Borel measure.  

Then for any ( )f C X ℝ , we may define  

                          
X X X

f d f d f d       . 

Plainly, if we define ( )
X

f f d   ,  is a real linear functional and is clearly 

bounded, since 

         ( )
X X X X X

f f d f d f d f d f d                  

                   ( ) ( ) ( )
u u

f X X f X       

so that ( )X    .  

If   is expressible as the difference of two finite regular positive Borel 

measures, i.e.,      , where  and    are finite regular positive Borel 

measures, then           so that        .  Then 

2               is regular.  It follows that    is regular and hence 

   is also regular.  Thus, if   is expressible as the difference of two finite 

regular positive Borel measures, then the Jordan decomposition gives       

and  and     are finite regular positive Borel measures.   
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Theorem 1 does not give a regular representing measure.  We now impose 

additional condition on X so that the regularity of the representing measure is a 

consequence. 

 

Theorem 4.  Let X be a locally compact Hausdorff topological space.  Suppose 

X is also -compact, i.e., X is a countable union of compact subspaces.  Let 

 ( ) : ;   is continuous with compact supportcC X f X f ℂ .  Let : ( )cC X ℂ  be a 

positive complex linear functional on ( )cC X , i.e., whenever ( )cf C X  and f is 

real valued with f ≥ 0, then ( ) 0f  .  Then in addition to the conclusions (a) to 

(e) of Theorem 1, we have the following. 

(f) For all E  M   and for all  > 0, there exist closed set F in X and an open set 

V in X such that F E V  and ( )V F   . 

(g)  is a regular Borel measure on X, i.e., condition (c) and (d) hold without 

any condition for any E  M  . 

(h) For all E  M, there exists a F  set A and a G  set B such that A E B  and 

( ) 0B A   .  That is to say, each measurable set differs from a F  set or a G  set 

by a null set.   

A F  set is a set, which is a countable union of closed set.   A G  set is a 

countable intersection of open sets. 

Proof.  Since X is -compact, let 
1

i
i

X K



 ∪  , where each Ki is a compact sub                                                                                                                             

space of X.  

(f) Take E  M   .   Then    n nK E K      by part (b). Thus, by part (c), 

given any  > 0, there exists a set Vn open in X such that n nV K E   and 

                        
1

1
( ) ( ) ( )

2
n n n n

K E V K E        . 

Therefore,   

                                    
1

1
( )

2
n n n

V K E    .  ----------------------- (1) 
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Let 
1

n
n

V V



 ∪  .  Then V is open and V  E.  Note that 

                
1 1 1

n n n n
n n n

V E V K E V K E
  

  
      ∪ ∪ ∪ . 

Therefore,              

                   1
1 1 1

1

2 2
n n n n n

n n n

V E V K E V K E


   
 


  

          
 

 ∪ . 

Now, the complement of E, Ec  M.  By the same argument as above, there 

exists an open subset U in X such that Ec  U and  

                                
2

cU E


   . 

Let cF U .  Then F is closed and 

         ( ) c c cV F V E F E V E U E             

                
2 2

cV E U E
 

         . 

(g)   

Since (c) holds for any E  M    by definition of   , we need to show that (d) 

holds for all E  M .  We already knew that (d) holds for any open E or any E 

with (E) < ∞. 

By (f), we can choose a closed set F E  such that ( )E F   is arbitrarily small.  

Therefore, it is sufficient to show that (d) holds for all closed set F in X.  

If F is closed, then for each integer n ≥ 1, nF K  is compact and so nF K M .   

Note that  
1

i
i

F F K



 ∪ .  By the usual property of measure, 

         
1

( )
n

i
i

F K F 


   
 
∪  as n   . 

Since  
1

n

i
i

F K


∪  is compact and  
1

n

i
i

F K F


 ∪ , this implies that (d) holds for F. 

Now we show how this implies that (d) holds for any E  M   . 
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Choose closed F E  such that ( )
2

E F


   .  There exists an integer N such that  

                      
1

( )
2

n

i
i

F F K


 


    
 
∪   for integer n ≥ N. 

