Positive Borel Measure and Riesz Representation Theorem

By Ng Tze Beng

Introduction.

The Riemann integral operates on some collection of functions, these functions
are continuous or at most not very discontinuous, that is, discontinuous on at
most a set of measure zero and be bounded with a domain usually bounded and
if unbounded the function would be zero outside a bounded subset. It produces
a number, a scalar. The functions on which it operates form a vector space;
usually the vector space comes with some natural definition of a norm. Being a
space of functions, the collection of real functions in the space comes with a
natural partial order, f <s if and only if f(x) <s(x) for all x in the domain. The
Riemann integral integrates the positive function to give a positive number C.
More generally, if f<g, then j f< I g . The Riemann integration is linear.

Hence the classical Riemann integral is a particular real linear functional on
C.(R), the real vector space of all continuous real valued function on R with

compact support. Observe that from this definition of the Riemann integral we
can derive the basic idea of the length of the interval.

Length of [a,b]=b—a = jR Ziam = inf [r= sup [g-
By Urysohn’s Lemma, since R is a locally compact Hausdorff topological
space, taking K =[a,b] and U be any open interval (¢, d ) such that (c,d) o[a,b],
there exists a function f e C (R) such that [a,b]< f < (c,d). This means that
Ziany £ f < Xy - TaKing [a, B1< (a,b) , there exists f e C (R) such that
[a,f1< f < (a,b), thatis, y, , < f<x,,. We may thus define the length of [a,
b] by taking it to be [1?]51] f or sup J' g.

g=(a,b)
We then aim to construct a Lebesgue integral, which will integrate much more
general functions, generalising this definition of a Riemann integral. We shall
consider complex vector space and complex linear functional. Recall that a
linear transformation from a real vector space to the real numbers R is called a
real linear functional and that a linear transformation from a complex vector
space to the complex numbers C is called a complex linear functional. We



show approximately to any positive complex linear functional A on C,(X), the

space of all continuous complex function on X with compact support, where X is
a locally compact Hausdorff topological space, there corresponds a measure u

defined on some o - algebra . 7 containing the Borel sets of X such that
AN=[ fdu,

for all fin C (X). Since C.(X) is dense in L'(X,x) in the L' norm as the
measure p will have the additional properties that satisfies Theorem 23 of

Convex Functions, I? Spaces, Space of |Continuous Functions, Lusin’s
Theorem, we can then extend the linear functional A from C,(X)toL' (X, u).

A complex linear functional, A:C.(X)— C on C,(X), is said to be positive, if
for any real valued function fin C,(X), f>0= A(f)>0. Similarly, a real
linear functional ®:C, ,(X)— R on C,,(X), the space of all continuous real
valued functions on X with compact support, is positive, if f eC,(X)and

F>0=d(f)20.

The following trivial example gives a simplistic view of this correspondence.
Let x, € X be a fixed point. Define A(f)= f(x,) for any function f. This

corresponds to the measure, ‘unit mass’ at x,. Thatis, for £ € . 7/ = o - algebra
of all subsets of X,

1 if x, €E,

0, otherwise

u(E)={

For this case, any function f: X — C is measurable and L fdu=f(x,).

We shall consider the function space of complex valued functions with compact
support on a locally compact Hausdorff space X and positive complex linear
functional on this function space. Then we specialize to the function space of
real valued functions on X with compact support and positive real linear
functional on this function space and bounded real linear functional on this
function space.



Riesz Representation Theorem

We now state the association of a complex linear functional with a measure in
more explicit terms.

Theorem 1. (Riesz Representation Theorem)

Let X be a locally compact Hausdorff topological space. Let
C.(X)={f:X —C; f is continuous with compact support}. Let A:C.(X)—>C bea

positive complex linear functional on C.(X), i.e., whenever f e C.(X) and fis
real valued with /> 0, then A(f)>0. Then we have the following:

(a) There exists a o - algebra . 7/ on X, containing all the Borel sets of X and
there exists a unique positive measure, i, on. ~ such that

A(f):jxfd,u forall feC.(X).
(b) For all compact K< X, u(K)<o .

(c)Forall E € . 7 w(E)=inf{u(V):V 2 E and V is open}. (Outer regularity)
(d) For all £ € . 7 such that either £ is open or u(E)<x,
p(E)=sup{u(K):K c E and K is compact} . (Inner regularity)
(e). 7 1s p~complete, i.e., for all N € . / such that u(N)=0, for EcN,E e ./.

Proof.

We proceed with the proof in the following order. Firstly, we prove that the
measure g is unique. Then we show the existence of the measure 2. The
remaining of the proof deals with the conclusions (b) (¢) (d) and (e) of the
theorem.

A technical result that we need is partition of unity. We shall state and prove
this technical result at the end of this note.

Uniqueness of x.



Suppose g, and u, are two measures on . / satisfying the conclusion of the

theorem. Note that the value of the measure, x4, 1s entirely determined by the
value of 1 on compact subsets of X by part (d). Thus, it is sufficient to show
that 4 (K) =, (K) for any compact subset K of X.

Take any compact subset K of X. By part (b), 1 (K),u,(K)<o. Therefore, given

any ¢ >0, by part (c), there exists an open set } containing K such that
(V) <m(K)+e.

Now we appeal to Urysohn’s Lemma (Lemma 22, Convex Function, L7 Spaces,
Space of Continuous Functions, Lusin’s Theorem). Since X is a locally compact
Hausdorff topological space, and K <V, with K compact and V" open, by
Urysohn’s Lemma, there exists a continuous function f e C (X) such that

K < f <V . This means that y, < f < y,. Note that
wK) = [ axdm <[ fduw =N =] fdu <[ zdu=u0)<pK)+z.
Since ¢is arbitrary, it follows that ,(K) < 1, (K).

Similarly, by reversing the role of y, and x,, we can show that g (K) < u,(K).
Hence y,(K)=u,(K) for any compact subset K of X. Thus, the uniqueness of

the measure u is established.

Now we shall define x first on open set, then on any subset of X. Subsequently
we shall define the o-algebra. /.

Let V' be an open set of X. Define u(V)by
p(V)=sup{A(f): feC.(X)andf <V} .
For any subset £ c X, define
p(E)=inf {pu(V): ECV and V is open in X} .
Let . /p={Ec X : u(E)<o and u(E)=sup{u(K): K < E and K is compact}} and
#={EcX:EnKe.rforall compact K c X }.

Observe that (a) = (b).



Take any compact subset K of X. Take any open set U o K. By Urysohn’s
Lemma, there exists a continuous function with compact support f e C,(X) such

that K < f <U. Thatis, y, < f <y, . Therefore,
uK) = gedus [ fdu=A(f)<oe.

Now suppose U and V are open subsets of X and V' c U, then u(V)< u(U). This
is because {f: feC.(X)andf <V} c{f: feC(X)andf <U} so that
u(Vy=sup{A(f): feC.(X)andf <V} <sup{A(f): feC(X)andf <U}=pu).

Therefore, if £ is open, u(E)=inf{u(U): EcU and U is openin X} . Thus, our

definition of x(E) for any subset £ of X is consistent with the open sets in X.

We shall prove that x is countably additive on . / and that . 7 is a o - algebra in
stages.

We note the following properties of the positive (real or complex) linear
functional A and the function, #, which is defined on all subsets of X.

(1) A is monotone, i.e., for f andge C.(X) and fand g are real valued,
f<g=A(f)<A(g). This is because by linearity, A(g)=A(f)+A(g-f)=A(f)
as A(g—-f)=0.

(2) wuis monotone, 1.e., for any subsets 4 and B of X, A< B= u(A) < u(B).

If AcB,then {¥:BcV andV isopeninX}c{V/:AcV and V is openin X}.
Therefore,

wu(B)=inf{u(V): BV and V is open in X}
>inf{u(V): A<V and V is open in X} = u(A).
We can prove part (e) easily.
Proof of part (e)

Suppose u(E)=0. Plainly, by the monotonicity of x, E € . 7/ and that for any
NcE, u(N)=0. Obviously for any compact subset K of X, u(EnK)=0. It
follows that £ € . 7/ and that forany NcE,E €. /.



Part (c) of the theorem plainly holds by the definition of 4.