Then for integer n ≥ N,  

              
1 1

( )
2 2

n n

i i
i i

E F K E F F F K
 

   
 

               
   

∪ ∪ . 

As noted,  
1

n

i
i

F K


∪ is compact and so this shows that (d) holds for any E  M .   

(h) 

Take E  M .  Apply (f) successively with 
1

n
    to give closed set nF   and open 

set nV   such that n nF E V    with 
1

( )n nV F
n

    .  Let 
1

n
n

A F



 ∪  and 

1
n

n

B V



 ∩ .  

Then A is a F  set and B is a G  set such that A E B  .  Note that  

      
1 1

n n n n
n n

B A V F V F
 

 
    ∩ ∪   for each integer n ≥ 1. 

Therefore,     1
n nB A V F

n
      for all integer n ≥ 1.   Hence,   0B A   . 

This completes the proof. 

Remark. 

Compare this with Theorem 3.  The positive Borel measure representing a 

positive real linear functional on the space ( )C Xℝ , when X is a compact 

Hausdorff topological space is regular.  There is an example of positive non-

regular Borel measure arising from a positive complex linear functional on the 

space ( )cC X , where X is a locally compact Hausdorff topological space.  So, 

Theorem 4 is not vacuous.  

 

Theorem 4 says that the positive Borel measure representing a positive complex 

linear functional on the space ( )cC X , when X is a locally compact and  -

compact Hausdorff topological space is regular.   The next result is about a 
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condition on a locally compact Hausdorff topological space X that implies any 

positive Borel measure on X is regular.  This condition is enjoyed by the metric 

space nℝ . 

This condition is stated as every open subset of X is -compact.  In particular, X 

is -compact. 

Theorem 5.  Let X be a locally compact Hausdorff topological space, in which 

every open subset is -compact.  Let  be any positive Borel measure on X such 

that ( )K    for any compact subset K in X.  Then  is regular. 

 

Remark.  

1. nℝ  satisfies the hypothesis of Theorem 5. 

2. Not every locally compact Hausdorff topological space must necessarily have 

its open sets -compact.   

Proof of Theorem 5. 

Take any ( )cf C X .  Since f is continuous f is Borel measurable.  Define 

( )
X

f f d   .  Since f has compact support K, 

                         ( ) ( )
uX

f f d f K      , 

as  
u

f    and ( )K    because K is compact.  If  f  is real valued and  f ≥ o, 

then 0
X

f d  .  It follows that  : ( )cC X ℂ  is a positive complex linear 

functional.  By Theorem 4, we get a positive regular Borel measure  on M  

such that ( )
X

f f d   .  We shall next show that for any open set V in X, 

( ) ( )V V  .  Since V is -compact, 
1

i
i

V H



 ∪   and iH  is compact for each integer 

i ≥ 1.  Since H1 is compact and 1H V , by Urysohn’s Lemma, there exists 

1 ( )cf C X  such that  1 1H f V≺ ≺ .   If 1 2, , , nf f f⋯  have been chosen so that Ki = 

support fi , choose 1nf   by Urysohn’s Lemma such that 

                    1 2 1 2 1n n nK K K H H H f V      ⋯ ⋯ ≺ ≺ . 
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Observe that 1 2 1 2n nK K K H H H      ⋯ ⋯  is compact and is contained in 

V.   Note that support fn = Kn  V ,  0 ( ) 1nf x   for all x  in X,  

           ( ) 1nf x   for all x in 1 2 1 1 2 1n nK K K H H H       ⋯ ⋯ .  

Therefore, 

           1( ) ( )n nf x f x for x in 1 2 1 2n nK K K H H H      ⋯ ⋯  

and as ( ) 0nf x   for nx K ,  1( ) ( )n nf x f x  for all x in X.  It follows that  nf  is a 

monotone increasing sequence of real valued functions in ( )cC X .   As  
1

i
i

V H



 ∪  , 

n Vf ր   pointwise on X.  Therefore, 

 ( ) limV n
X Xn

V d f d   


   , by the Lebesgue Monotone Convergence Theorem, 

         lim limn n
Xn n

f f d
 

    , by Theorem 4, 

        V
X

d   , by the Lebesgue Monotone Convergence Theorem, 

        V . 