Therefore, we only need to prove parts (a) and (d). That is, we need to prove
that & is a positive measure on. //, . / is a o-algebra, A(f)= IX fduforall

feC.(X)and u satisfies part (d).

Note that £ 1s defined on all subsets of X. We need to show that « is countably
additive on . /. We have the following consequence of the definition of x on all
subsets of X, which will contribute to part of the proof of the countable
additivity of zon. 7.

(1) Forany family {£} __ of subsets of X, u(@ E] < i u(E).

n=l

To prove (1), we begin by considering open sets in X. If ¥, and ¥, are two open
sets in X, then u(V, UV,)< u(V)+u(V,). We shall prove this as follows. Recall
that u(V, UV,) =sup{A(g):geC.(X)and g<V,UV,}. Suppose geC (X) and
g=<V,uV,. Then support g < ¥, UV,. Since support g is compact and plainly,
{V,,V,}1s an open cover for support g, we can take a partition of unity {#,4,} on

support g subordinate to the covering {V,V,}, such that 4 e C.(X), 0<h <1,
h <V, h,.((V,.)")zo, i=1,2 and i +h, =1 on support g. Note that support 4

Vi ,i=1,2. Hence, we get hg<V, for i=1,2 and hg+hg=g. Therefore,

A(g)=A(hg)+ A(hg) < u(V,)+uV,). This is true for any g e C,(X) with

g =<V, uV,. Hence,
p(V, OV, ) =sup{A(g): g <V, UV, and g € C(X)} < u(V; )+ u(V,) .-

It then follows by induction that for a finite family of open sets, {V}

1<i<n?

y(L_J ij < z w(V). With this proven, we shall apply this to arbitrary family of

i=1

subsets {E,}

1<i<o0 *

If there exists an integer 7 such that u(E,) =, then trivially, ,u([j E] <> u(E,).
n=1

n=l

So, we now assume that u(E,) < for all integer i > 1. By the definition of

u(E,), given &> 0, there exists open set ¥, such that £, <V,
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ulV) < w(E)+:

Let v = V.. Then V'is an open subset of X. Take any f e C,(X) such that
i=l1

f =V . Since support f* is compact and support /' < V, a set of finite number of
the open subsets {V,

i}lSi<oo

covers support f. Hence, there exists a positive integer

n such that support f < U V.. Therefore, f < UV . Hence,
i=l i=1

=

n n

e u)s S ulE)+ 5 < S uE) e

n
= i=1

A(f)Sﬂ(

I

—_

It follows that (V)<

M

u(E)+e. Since UE <V, ﬂ(QE.jgﬂ(V)

1

IA

E

i
+
o

1

As ¢g1s arbitrary, y(GEi]s u(E,).
=1 i=1

(2) Every compact subset of X belongs to . 7F .

Take any compact subset K of X. Take any feC (X) with K < f. Let
V= {x eX: f(x)> %} . Since f 1s continuous, V is open in X. Take any
geC.(X)with g<¥V. Then for xeV , g(x)<1<2f(x). Since g(x) =0 for

xeVe, g(x)<2f(x) forallxinX,ie., g<2f. Hence, A(g)<A(2f)<oforany
geC.(X)with g<7 . It follows that

u(V)y=sup{A(g):g=<V andgeC (X)}<AQRf)<x.

Since K cV, it follows that u(K)< u(V)<w. Plainly,
sup{u(L): L < K and L is compact} = (K) and so K is in . /7 . Incidentally, this

also shows that for any compact subset K, 1(K) < oo .

(3) Every open subset V' of X with (7)< belongs to . 7F .

Take any open subset V' of X with x(V) <. By definition of # on open subset,

given &> 0, there exists a continuous function f with compact support such that
f=Vand u(V)-e<A(f)<uV). Let K=support f. Then K <V and so

u(K) < u(V). Suppose now W is any open set containing K. Then f<Ww. By



the definition of x(W), A(f)<u(W). Therefore, A(f) is a lower bound for
{u(V):K =V and V is open in X} and so

A(f) < pu(K)=inf{u(V):K <V and V is open in X} .

It follows that u(V)—e < A(f)< u(K)< u(V). This means
ulVy= sup{,u(K) :KcV and K is compact} . Hence, V e . 7F.

(4) uis countably additive on . /. That is, suppose E, E, ....., are in. /7 and

are pairwise disjoint, then ,u(@ E,.j => u(E,). Moreover, if ,u(fj E"j <o, then
i=1 = i=1

GE[ €. /F.

i=1

We shall prove this in stages. First on compact subsets since compact subsets
are contained in . /7 by (2).

Suppose K,,K, are disjoint compact subsets of X. We shall show that

(K, UK,)=u(K,)+u(K,). Since X is Hausdorff and K, nK, =@, for a fix
yeKk,, for each x e K|, there exists open sets, U_,V, with xeU, , y eV, such that
U nV,=2. Hence, {U,:xeK} is an open cover for K; . Therefore, since K,

is compact, {U, :x € K, | has a finite subcover, K, cU, wU,_u---UU, . Let
U,=U, uU, U--uU, . Then K, cU, and U, n(\V, =@. Let ¥, =(1V, . Then
" ’ i=1 =1
U, and V, are open with K, cU, andyeV, and U "V, =&. It follows that
{V,:yeK,}is an open cover for K, . As K, is compact, it has a finite subcover
J
V, WV, oV, 2K,. Let v,=V, vV, VUV, 2K, and 7, :,QU—“’ DK, . Plainly,

V.nV,=J. As K, UK, 1s compact, K, UK, 1sin. 7F. As
(K, UK,)=inf{u(V): K, UK, cV and V is open in X}, given &> 0, there exists
open set W o K, UK, such that

,u(Kl uKz)S,u(W)<,u(Kl UK2)+€.

Note that W nV, and W nV, are open in X and are disjoint. Plainly,
uW V)< u(W)<owo fori=1,2. Therefore, by definition of # on open set,
there exists f, e C,(X) such that f,<W vV, and A(f)>u(WnV,)-¢ fori=1, 2.



Note that support f, € WnV;, fori= 1, 2, and so support f; and support f, are
disjoint. It follows that 7+ f, <W .

Now, u(K))+u(K,) < u(W V) +u(W nV,) as K, cWnV, andK, cW NV,
SA(f)+e+A(f)+e=A(f,+ 1,)+2¢
<uW)+2e , by definition of (W),

<u(K, UK,)+3¢.

Since ¢is arbitrary, u(K,)+u(K,)<u(K,vK,). We have already proved as in
(1) that u(K, UK,)<u(K,)+u(K,) and so u(K,UK,)=u(K,)+u(K,). Bya
simple mathematical induction, if K}, K, ....., K, are compact subsets of X and

are pairwise disjoint, then ,u(U K,.j => u(K,)
=l i=1

Now suppose Ei, Ea, ....., are in. /F and are pairwise disjoint. Let £ = GEI. :

i=1

Suppose u(E)=o. Then it follows by the inequality in part (1),

U(E) = ,u(@ Ej < iﬂ(En) that iﬂ(Ei) =w. Hence, trivially u(E)= iy(En) =,

n=1

Suppose now u(E)<w. Since each E; €. /F,
p(E)=sup{u(K):K c E, and K is compact} . Given ¢> 0, there exists compact
subset K, c E, such that

HE)2 p(K) > p(E) = .

For each integern > 1, let H,=UK,. Then H, cUE cUE, =E. Therefore,
i=1 i=1 i=1

u(E)=pu(H,)= y(LnJKl.] = Zn:y(Kl.) , since K, K3, ..., K, are pairwise disjoint,
=l i=1

n n 1 n
> Z,u(El.)—é‘Z? > ZIU(E[)—E .
i=1 i=1 i=1



It follows that u(E)> i u(E)—&. Since € 1s arbitrary, u(E)=> i u(E). Hence

i=l1 i=1

this together with part (1) gives u(E)= i u(E)). We now show that if u(E)<owo,

then £ . /7F.

If u(E)<w, given any &> 0, there exists an integer N such that n > N implies
that (E)<> u(E)+e<> u(K,)+2e=u(H,)+2¢. Here H, is compact and
i=1 i=1

H, c E. It follows that u(E)= sup{,u(K) 'K c E and K is compact} . Therefore, E
e./F.