For any Borel set E in M , by Theorem 4 part (f), there exist closed  F and open 

V such that  F E V   and  

                            ( )V F   .   ----------------------  (*) 

Hence, since V F is open, by what we have just proved,  

                              ( ) ( )V F V F      .   ----------------------  (**) 

Therefore, ( ) ( ) ( )V E V F V F         .  This implies  is outer regular.  

By (*), we can choose a closed set F E  such that ( ) ( )E F V F       is 

arbitrarily small.  Therefore, it is sufficient to show that (d) holds for all closed 

set F in X.  

Since X is -compact, let 
1

i
i

X L



 ∪  , where Li is a compact subspace for each 

integer i ≥ 1. 
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If  F is closed, then for each integer n ≥ 1, nF L  is compact and so 

 nF L     .   Note that  
1

i
i

F F L



 ∪ .  By the usual property of measure, 

         
1

( )
n

i
i

F L F 


   
 
∪  as n   . 

Since  
1

n

i
i

F L


∪  is compact and  
1

n

i
i

F L F


 ∪ , this implies that (d) holds for 

closed set F. 

Now we show how this implies that (d) holds for any Borel measurable E  M   . 

Choose closed F E  such that ( ) ( )
2

E F V F


     .  There exists an integer N 

such that  
1

( )
2

n

i
i

F F L


 


    
 
∪   for integer n ≥ N. 

Then for integer n ≥ N,  

              
1 1

( )
2 2

n n

i i
i i

E F L E F F F L
 

   
 

               
   

∪ ∪ . 

As noted,  
1

n

i
i

F L


∪ is compact and so this shows that (d) holds for any Borel 

measurable E  M .   

 

Now we can define the Lebesgue measure on kℝ  via the Riemann integral. 

Theorem 6.  There is a regular complete positive measure, m, defined on a -

algebra M  on kℝ  satisfying: 

(a) If I is any k-cell in kℝ , then ( ) ( )m I vol I .   

Here a k-cell 

 : ,1  or anything gotten by replacing any < by k

i i iI x x i k       ℝ  and 

vol(I) is the usual volume of the k-cell I. 

(b) M  contains all Borel subsets of kℝ .   More precisely, 

         M  =  :  there exists an  set  and a  set , , ( ) 0kE F A G B A E B m B A     ℝ . 
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(c) The measure m is translation invariant, i.e., for all E in M  , 

                    ( ) ( )m E m E x   for any kxℝ  . 

(d) The measure, m, is unique upto multiplication in the following sense: 

If    is another positive translation invariant Borel measure on kℝ  such 

that ( )K    for all compact K, then there exists a constant c such that 

( ) ( )E c m E   for all Borel set kE  ℝ .  

The sets in M  are called Lebesgue measurable sets and m the (k-dimensional) 

Lebesgue measure on kℝ . 

Proof. 

Define ( )
k

f f  ℝ  for  k

cf C ℝ , the Riemann integral of the continuous 

function  f  with compact support in kℝ .  By the generalized Heine Borel 

Theorem, support  f  is closed and bounded and so the Riemann integral is 

finite.  This means ( )f   for all  k

cf C ℝ .  Plainly, for all  k

cf C ℝ ,  

0 ( ) 0f f    .  By Theorem 4 (Riesz Representation Theorem), there exists a  

-algebra M   , containing all the Borel subsets on kℝ  and a positive regular 

complete Borel measure, m, associated with  such that ( )
k

f f dm  ℝ  for all 

 k

cf C ℝ .   

(a)  We may suppose that the k-cell I is open. Adding or taking away bits of 

boundary of I, does not altered its volume. So, we may just prove (a) for open k-

cell. 

Since I is open,  ( ) sup ( ) :m I f f I  ≺ .  For any f I≺  , 0 1f  , support f   I 

and so If   so that ( ) ( ) ( )If vol I    .  For any  > 0, we can shrink I to I0 an 

open k-cell such that 0 0I I I   and 0( ) ( ) ( )vol I vol I vol I   . By the Urysohn’s 

Lemma (Lemma 22, Convex Function, Lp Spaces, Space of Continuous 

Functions, Lusin’s Theorem), there exists ( )k

cf C ℝ  such that 0I f I≺ ≺ .  Thus, 

                
0

0 ( )
k k k k II

vol I f f f dm vol I         ℝ ℝ ℝ ℝ
. 

Hence      0 0 ( )f vol I vol I vol I      .  This means ( ) ( ).m I vol I   



30 

 

(b)  That M  contains all Borel subsets of kℝ  follows from Theorem 4 (or Riesz 

Representation Theorem, Theorem 1).  The other statement follows from 

Theorem 4 (h) and the fact that m is complete by Theorem 1.  

(c)  Since ( ) ( )vol I x vol I   for any k-cell I and any x in kℝ , ( ) ( )m I x m I   for 

any k-cell I and any x in kℝ .  Next, if V is open, we can write 
1

i
i

V I



 ∪  a 

countable disjoint union of k-cells.  So, by the countable additivity of m, 

      
1 1 1 1

( ) ( ) ( ) ( ) ( )i i i i

i i i i

m V m I vol I vol I x m I x m V x
   

   

           . 

Finally if E  M , then 

              inf ( ) :  and  is open inf ( ) :  and  is openm E m V E V V m V x E V V      

        inf ( ) :  and  is open inf ( ) :  and  is openm V x E x V x V m V E x V V         

     ( )m E x  . 

(d)  Suppose    is a positive translation invariant Borel measure on kℝ  such 

that ( )K    for all compact K in kℝ .  Then by Theorem 5,  is regular. 

Let 1I  be a k-cell of side of length 1.  Let 1( )I c  .  We can write 1I  as a disjoint 

union of 2nk  cells of side 
1

2n
, 

2
1

1

nk

i
i

I I


 ∪ . Choose one of these k-cells and call it Iɶ .  

Then, since  is translation invariant,   

                   
2

1 1

1

( ) 2 ( )

nk

nk

i
i

I I I c c m I  


 
    

 
ɶ∪ , as 1( ) 1m I  ,  

                           2nkc m I ɶ . 

Therefore,     I c m I ɶ ɶ .  

Now, any open subset V of kℝ  can be written as a disjoint countable union of k-

cells, where k-cells are open balls with centre x of radius r defined by  

                        
1

( ) : maxr i i
i k

B x y y x r
 

    . 
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Each of these open balls can be written as a countable disjoint union of k-cells 

of side 
1

2n
 of the type like Iɶ  above.  Hence, ( ) ( )V c m V  .  Finally as  and m  

are regular Borel measures, for any Borel set kE  ℝ , 

             ( ) inf ( ) :  and is open inf ( ) :  and is openE V E V V c m V E V V      

                   inf ( ) :  and is open ( )c m V E V V c m E   . 

Remark. 

We have thus obtained the Lebesgue measure m on kℝ  so that the Lebsgue 

integral 
k

f dmℝ  is equal to the Riemann integral ( )
k

f x dxℝ  for all  k

cf C ℝ . 

Actually, more generally, when f  and |f | are Riemann integrable, 

                             ( )
k k

f dm f x dx ℝ ℝ
.      

For k =1, we examine the Lebesgue measure m so obtained by Theorem 6 more 

explicitly. 

A step function s on [a, b] is a function that assumes finite values on the open 

subintervals of [a, b] defined by some partition of [a, b].  More precisely, there 

is a partition 0 1 2 nx a x x x b     ⋯  and a set of constants, 1 2, , , n  ⋯  such 

that ( ) is x   for 1i ix x x    for 1  i  n.  Plainly, a step function is a simple -

measurable function. 

Suppose :[ , ]f a b  ℝ  is bounded.   