() Forall E €. 7F, given £> 0, there exists compact subset K of X and open
subset V' withK < E <V such that u(V -K)<«.

ForE €. /7F, u(E) =sup{,u(K):K C FE andK is compact}. Hence given >0,

there exists compact subset K < £ such that
&
H(E) 2 u(K) > ﬂ(E)—E-

Since u(E)=inf{u(V):EcV and V is open in X}, there exists open set V' such that
EcV and

u(V) < u(E) +§ :

Hence, y(V)—% < u(E)< y(K)+§. Now by (2), K €. 7r. Since Xis

Hausdorff, K is closed in X. Therefore, V- K 1is open in X.
u(V-K)<uV)<u(E)+¢e<wo. It follows from (3) that V- K € . /7. By part (4),

(V)= u(K)+u(V -K) and so u(V —K)=pu(V)-u(K)<e.
(6) IfA1 ,Az S .//F, thenA1 —Az ,Al UAZ andA1 ﬁAz € . /F.

By (5), given € > 0, there exist compact K, , open V; such that K; — 4; < V; and
ulV.-K)<efori=1,2.

Then 4 -4, cV,-K, = (V,-K,)u(K,-V,)u(¥,-K,). Therefore,
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/J(Al _A2)SIU(I/I _K1)+,U(K1 V) +ulV,-K,)
<26+ u(K,—-V,)<2e+ u(K,)<oo.

Note that K, -V, is compact, K, -V, c 4, — 4, and w(K,—V,)> u(4, —4,)-2¢. This
shows that given any ¢> 0, there exists a compact set L such that L < 4, — 4, and
(A —4)> u(L)> u(4 —4,)-¢. Hence,

w4 —4)= sup{,u(L) :Lc A -4, and L is compact} :
Therefore, A1 — A, € . 7F.

Now, 4 ud,=(4-4,)u4, andas u(4UA,)<u(A)+u(4,)<wo,A1—A2, A2 €
- #r and A, — A3, A, are disjoint and so by part (4), 4 U4, =(4,-4,)ud, € 7F.

Next, 4 N4, =4 —-(4-4,) €. 7r,sinced;—Arand 4, € . /.

(7) . 71s a o-algebra containing all Borel sets of X.

Recall that 4 € . 7if ANK e . 7F for all compact subset K of X. Take 4 € . 7.
We shall show that the complement 4° € . 7. Now A“NK=K-ANK € ./Fby
part (6) since K and ANK € . 7. Hence, A° € . /. Suppose {4,} is a countable

collection of members of . /. If {4}" is a finite collection, then by part (6) for
any compact K, ([LileijmK = [LleA,. NK € . /Fand so IQA" €./ . S0, we now
assume that {4} is a collection of infinitely countable number of members of
.. We shall show that 4 :QAI. €. . Let B=4nK . Inductively, define
B =4 NK-BUB,U-UB,_ . Then AnK =QBi . Since 4, NK € . /r for all

integer n > 1, it follows from part (6) that B; € . /r for all integer i > 1.

Moreover, the collection {B,}” are pairwise disjoint. By part (4),
since y(GBij:,u(AmK)<oo, GBi =AnK € . 7r . Hence, A=@Ai e. 7.
i=1 i=1 i=1

Next we shall show that if C < X is closed in X, then C € . /. In particular, X €
.

If C 1s closed, then CK is compact for any compact subset K of X and so CnK
11



€./r. Thus C €./ . Hence, X € . 7/ and . 7is a o-algebra containing all
closed subsets of X, hence all open subsets of X. So, it contains all Borel sets of
X

8). 7r={E €.7: i(E) <o }.

Suppose E € . 7. Then by (6), since by (2) any compactK € . 77, ENK € . 7F .
Hence, £ €. 7 Thatis,. 7rc. 7 and. 7y C{E € .7 : tE) <0 }.

Conversely, suppose £ € . /7 and u(E)<ow. As
H(E)=inf{u(V): EcV and V is open in X} , there exists an open set }in X such

that £V and u(V)<w. Since V'is open, by (3), V € . 7r . Hence,
u(V)=sup{u(K):K =¥ and K is compact|. Therefore, given any &> 0, there
exists a compact set K — V' such that x(K)> u(V)-¢so that 4(V-K)<e. Since

by definition of . 7, ENK € . /F, there exists compact H < ENK such that
u(H)>w(ENnK)—-¢. Since Ec(EnK)u(V-K),

,u(E)S,u(EmK)+,u(V—K)<,u(H)+28.
As H is compact and H c E, this shows that

,u(E)=sup{,u(H):HgE and H is compact}.

Therefore, E € . #/r. Hence, {E € .7 : t(E) <o }c.7r. Thus, {E €. 7: .(E)
<OO}=,//F.

Remark. Thus, part (d) holds if x(E)<w. If Eis open and u(E) <« , then the

conclusion obviously holds too. We are left with the case E is open and
u(E)y=o0. Now u(E)=sup{A(f): feC.(X)andf < E} = implies that given any

M >0, there exists feC (X)andf < E such that A(f)> M. Let K = support f
and so K c E. Since u(K) < o, there exists open set } containing K such that

uV)<u(K)+e

Let U=V nE.Then U is open and support f=K < U so that f <U and
w(U) < u(K)+¢e . Therefore, u(U)>A(f)> M . It follows that
w(K)>uU)—e>M —&. We can now conclude that
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sup{u(K):K c E and K is compact} = and so
p(E)=sup{u(K):K c E and K is compact} = 0.

(9) u1s a measure on . /7.
We have proved that s countably additive on . 77 and that . 7is a o-algebra.

Suppose E1, E», ..., are in. / and are pairwise disjoint.

If for some integer i, u(E,) =, then plainly, ,u([j Ej = iﬂ(E,,) =ow. Wenow

n= n=1

assume u(E,) <o for all integer i > 1. By part (8), E; € . 7/ for all integer i > 1.

It follows by part (4) that ,u(@ E[j = i u(E,). Hence, 1 is countably additive on
=l i=1

.~/ and so u 1s a measure on . /.

(10) For all feC.(X), A(f):jxfdy.

We note that it is sufficient to prove this for real f. For complex f we may write
f=Ref+ilmf. Then the real part of £, Re /', and the imaginary part of f, Im f

, are continuous real functions with compact support. Then,
A(f)=A(Re f+ilm f)=A(Re f)+iA(Im /)= | Refdu+if tmfdu=| fdu.

Let f be a continuous real valued function with compact support in C.(X). Let

K = support fand so K is compact. Since f'is continuous, f{K) is compact and is
a compact subset of C and resides in the real line. f(K) is closed and bounded
on the real line. Therefore, f(X) is a bounded subset on the real line. Thus, we

may assume that 7(X)c[a,b]. Given &> 0, partition [a,b] as follows
a<y <y, <<y =b with y -y <e for2<i<n.
and add a point y, <a so that y, -y, <¢.

Let E,={xeX:y < f(x)<y}nK for 1 <i<n. Thatis, E, =/ ((y_.»])nK.

Since f'is continuous and so 1s Borel measurable, it follows that each E; is a
Borel set. Moreover {E,} are pairwise disjoint and covers K. Since X is

compact, u(E,)< u(K)<woby part (2). Therefore, by part (8), E; €. 7pfor 1 <i <
n. By the definition of x(E,), given £> 0, there exists open set W, o E, such that
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u(W) < w(E)+<. Let D, ={zeC:|z—1(y, +y,+&)| <1y, +&-y.)}. Then D, is
n
an open disk and so U, = /7 (D,) isopen and y,_, < f(x)<y,+eforallxin U,.

Then U o E.Let V. =W AU, and we have u(V) < u(W)< u(E)+< and
n

l

Cs

f(x)<y,+¢ forall x in V;. Note that UV > UE, =K . Take a partition of unity
i=l1

1

{h.}.... on K subordinate to the covering {V;} __ such that, for 1 <i<n, 0<h <1

<i<n

, h, <V, and h +---+h =1 on K. Then we have
> hf=f since > h=1onk,andforl<i<n,
i=1 i=1

h(x)f(x)<h(x)(y,+¢) since h <V, and f(x)<y,+¢ forallxin V; and

y,—e<f(x)<y +¢ forallxin E; .