Let *([ , ])S a b  be the set of all step functions on [a, b].  The lower Riemann 

integral of  f  is defined to be  

                       sup : , *([ , ])
b b

a a
R f f S a b        

and the upper Riemann integral of  f  is defined to be  

                       inf : , *([ , ])
b b

a a
R f f S a b      . 

As f is bounded, the upper and lower Riemann integrals exist.  The bounded 

function f is said to be Riemann integrable if 
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b b

a a
R f R f  . 

Now a step function in *([ , ])S a b is a linear combination of characteristic 

functions of subintervals.  So, by Theorem 6 part (a), for *([ , ])S a b  , 

[ , ]

b

a a b
dm   .  Now let ([ , ])S a b  be the set of real-valued simple functions on [a, 

b].  Then *([ , ]) ([ , ])S a b S a b .  Moreover, 

                  
[ , ]

inf : , *([ , ]) inf : , *([ , ])
b b

a a a b
R f f S a b dm f S a b              

                              inf : , ([ , ])
b

a
dm f S a b     . 

and              
[ , ]

sup : , *([ , ]) sup : , *([ , ])
b b

a a a b
R f f S a b dm f S a b              

                        
[ , ]

sup : , ([ , ])
a b

dm f S a b     . 

If we define the lower Lebesgue integral of  f  to be    

                          
[ , ] [ , ]

sup : , ([ , ])
a b a b

f dm dm f S a b        

and the upper Lebesgue integral of  f  to be   

 [ , ]
inf : , ([ , ])

b

a b a
f dm dm f S a b      , then we have 

                                          
[ , ] [ , ]

b b

a a b a b a
R f f dm f dm R f      . 

So, if  f  is Riemann integrable on [a, b], then 
[ , ] [ , ]a b a b

f dm f dm   .   It can be 

shown that if  
[ , ] [ , ]a b a b

f f  , then :[ , ]f a b  ℝ  is m-measurable.  Therefore, f is 

bounded and Lebesgue measurable and so f is Lebesgue integrable and the 

Lebesgue integral, 
[ , ] [ , ] [ , ]

b b

a b a b a b a a
f dm f dm f dm R f R f         .   Thus, if f is 

Riemann integrable, then f is Lebesgue integrable and the Riemann integral and 

the Lebesgue integral are the same. 

We have made use of the following two results from Lebesgue integration.  For 

the sake of clarity, we shall state and prove them. 
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Theorem 7.   Suppose E is a Lebesgue measurable subset of ℝ  and ( )m E   .  

Suppose :f E  ℝ  is bounded.  Then  f  is measurable, if and only if, the lower 

and upper Lebesgue integral of  f are the same.  The lower Lebesgue integral of  

f is defined by  sup : , ( )
E E

f dm dm f S E       and the upper Lebesgue 

integral by  inf : , ( )
E E

f dm dm f S E      , where S(E) is the set of real-

valued simple measurable functions on E.   

Proof. 

Suppose f is measurable.  As f is bounded, we assume f   . Let n
n

 



 , 

for integer n ≥ 1.  Define 1

. [ ( 1) , )n i n nE f i i        for 1 i n  , n = 1, 2, … .  

Then ,n iE  are measurable and for each integer n ≥ 1, 

          
,

1

( )
n

n i
i

m E m E


   
 
∪  , where ,

1

n

n i
i

E

∪ is a disjoint union, 

                       ,

1

n

n i

i

m E


   . 

Let  
,

1

( 1)
n i

n

n n E

i

i   


    and  
,

1
n i

n

n n E

i

i   


   for each integer n ≥ 1.  Thus, 

,n n    are simple measurable functions on E such that  

                                ( ) ( ) ( )n nx f x x     for all x in E. 

Therefore,  

                         ,

1

( 1) ( )
n

n n n i
E E

i

f dm dm i m E  


               

and  

                           ,

1

n

n n n i
E E

i

f dm dm i m E  


    . 

Hence, 
,

1

( ) ( )
n

n n i n
E E

i

f dm f dm m E m E 


    . 
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But 0n   as n    and so 
E E

f dm f dm  .   Since 
E E

f dm f dm  , it follows 

that 
E E

f dm f dm  . 

Conversely, suppose 
E E

f dm f dm  .  We shall show that f  is measurable or m-

measurable. 

Let  ( ) ( ) :L f S E f     and  ( ) ( ) :U f S E f    .   Then  

 sup : ( )
E E

f dm dm L f      and  inf : ( )
E E

f dm dm U f    .  Since  f  is 

bounded and ( )m E   ,  
E E

f dm f dm    .   Thus, for any integer n ≥ 1, there 

exists ( )n L f   and ( )n U f   such that  

                 
1

n
E E

dm f dm
n

       and  
1

n
E E

dm f dm
n

    . 

Hence,   2
n n n n

E E E
dm dm dm

n
          .   This holds for all integer n ≥ 1. 

Define , : E   ℝ , by  
1

sup n n
  


   and   

1
inf n n

  


 .  Then both  and    are 

measurable since each n  and n are measurable for all integer n ≥ 1.  

Plainly, n nf        . 

Let 
1

: ( ) ( )kD x E x x
k

      
 

 .   

Obviously, 
,

1
: ( ) ( )k n n k nD x E x x D

k
       

 
 for all integer n ≥ 1. 

Hence, 
,

1
k nD n n

k
      and so  

,

1
k nD n n

E E
dm dm

k
     .  It follows that 

             ,

1 2
k n n n

E
m D dm

k n
    . 

Therefore,    ,

2
k k n

k
m D m D

n
    for all integer n ≥ 1.  It follows that   0km D  . 

Let  : ( ) ( ) 0D x E x x     .   Then 
1

k
k

D D



 ∪  and 1 2 kD D D D    ⋯ ⋯ .  

Therefore,  ( ) lim 0k
k

m D m D


  .  This means    almost everywhere with 
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respect to the Lebesgue measure m.  As f   ,  f    on E D  and   

f   almost everywhere with respect to the Lebesgue measure m.  Since E is 

measurable and the Lebesgue measure is complete, E D  is measurable  

Therefore, f is measurable on E D  since   is measurable.  Hence, f is 

measurable. 

 

Theorem 8. Suppose E is a Lebesgue measurable subset of ℝ  and ( )m E   .  

Suppose :f E  ℝ  is a bounded measurable function.  Then  f  is Lebesgue 

integrable and 

                     
E E E E E

f dm f dm f dm f dm f dm         . 

Proof. 

Since :f E  ℝ is measurable,  max ,0f f   and  min ,0f f    are 

measurable.  Thus, f f f     and   f f f    is measurable.  Note that , 

,  and f f f   are bounded non-negative functions.   Then by definition, 

         sup : 0 , ( )
E E

f dm s dm s f s S E        

and      sup : 0 , ( )
E E

f dm s dm s f s S E      . 

Since both  : 0 , ( )
E

s dm s f s S E    and  : 0 , ( )
E

s dm s f s S E    are 

bounded above by ( )Km E for some constant K such that ( )f x K  for all x in E, 

E
f dm  and 

E
f dm  exist and are finite and so 

E E E
f dm f dm f dm       .  

Thus, by definition, f is Lebesgue integrable on E and 
E E E

f dm f dm f dm     . 

Since f   is measurable, 

                     sup : ( ) sup : ( ) :
E E E

f dm dm L f dm S E f              

                               sup : ( ) : 0
E E

dm S E f f dm          . 
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Similarly, we have 
E E

f dm f dm   .  By Theorem 7, 
E E E

f dm f dm f dm       

and 
E E E

f dm f dm f dm      . 

E E E E
f dm f dm f dm f dm          

                 inf : , ( ) sup : ( ),
E E

dm f S E dm S E f              

                 inf : , ( ) inf : ( ),
E E

dm f S E dm S E f                 

                 inf : , ( ) inf : ( ),
E E

dm f S E dm S E f                      

                 inf : , ( ) inf : , ( ),
E E

dm f S E dm f S E                 

                inf : , , , ( )
E E

dm dm f f S E              

                 inf : , , , ( )
E

dm f f S E             

                inf : , ( )
E E

dm f f f S E f dm          . 