By linearity, A(f)= Zn:A(hi f). As Ais apositive functional and 4/ <h(y,+¢),

i=1

A(Bf)SA((y,+&)h)=(y,+&)A(h) for 1 <i<n. Therefore,

n

ACS) :[Z::A(hif)SZ(y[ +e)A(h).

i=1

Since # <V, for 1 <i<n, by definition of x(V,), A(h)<u;) for 1 <i<n. For

1<i<n,a<y <b sothat y,+&+|a|>0. Therefore,

n n

Z(y,- +&)A(h)

i=1 i=1

_ (y,.+e+IaI)A(hf)—|“|A@h’)

i=1

() A ()= DJa A (1)

=

=

< (yi+g+|a|),u(Vl.)—|a|A( h[j
=1 i=1

i

< (yl.+g+|a|),u(El.)+Zn:(yi+8+|a|)%—|a|A(ian:h[j

i=l1 i=l1



Siznll(yi —g)y(Ei)+(2g+|a|),u(K)+(b+£+|a|)£—|a|A(ian:hij
S[Z::J‘Eifdy+g(2,u(K)+(b+g+|a|))+|a|y(K)—|a|A(§hi]
:J‘de,u+g(2,u(K)+(b+g+|a|))+|a|u(K)—|a|A[[Z::hi].

Now we claim that x(K) SA(Zn:h[j. Note that 0< Zn:hl. =h<land K <h. Take
P P

0<k<1. Let ¥, ={xeX:h(x)>k}. Since A is continuous, V is open. For any

geC (X)suchthat g<V, , g(x)<1 <%h(x) for x in V. Since g(x)=0 for xeV,*,

g(x)< %h(x) for all x in X. Therefore, A(g)< A(%hj = %A(h) . Hence, for any

geC.(X)such that g<V,_, A(g) S%A(h) and so

,u(Vk):sup{A(g):g<Vk,geCc(x)}S%A(h). As h=1onK, forany 0 <k <1,

K cV,. Therefore, u(K)< uV,)< %A(h). Letting £ — 1, we deduce that

1K) < A(h).
Hence,
A(f)SJ‘de,u+g(2,u(K)+(b+g+|a|))+|a|y(K)—|a|A[[Z::hi]
gjxfdwg(zﬂ(K)+(b+g+|a|)).
Since &is arbitrary, A(f)< jX fdu.

As A islinear, ~A()=A(-/) <[ (~f)du=~[ fdu andso A(f)=[ fdu,
Thus, A(f):jxfd,u.

We say a positive Borel measure u is regular, if the conclusion (c) and (d)
holds for any Borel measurable set £ without any condition.
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Remark.

1. Take the space of all continuous real-valued functions with compact support
on a locally compact Hausdorff topological space X,

C.x(X)={f:X - R; [ is continuous with compact support} .

Take A:C,,(X)— Rto be a positive real linear functional on C,,(X). Then the

above proof applies equally well to this positive linear functional to give the
same conclusion (a) to (d).

2. If X'1s a compact Hausdorff space and A:C,(X)— C is a positive linear

functional, then by the Riesz Representation Theorem (Theorem 1), there exists
a o-algebra . 7/ on X, containing all the Borel sets of X and a unique positive
measure, 4, on ./ such that A(f)= L fdu. Since Xis compact, 1(X) < oo and

so w 1s a finite positive regular Borel measure, meaning part (c) and (d) of Riesz
Theorem hold without any condition. Moreover, C,(X)=C(X), the space of

continuous function with the sup norm, |/

_=sup{|f(x)|:xe X}, is a Banach

A(f)|=Uxfdy‘§_[x|f|dys||f||u #(X). This means A is

bounded and so is continuous and |[A||< #(X). Actually, as u(X)=A(l)< o,

space. Furthermore,

[A]1=sup{[acH:]f

,=LfeC(X)=CX)}=u(X)<o.

Thus, A:C,(X)— C is a bounded complex linear functional. In this case, we

have a one-one map from the collection of positive complex linear functionals
to the collection of finite positive regular Borel measures with the norm
|| = #(X). Furthermore, this map preserves norm.

Suppose X is a compact Hausdorff topological space. Then

C.r(X)= { f:X > R; f is continuous with compact support}
=C(X)={f:X >R; [ is continuous} .

Suppose A:C,(X)— R is a positive real linear functional. As remark before,

the Riesz Representation Theorem for positive real linear functional on the
space of real valued functions on the locally compact topological space X

16



follows from Theorem 1 as the proof is exactly the same. That is, we have
conclusion (a) to (d) of Theorem 1. Then the Riesz Representation Theorem
applies to give a positive Borel mesure, £, such that A(f) = J-X fdu for all

f eCy(X). Note that for a positive real linear functional A, for any fin C,(X),
ALAS) ==Af)<A(|f])- Thus, if | /]<1, |A(/)<A(f])<AQ) and since
[ Al =sup{lACH:(f

real linear functional is a bounded real linear functional. Thus,

,=land f€C,(X)}, |A|=A(1) <. This means any positive

w(X)= jxld 1 =A()<w and so u s a finite, positive and hence regular Borel

measure by part (d) since u(E)< u(X)<w forall Ein. 7. Thus, any positive
real linear functional A:C,(X)— R is represented by a unique finite positive

regular Borel measure.

If we consider just bounded real linear functional @:C, (X)— R, the situation is
somewhat different. We may not apply Theorem 1 directly. But if we can write
@ as the difference of two positive real linear functionals, we may proceed to
apply Riesz Representation Theorem (Theorem 1). We may decompose a
bounded real linear functional ® on C, (X) for any compact Hausdorff

topological space X as the difference of two positive real linear functionals.

Proposition 2. Suppose X is a compact Hausdorff topological space and
Co(X)={f:X > R; f is continuous} . Suppose ®:C,(X)— R is a bounded real

linear functional. Then we can decompose @ as ® =®* —®~ such that ®* and ®~

are positive real linear functionals and |@] =|@*|+|@||= @)+ ().

Proof.

Let C,"(X)denote the set of non-negative functions in C,(X).

Define for f in C,*(X),
(I)+(f)=sup{(D(h):heCR(X) andOSth}=sup{CD(h):heC]R+(X) andOSth}.

This is well defined since @ is bounded so that the supremum above exists.

17



Since ®(0)=0, ®*(f)>0 forall £ eC,"(X). Plainly, ®*(f)>®(f) forall
feC,"(X). Obviously, for k>0, @ (k )=k D" (f).

We need to show that @ (f,+£,) =D (f,))+P"(f,) for £, f, eC, (X).

By definition of ®'(f;), given € > 0, there exists % e C,"(X) such that 0< 4 < f,
and ©°(f,)—e<®(h)fori=1,2. Then we have,as 0<h +h, < f,+ f,,

O (f)+D(f,)<DOh)+D(h)+2e=D(h +h,)+2e <D (f,+ f,) +2¢.
Since ¢1s arbitrary, ®*(f)+®"(f,) <O (f, +1,) -

Take he C,*(X) with 0<h< f+ f,. Let V ={x: f,(x)+ f,(x)>0}. Then V'is open
in X.
Ji(x)h(x) eV

Let h(x)={ f£,(x)+ f,(x)
0, xeVe

We claim that 4, is non-negative, continuous with compact support, 0< 4, < f,
fori=1,2.

Plainly, #(x)>0for all xe X', & (x)< f,(x) for xeV and A (x)= f,(x)=0for xeV*
for i=1, 2.

Since — /™Y and h(x) 1s continuous on the open set V, G CIEN

£+ £ £(0)+ 5(x)
continuous on ¥ so that % is continuous on V for i =1, 2. Now we show that 7,
1s continuous at any point x, € V°. For such a x, e V¢, h(x,)=0 and also A(x,)=0.
Since /4 is continuous at x,, given any open interval 7 =(-4,5), ¢ >0, containing
h(x,) =0, there exists an open set U containing x, €V such that A(U)< 7. Now
forx € U, |h(x)|<|h(x)| <5 implies that 4 (x)e ! and so 4 (U)cI. Hence, A is
continuous at xo. Therefore, 4 1s continuous on X. Similarly, we can show that

h, 1s continuous on X. Therefore, 4 e C,*(X) fori=1,2. Then
h(x)+h,(x)=h(x) for all x in X and ®(h)=D(h)+DP(h) <O (f,)+D (f,).