Similarly, 

         
E E E E

f dm f dm f dm f dm          

                 sup : , ( ) inf : ( ),
E E

dm f S E dm S E f              

                 sup : , ( ) sup : ( ),
E E

dm f S E dm S E f                 

                 sup : , ( ) sup : ( ),
E E

dm f S E dm S E f                      

                 sup : , ( ) sup : ( ),
E E

dm f S E dm S E f                 

                sup : , , , ( )
E E

dm dm f f S E              

                 sup : , , , ( )
E

dm f f S E             
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                 sup : , ( )
E E

dm f f f S E f dm          . 

Thus, we have 
E E E E

f dm f dm f dm f dm       .    Now, as f is measurable and 

( )m E   , by Theorem 7,  
E E

f dm f dm   and so it follows that 

                      
E E E E

f dm f dm f dm f dm       . 

 

Finally, we come to the last result, a very useful technical theorem. 

Theorem 9. Partition of Unity. 

Let X be a locally compact Hausdorff topological space and K a compact 

subspace of X.  Suppose 1 2, , , nU U U⋯  is a finite covering of K by open sets.  

Then there exists ( )i ch C X , the space of continuous functions on X with 

compact support, such that i ih U≺  , 1  i  n and 1 2 1nh h h   ⋯ on K. 

That is, 0 1ih   and 0ih   on c

iU .   This collection of functions  ih  is called a 

partition of unity on K subordinate to the covering   1 2, , , nU U U⋯  of K. 

Proof. 

Suppose x K . Then since  
1

n

i
i

K U


 ∪  , there exists some i such that ix U  .  

Since X is locally compact and Hausdorff, by (9) of Topological Ideas in 

Convex Function, Lp spaces, Spaces of Continuous Functions, Lusin’s Theorem, 

there exists a relatively compact neighbourhood Wx , such that Wx  is open, 

x x ix W W U     and xW  is compact.  Then the collection  :xW x K  is an open 

covering of K.  Since K is compact, it has a finite sub-covering say  

 
1 2
, , ,

Nx x xW W W⋯ .   Let 
j

x ij

i x
W U

H W


 ∪  .  Then Hi is a finite union of compact sets 

and so is compact.  Note that i iH U  for 1  i  n.  By Urysohn’s Lemma 

(Lemma 22 of Convex Function, Lp spaces, Spaces of Continuous Functions, 

Lusin’s Theorem), there exists a function ( )i cg C X  such that  

                 i i iH g U≺ ≺  for 1  i  n.   
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Let 1 1h g ,  2 1 2(1 )h g g  ,  … , 1 2 1(1 )(1 ) (1 )n n nh g g g g   ⋯ . Since i ig U≺ , 

i ih U≺  for 1  i  n.   Observe that 
1 1

i

N n

x i
i i

W H
 

∪ ∪  as follows. 

 Note that for each 
kxW , 

kx jW U  for some 1  j  n.  Hence,  
1

k

n

x j i
i

W H H


  ∪ .  

Therefore, 
1 1

i

N n

x i
i i

W H
 

∪ ∪ . 

Now take any x K  and so 
jxx W for some 1  j  N and hence, ix H  for some 

1  i  n.  It follows that ( ) 1.ig x   Now 

                 1 2 1 21 (1 )(1 ) (1 )n nh h h g g g       ⋯ ⋯ .  -----------------------  (*) 

We can show this by induction.  (*) is plainly true for n=1 and for n=2.  If (*) is 

true for n1, then  

     1 2 1 1 2 1 1 2 11 (1 )(1 ) (1 ) (1 )(1 ) (1 )n n n n nh h h h g g g g g g g              ⋯ ⋯ ⋯           

                                  1 2 11 (1 )(1 )(1 ) (1 )n ng g g g      ⋯ . 

For any x K , 1 2(1 ( ))(1 ( )) (1 ( )) 0ng x g x g x   ⋯  and so 1 2 1nh h h   ⋯ on K. 

   