This means that for all ne C,*(X) with 0<h< f,+ f,, DA <D (f,)+ D (f,).
Therefore, ®*(f, + 1,) <O () +®"(f,). Thus, ®*(f,+1,)=0"(f,)+D (/).

18



We now extend this definition of ®* to all of f e C,(X). For feC,(X), |/ (x)

is bounded above, say by a positive constant, N. Then 7+ N >0. We define
O (f)=0"(f+N)-®"(N). This is well defined. For suppose f+M >0, then
O (f+N+M)=D (f+N)+ D" (M)=D"(f+M)+D*(N)so that

O (f+N)-D(N)=D"(f+M)-D"(M).

It is clear that ®* is linear on C,(X). Suppose f,, f, € C.(X) and
fi+N=0,/,+M>0. Then ©°(f,+ f,) =0 (f,+ f, + M+ N)—D®* (M + N)

=Q (fi+N)+DO(f,+M)—-D" (M)—-D"(N)
=0 (f)+D" (/).
Plainly, ®*(0)=0 and for ¢ >0, ®*(c f)=c®*(f) forall f e Cy(X).

In particular, for feC,(X), @ (f)+®" (-f)=®"(f+(-f))=D"(0)=0 so that

@' (-f)=-®"(f). Thus, ®"is a linear functional on C,(X). Since ®*(f)>0
for £ >0, ®"is a positive linear functional on C,(X). Note that by definition of
@ for >0, ®(f)<D'(f). Define & (f)=0"(f)-d(f) for feC(X).

Then for >0, ® (/)= (f)-D(f) >0, it follows that @~ is also a positive
linear functional on C,(X) and ®=®* -~

Note that

()| =

O (f)- D (f)|<

O (f)|+|@ (/)

s\qr o

A+l it = (ol ke )ir

u

Therefore, || @] < ‘ o*

+H(D‘

. Note that since X is compact, for positive linear

functionals, ®* and @, |d*

=@*(1) and [@7]|=@"(1). (If A is a positive linear
functional, then for any /" in C,(X), A(/),A(-)<A(|f]). Thus,if |f]<1,

A< A(|f]) < AQ) and since A= sup{|A( Nl:lf
1eC, (), [Al=AM).)

,=land feCy(X)} and

Recall that ®* (1) =sup{®(h):he Cy(X) and 0< A <1} .
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Take any he C,(X) with0<h<1. Then -1<2h-1<1. Therefore, by definition
of |@|, |®@2hr-1)|<|@||2r-1] <|®| so that dQ2Ar-1)<|®h-1|<|d|[22-1] <|®].

This means, 2d(h)-®(1)=d(2h-1) <|®| for all e C,(X) such that 0<h<1.
Therefore, by definition of ®*(1), 2" (1)~ ®(1) <||®|, that is to say,

O (D) +d (1) =20"(1)- (1) <|P||. Consequently, ®*(1)+d (1) =|d|.

This completes the proof of Proposition 2.

Suppose X is a compact Hausdorff topological space.

Suppose ®:C,(X)— R is a bounded real linear functional. Then by Proposition

2, we can decompose ®@ as @ =®* —®~ such that ®* and @~ are positive real

linear functional and |®| = ‘ O ||+ HCD’H =d"(1)+d (1). By the Riesz

Representation Theorem (Theorem 1), there are unique positive regular finite
Borel measures, t4 and z6, on . # such that ®*(f) =L fdu and

O (f)=[ fdu,. Thus, o(f)=[ fdu~[ fdu,=[ fd(um-m). Let 1=p—u,.

Then A is a real measure.

Then for all feC,(X),

(D(f)=jxfd/1 and

@) =[], £t —m)

=UXf+ (=)= [ £ d(— )

<\ rraal+|[ rraa<] rdlal+] ralal=[ |flal

<|f A|(X).

S lal=1r

u

Note here that for a real measure, £, the variation measure of x, is defined to
be |y: . 7 — R* given by

l4|(E)=" sup fEZIﬂ(El-)I .

All partitions {E;} o
Note that || is a measure. (See Theorem 1, Complex Measure, Dual Space of
L7 Space, Radon-Nikodym Theorem and Riesz Representation Theorem.)
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Hence, ||®[ <[4|(X). But |A|(X) < 14(X)+1,(X)=®" 1)+ (1) =|®| and so
[®] = |41 (X) = 14,(X) + p1,(X) .

Note that it is easy to see that if 14 and g4 are positive finite regular Borel
measure, then |A|=|x — | is a positive regular measure. (See Proposition 21,

Complex Measure, Dual Space of LF Space, Radon-Nikodym Theorem and Riesz
Representation Theorem.) For a signed measure or real measure g, we say g 1s
regular if |y| is regular and p s finite if |4 is finite. As

\A|(E) = |1, — 11| (E) || (E) +|,|(E) forall E € . 7, if y and g4, are finite

positive measures, |4] is finite and so 1= — 4, is a finite real measure.

We shall now show that A is unique.

Suppose there exists finite regular real Borel measures, 4, and 4, such that

d)(f)zjxfdﬂlzj)(fdﬂ,z. Let u=4 -2, ,then Lfdyzo. L 1s a finite regular

real Borel measure. Then by the Jordan decomposition of measure (see
Theorem 13, Complex Measure, Dual Space of L? Space, Radon-Nikodym
Theorem and Riesz Representation Theorem),

u=u" —u ,where u" and 4~ are positive measures.

As Idey:O for all f e C,(X), Lfdy* :Lfdy‘ for all £ e C,(X) and both

define the same positive real linear functional. Therefore, by the uniqueness
part of Theorem 1 (Riesz Representation Theorem), x* = ™, consequently x=0

and so 4, =41,.

Hence, we conclude that the real dual space of C,(X), that is, the space of all
bounded real linear functional on C,(X) is isometrically isomorphic (i.e., via a

norm preserving map) with the space of all regular real (signed) finite Borel
measures, expressible as the difference of two finite positive regular measures,
on the o-algebra . / on X, with norm given by||x| =|x|(X).

Thus, we have proved:

Theorem 3. Suppose X is a compact Hausdorff topological space and
Cp(X)={f:X > R; f is continuous} . Suppose ®:C,(X)—R is a bounded real

linear functional. Then there exists a o-algebra. 7 on X, containing all the Borel

21



sets of X and a unique regular finite real Borel measure (signed measure), A, on
./, expressible as the difference of two finite positive regular Borel measures,
such that ®(f)= J-X fdA and |®|=|4|(X). Let M be the collection of all regular

finite real Borel measures, expressible as the difference of two finite positive
regular Borel measures, with a norm on M given by |u|=|x|(X) for gin M.
Then the association I':C,(X) — M, where C,(X)’ is the real dual space of
C,(X), given by I'(®) =1, where ®(f)= jX fda,1s alinear isometric

isomorphism preserving norm.

Note that given a finite regular real Borel measure, A, we can decompose
A=2"-2" by the Jordan Decomposition Theorem (Theorem 13, Complex
Measure, Dual Space of I Space, Radon-Nikodym Theorem and Riesz
Representation Theorem) where A* and A~ are finite positive Borel measure.
Then for any f eC,(X), we may define

ijcM:ijd/r —ijd/l— .

Plainly, if we define A(f)= jX fda, A is areal linear functional and is clearly

bounded, since

IACP) =Ude/1‘ =Ude/1+ —Ide/I“ sUde/r +Ude/1-‘

<|A1, (2" @)+ 2 0) = |71, Ao
so that |A| <|A|(X) <.

If A is expressible as the difference of two finite regular positive Borel
measures, i.e., 1=a -, where « and g are finite regular positive Borel

measures, then A=a-p=1"-1 sothat a+1 =pB+1". Then
a+2A" =+ +1 = B+|A| is regular. It follows that 4~ is regular and hence
A" 1s also regular. Thus, if A is expressible as the difference of two finite

regular positive Borel measures, then the Jordan decomposition gives A =1" -1
and 1" and A~ are finite regular positive Borel measures.
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Theorem 1 does not give a regular representing measure. We now impose
additional condition on X so that the regularity of the representing measure is a
consequence.

Theorem 4. Let X be a locally compact Hausdorff topological space. Suppose
X s also o-compact, i.e., X is a countable union of compact subspaces. Let
C.(X)={f:X —>C; f is continuous with compact support}. Let A:C.(X)—>C bea

positive complex linear functional on C.(X), i.e., whenever f e C.(X) and fis
real valued with /> 0, then A(f)>0. Then in addition to the conclusions (a) to

(e) of Theorem 1, we have the following.

(f) For all £ € . 7/ and for all £> 0, there exist closed set /' in X and an open set
VinXsuchthat FcEcVand u(V-F)<e.

(g) u1s a regular Borel measure on X, 1.e., condition (c¢) and (d) hold without
any condition forany £ € . /.

(h) For all £ € . 7 there existsa F, set 4 and a G, set B such that Ac £ < Band
u(B—4)=0. That is to say, each measurable set differs from a F, setor a G, set

by a null set.

A F, setis a set, which is a countable union of closed set. A G; setisa

countable intersection of open sets.

Proof. Since X is o-compact, let X = GKI. , where each K; is a compact sub
i=1

space of X.

(f) Take E € . 7. Then u(K,NE)<u(K,)< by part (b). Thus, by part (c),

given any ¢> 0, there exists a set V,, open in X such that V¥ o K, nE and

1
MK, NE)<ulV,) < u(K, NE)+ =5

Therefore,
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Let V= [OJVn . Then V'is open and V' o E. Note that
n=1

v-E=Ur,-UK,nEcU(V,-K,NE).

n=l1 n=l n=1

Therefore,

0
=1

#(V—E)S/I(G(V,,—KnﬁE)ij:u(Vn—KnmE)<gZZ:+1 :%
n=1

n=1 n

Now, the complement of £, E° € . / By the same argument as above, there
exists an open subset U in X such that £ — U and

. &
U-E)<—.
u(U-E)<3
Let F=U“. Then F'is closed and

uV =Fy=p((V -E)o(F - E)) = u((V - E) o (U - E°))
Sy(V—E)+y(U—EC)<§+§=g.

(2

Since (c) holds for any £ € . / by definition of u«, we need to show that (d)
holds for all £ € . 7. We already knew that (d) holds for any open £ or any £

with ((E) < .

By (f), we can choose a closed set F < E such that u(E - F) is arbitrarily small.
Therefore, it is sufficient to show that (d) holds for all closed set F in X.

If F1s closed, then for each integer n > 1, FnK, is compact and so FNK, €. /7.

Note that F = CJ(F NK,). By the usual property of measure,
i=1

1

y(O(FmKi)j—)y(F) as n— .

Since U(F NK,) 1s compact and L_J(F NK,;)c F, this implies that (d) holds for F.

i=l1

Now we show how this implies that (d) holds for any £ € . /.
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Choose closed F c E such that u(E-F)< g There exists an integer N such that

y(F)—y(LnJ (F me)j <§ for integer n > N.
=1

i=

Then for integer n > N,

ﬂ(E—_

As noted, U(F NK;)is compact and so this shows that (d) holds for any £ € . 7.
i=1

=

(kagjsME—FM4{F—QUWw&ﬂ<§+§=a

(h)
Take E € . 7. Apply (f) successively with & L give closed set F, and open
n

set ¥, such that £, cEcV, with u(#,~F)<~ . Let 4=UF, and B=1,.
n n=1

n=1

Then 4 1sa F, setand Bis a G, set such that 4 E < B. Note that

v.-UF, cV,—F, foreach integern>1.

s

B-A=

n

Therefore, u(B—A)<u(V, —F;)<l for all integer n > 1. Hence, u(B-4)=0.
n

This completes the proof.
Remark.

Compare this with Theorem 3. The positive Borel measure representing a
positive real linear functional on the space C,(X), when X is a compact

Hausdorff topological space is regular. There 1s an example of positive non-
regular Borel measure arising from a positive complex linear functional on the
space C,(X), where X is a locally compact Hausdorff topological space. So,

Theorem 4 is not vacuous.

Theorem 4 says that the positive Borel measure representing a positive complex
linear functional on the space C,(X), when Xis a locally compact and o~

compact Hausdorff topological space is regular. The next result is about a
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condition on a locally compact Hausdorff topological space X that implies any
positive Borel measure on X is regular. This condition is enjoyed by the metric
space R".

This condition is stated as every open subset of X is o-compact. In particular, X
1S o-compact.

Theorem 5. Let X be a locally compact Hausdorff topological space, in which
every open subset 1s o-compact. Let A be any positive Borel measure on X such
that A(K) <« for any compact subset K in X. Then A is regular.

Remark.
1. R" satisfies the hypothesis of Theorem 5.

2. Not every locally compact Hausdorff topological space must necessarily have
its open sets o-compact.

Proof of Theorem 5.

Take any feC (X). Since f'is continuous f'is Borel measurable. Define
A(f) = J'X fdx. Since fhas compact support K,

AP =Uxfd/1‘ <|f]. AK) <o,

as ||f], < and A(K)<w because K is compact. If f is real valued and /> o,

then L fda>0. It follows that A:C (X)— C is a positive complex linear

functional. By Theorem 4, we get a positive regular Borel measure g on. 7/
such that A(f) = J-X fdu. We shall next show that for any open set V' in X,

AV)=u). Since V'is o-compact, V = GHI. and H, is compact for each integer
i=1

i > 1. Since H; is compact and H, c V', by Urysohn’s Lemma, there exists
fieC.(X) suchthat H < f,<V. If f, 1, f, have been chosen so that K; =
support f; , choose f,,, by Urysohn’s Lemma such that

KuK,u---OK VHUH,U---UH <f  <V.
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Observe that K, UK, U---UK, UH UH,U---UH, 1s compact and is contained in
V. Note that support f, =K, V', 0<f,(x)<1 forall x in X,

f.(x)=1forallxin K, UK, U---UK, | WH UH,U---UH .
Therefore,
()< f (xforxin K, UK, v--- UK, UH, UH,U---UH,

and as f,(x)=0 for x¢K,, f,(x)<f,, (x) forallxinX. It follows that {/ } is a

monotone increasing sequence of real valued functions in C.(X). As V=UH, ,
i=1

f. /" 7, pointwise on X. Therefore,

AV) = IX Z2,dA =1lim L{ f.d2, by the Lebesgue Monotone Convergence Theorem,

=limA(f,)=1im | f,du, by Theorem 4,

n—>0

= jX 72,du, by the Lebesgue Monotone Convergence Theorem,

=,u(V).

For any Borel set £ in . /7, by Theorem 4 part (f), there exist closed F and open
V'such that Fc EcV and

Hence, since V - F is open, by what we have just proved,

VU o T VU o By T — (*%)
Therefore, AV —E)<A(V-F)=u(V-F)<e. This implies A is outer regular.

By (*), we can choose a closed set F < £ such that A(E-F)<A(V -F)<¢ 1s

arbitrarily small. Therefore, it is sufficient to show that (d) holds for all closed
set Fin X.

Since X 1s o-compact, let X =U L , where L; is a compact subspace for each
i=1

integer i > 1.
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If F'is closed, then for each integer n > 1, F L, is compact and so

A(FNL,)<o. Notethat F = G(FmL,.). By the usual property of measure,
i=1
A(LnJ(FmLZ.)j—M,(F) as n— .
i=1

Since U(F L,) is compact and U(F AL,)< F , this implies that (d) holds for

i=1 i=1

closed set F.

Now we show how this implies that (d) holds for any Borel measurable £ € . /.

Choose closed F c E such that A(E-F)<A(V -F) <§ . There exists an integer N

n

such that A(F) —A(U (F le.)j <§ for integer n > N.

i=1

Then for integer n > N,

=

A(E—. (Fle.)]Si(E—F)+i(F—Q(FmLi))<§+§:g.

As noted, U(F N L,)is compact and so this shows that (d) holds for any Borel
i=1

measurable £ € . 7.

Now we can define the Lebesgue measure on R* via the Riemann integral.

Theorem 6. There is a regular complete positive measure, m, defined on a o~
algebra. 7/on R* satisfying:

(a) If 7 is any k-cell in R*, then m(I) = vol(I).

Here a k-cell
I = {x eR*:a, <x, < B,1<i<k or anything gotten by replacing any < by S} and

vol(I) 1s the usual volume of the k-cell 1.

(b) . /7 contains all Borel subsets of R*. More precisely,

= {Eng: there exists an F set 4 and a G, setB,AgEgB,m(B—A)=O}.
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(c) The measure m is translation invariant, i.e., for all £in. /,
m(E)=m(E +x) for any xeR" .
(d) The measure, m, is unique upto multiplication in the following sense:

If u is another positive translation invariant Borel measure on R* such
that x(K) <o for all compact K, then there exists a constant ¢ such that
u(E)=cm(E) for all Borel set E c R*.

The sets in . / are called Lebesgue measurable sets and m the (k-dimensional)
Lebesgue measure on R*.

Proof.

Define A(f)= ij f for fecC, (R") , the Riemann integral of the continuous

function f with compact support in R“. By the generalized Heine Borel
Theorem, support f is closed and bounded and so the Riemann integral is
finite. This means |A(f)|<e forall feC, (R"). Plainly, forall feC,(R"),

f=0=A(f)>0. By Theorem 4 (Riesz Representation Theorem), there exists a
o-algebra . 7, containing all the Borel subsets on R* and a positive regular
complete Borel measure, m, associated with A such thatA(f)= ij fdm for all

feC,(RY).

(a) We may suppose that the k-cell 7 is open. Adding or taking away bits of
boundary of /, does not altered its volume. So, we may just prove (a) for open -
cell.

Since / is open, m(I)=sup{A(f): f<1}. Forany f <1 ,0< f<1,supportf </
and so f < y, so that A(f)<A(y,)=vol(I). For any € >0, we can shrink / to /y an

open k-cell such that 7, c I, I and vol(I)—& < vol(I,) < vol(I) . By the Urysohn’s

Lemma (Lemma 22, Convex Function, L? Spaces, Space of Continuous
Functions, Lusin’s Theorem), there exists f e C (R") such that 7, < 7 < 7. Thus,

vol (1) = o <[ NS = fam < gy =vol(D).

Hence A(f)> vol([o) =vol(I,)>vol(I)~¢. This means m(I) = vol(I).
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(b) That. 7 contains all Borel subsets of R* follows from Theorem 4 (or Riesz
Representation Theorem, Theorem 1). The other statement follows from
Theorem 4 (h) and the fact that m is complete by Theorem 1.

(¢) Since vol(I +x)=vol(I) for any k-cell I and any x in R*, m(I +x)=m(I) for

any k-cell / and any x in R*. Next, if V'is open, we can write V' = [OJIZ. a
i=1

countable disjoint union of k-cells. So, by the countable additivity of m,
m(V)= im(li) = ivol(ll.) = ivol([l. +x) = im(li +x)=m(V +x).
p = P P
Finally if £ € . 7, then
m(E)=inf {m(V):E <V and V is open} =inf {m(V' +x): E ¥ and V' is open |
=inf{m(V+x):E+xcV+xand V is open} =inf {m(V): E+x <V and V' is open|
=m(E+x).

(d) Suppose u is a positive translation invariant Borel measure on R* such
that u(K) < for all compact K in R*. Then by Theorem 5, u is regular.

Let ' be a k-cell of side of length 1. Let u(I')=c. We can write /' as a disjoint
union of 2" cells of side z—ln, I'= 2U I.. Choose one of these k-cells and call it 7.
i=1

Then, since g 1s translation invariant,
,u(]l):y(j’g[i]:Z"ky(i):c:cm(ll), as m(I") =1,
=c2" m(i) .
Therefore, y(f) = cm(f).

Now, any open subset /" of R* can be written as a disjoint countable union of .-
cells, where k-cells are open balls with centre x of radius » defined by

B,_(x):{y:max|yl.—xl.|<r} .

1<i<k
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Each of these open balls can be written as a countable disjoint union of k-cells

of side 2i of the type like 7 above. Hence, u(V)=cm(V). Finally as u and m

are regular Borel measures, for any Borel set £ c R*,
p(E)=inf {x(V): E <V and Vis open} =inf {cm(V'): E <V and Vis open}
=cinf{m(V): EcV and Vis open} =cm(E).

Remark.

We have thus obtained the Lebesgue measure m on R* so that the Lebsgue
integral jw fdm 1is equal to the Riemann integral ij f(x)ax forall feC, (RY).

Actually, more generally, when /" and |f'| are Riemann integrable,
ij fdm= ij F(x)dx.

For k=1, we examine the Lebesgue measure m so obtained by Theorem 6 more
explicitly.

A step function s on [a, b] is a function that assumes finite values on the open
subintervals of [a, b] defined by some partition of [a, b]. More precisely, there
1s a partition x,=a<x, <x, <---<x, =b and a set of constants, &,¢&,,---,&, such

that s(x)=¢, for x,, <x<x, for 1 <i<n. Plainly, a step function is a simple u-

measurable function.

Suppose 1 :[a,h]— R 1s bounded.

Let S*([a,b]) be the set of all step functions on [a, b]. The lower Riemann
integral of f is defined to be

R[ f=sup{[ p:p< frpes*(ab)|
and the upper Riemann integral of f is defined to be
R[ f=int{['p: f <p.pe5* (D).

As fis bounded, the upper and lower Riemann integrals exist. The bounded
function f'is said to be Riemann integrable if
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Rf_f:RJj_f.

Now a step function in S *([a,b])1s a linear combination of characteristic
functions of subintervals. So, by Theorem 6 part (a), for ¢ € S*([a,b]),

jb¢ = I[ b]godm. Now let S([a,b]) be the set of real-valued simple functions on [a,

b]. Then $*([a,b]) < S([a,b]). Moreover,
Rj:’_f:inf{jfgo;f <p.0 eS*([a,b])} :inf{j[a,b]godm:fs (o,(oeS*([a,b]);
> inf{f(pdm f<p.pe S([a,b])} .
and  R[ f=sw|[ 0= fipeS*(abD|=swl]  oim:p<f.pes*(ab))

< sup{j[a,b] pdm:p< f,pe S([a,b])} .
If we define the lower Lebesgue integral of f to be

J'Q’Lfdm = sup{j[a’b]godm o< f,pe S([a,b])}

and the upper Lebesgue integral of f to be
[, fdm= inf{ ["pdm: f<p.pe S([a,b])} . then we have

Rij < j[a,b]fdm < j[a,b]fdm < Rij )

So, if f is Riemann integrable on [a, b], then j[ ) fdm:j[ ) fdm . It can be

shown that if j'[ ) f =J'[ ) f,then f:[a,b]—> R is m-measurable. Therefore, fis

bounded and Lebesgue measurable and so f'is Lebesgue integrable and the
Lebesgue integral, J.[ b]fdm =j[ b]fdm :J'[ b]fdm =ijf= RJ.bf . Thus, if fis

Riemann integrable, then f'is Lebesgue integrable and the Riemann integral and
the Lebesgue integral are the same.

We have made use of the following two results from Lebesgue integration. For
the sake of clarity, we shall state and prove them.
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Theorem 7. Suppose E is a Lebesgue measurable subset of R and m(E) <.
Suppose f:E — R is bounded. Then f is measurable, if and only if, the lower
and upper Lebesgue integral of f'are the same. The lower Lebesgue integral of

fis defined by _[E fdm = sup{ _[E pdm:p< f,pe S(E)} and the upper Lebesgue
integral by L_fdm =inf { _[E pdm: f<p,pe S(E)} , Where S(F) is the set of real-

valued simple measurable functions on E.

Proof.

Suppose f'is measurable. As f'1s bounded, we assume a < f <. Let &, = p-a ,
n

for integer n > 1. Define E,. = f'[a+(i-1)5,,a+i5,) for 1<i<n,n=1,2, ....

Then E,, are measurable and for each integer n > 1,

n,i

m(E) = m(U E, l) , Where UE, .is a disjoint union,
i=1 i=1

Let ¢, = i(a+(i—1)5,, Jrp, and y, = Zn:(a+i§n )z for each integer n > 1. Thus,
i=1 ! ar
¢,,w, are simple measurable functions on £ such that
$.(x)< f(x) <y, (x) forall xin E.

Therefore,

n

jEfdm > jE¢n dm=>(a+i-18,)m(E,,)

i=1

and

n

L_fdm < J-El//ndm = Z(a + i5n)m(En’[) .

i=1

)=0 m(E).

n,i

Hence, jE fdm— jE_fdm < ;5nm(E
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But § —0 as n— o and so L_fdm < jEfdm. Since Lfdm sjE_fdm , it follows

that [ fdm=[ fdm.

Conversely, suppose [ fdm= [ fdm. We shall show that f is measurable or m-
measurable. o

Let L(f)={¢eS(E):¢<f) and U(f)={y e S(E): f <y}. Then

[ fdm=sup{[ gam:g1()| and [ sdm= inf{[ ydm:y cU(f)]. Since f is

bounded and m(E) <, J'E fdm = L_fdm <. Thus, for any integer n > 1, there

exists ¢, € L(f) and w, e U(f) such that

1

n

jE¢ndm >J.E_fdm—% and J.El//ndm <L_fdm+

Hence, j (v, —¢,)dm :J' z//ndm—j @, dm <2 . This holds for all integer n > 1.
E E E n

Define ¢,y :E >R, by ¢=sup{g,}”

=1

and y =inf{y,}" . Thenboth ¢ and y are

measurable since each ¢, and y, are measurable for all integer n > 1.

Plainly, ¢ <¢< f<y <y, .

Let D, :{er:t//(x)—(,/S(x) >%} .
Obviously, D, {x eE:y, (x)-¢,(x)> %} =D, for all integern > 1.
1 1
Hence, ~ o, <w,—¢, and so J.EE X, dm < J'E(z// —¢,)dm . It follows that

1 2
%I’I’I(Dk’n) < jE(l//” —¢n)dm S;

Therefore, m(D,)<m(D,,)< 2k forall integer n > 1. It follows that m(D,)=0.
n

Let D={xeE:p(x)-4(x)>0}. Then D=UD, and D,cD,c-cD,c-cD.
k=1

Therefore, m(D) = }imm(Dk) =0. This means y =¢ almost everywhere with
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respect to the Lebesgue measure m. As ¢< f<y, ¢=f=w on E-D and
f =y almost everywhere with respect to the Lebesgue measure m. Since E is

measurable and the Lebesgue measure is complete, £— D is measurable
Therefore, f1s measurable on £—D since y is measurable. Hence, fis
measurable.

Theorem 8. Suppose E is a Lebesgue measurable subset of R and m(E) < «.
Suppose f:E — R is a bounded measurable function. Then f is Lebesgue
integrable and

jEfdm:jEf+dm—J‘Ef7dm=J‘Efdm:J‘E_fdm_

Proof.

Since f:E — Ris measurable, /" =max{/f,0} and f~ =-min{/,0} are
measurable. Thus, f=f"-f" and |f|=f"+/ ismeasurable. Note that,

f*,f and |f| are bounded non-negative functions. Then by definition,
J.Ef+dm=sup{J‘Es dm:0<s< " s eS(E)}
and J‘Ef*dm :sup{jEs dn:0<s< f7,se S(E)} .

Since both {Ls dm:0<s< f',se S(E)} and {J.ES dm:0<s< f ,se S(E)} are
bounded above by Km(E) for some constant K such that |f(x)| <K for all x in E,
J'E f*dm and J'E f~dm exist and are finite and so J'E|f| dm = J'Ef*dm+jE fdm<o.

Thus, by definition, f'is Lebesgue integrable on £ and jE fdm= jE frdm— jE fdm .

Since f* is measurable,
jE_f*dm - sup{quﬁdm ‘pe L(f*)} - sup{jE¢dm ‘peS(E):¢< f*}

=sup{j5¢dm:¢eS(E):os¢sf+}=jEf+dm.
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Similarly, we have [ fdm=| f dm. By Theorem 7, [ fram={ s dm=] fdm

and [ f'dm=[ f'dm=[ f"dm.
[ frdm=[ fdm=] fdm~[ f dm
=inf I wdm: f* <w,y e S(E)} —sup I gdm : ¢€S(E)¢<f}

=inf l//dn’lif+Sl//,l//€S(E) +inf j

E

{ f-sup|

(. J+inf ([ gdm:peS(E),p< /)
=inf | [ ydm: /" Sy.p e S(E)| +int|[ ~gdm:~pe S(E).~p= 1|
=inf{[ ydm: f* <y.y e S(E)| +inf{[ gdm:~1~ <g.p< S(E),|
=inf{[,ydm+[ gam: f*<y.~f"<4.y.$<S(E))
=inf{[,(w+@)dm: [/ <y.~f" <4, v.¢ < S(E)|

>inf ([ ydm: f= 1"~ 1 <y S(E) = [ fdm.

Similarly,
=sup{[ wdm:y < [,y e S(E)| ~inf{[ gdm:g e S(E).f <4}
— sup Lwdm:v,gf:y/eS(E) +sup jgbdm peS(E), [ <¢}

{ |
| jreed

=sup{ [, ydm:y < /"y € S(E)| +sup{ [, ~gdm: ¢ € S(E).~/~ = ~4)
| o]

=sup _[El//dm:l//ﬁf*,l//eS(E) +sup!| ddm:peS(E),¢< f}

E

:sup{IEl//dm+IE¢dm:l//Sf*,qﬁﬁ—f’, w,qﬁeS(E)}

:sup{IE(l//+¢)dm:l//Sf+,¢s—f_, l//,¢eS(E)}
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3sup{jEl//dm:y/sf*—f- =f,1//eS(E)} =[ fdm.

Thus, we have L_fdm < J'E Frdm— J'E Fdm< IE fdm. Now, as f'is measurable and

m(E) <o, by Theorem 7, L_fdm = J'E fdm and so it follows that

[ fdm={ fdm~{ fdm=] fim.

Finally, we come to the last result, a very useful technical theorem.
Theorem 9. Partition of Unity.

Let X be a locally compact Hausdorff topological space and K a compact
subspace of X. Suppose U,,U,,---,U, is a finite covering of K by open sets.

Then there exists 4 € C,(X), the space of continuous functions on X with

compact support, such that » <U, , 1 <i<nand h +h,+---+h, =1on K.

Thatis, 0<h <1 and =0 on US. This collection of functions {4} is called a
partition of unity on K subordinate to the covering {U,,U,,---,U,} of K.

Proof.

Suppose xe K . Then since K < LnJUl. , there exists some i such that xeU, .
i=1

Since X is locally compact and Hausdorff, by (9) of Topological Ideas in
Convex Function, L? spaces, Spaces of Continuous Functions, Lusin’s Theorem,
there exists a relatively compact neighbourhood W, , such that W, is open,

xeW,cW,cU, and W, is compact. Then the collection {#,:xe K} is an open

covering of K. Since K is compact, it has a finite sub-covering say

{w,.w, -, |. Let H.=_U W, . Then H,is a finite union of compact sets

U
and so is compact. Note that H, cU, for 1 <i <n. By Urysohn’s Lemma

(Lemma 22 of Convex Function, L? spaces, Spaces of Continuous Functions,
Lusin’s Theorem), there exists a function g, € C.(X) such that

H, <g <U forl <i<n.
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Let h=g, h=01-g)g,, ..., h=(1-g)1-g,)--(1-g,)g,. Since g, <U,,

JA— n
h<U, for 1 <i<n. Observe that UW, c UH, as follows.
=1 i=1

C=

Note that for each , , W, cU, for some 1 <j <n. Hence, W, cH,cUH,.

1

N n
Therefore, UW, cUH,.
i=1 i=1

Now take any xe K and so xe, for some 1 <j <N and hence, x e H, for some

1 <i<n. It follows that g ,(x)=1. Now

h+h+-+h =1-(1-g)1-g,) - (1-g,) . ====—mm=mmmmmmmmmmmmmme (™)

We can show this by induction. (*) is plainly true for n=1 and for n=2. If (*) is
true for n—1, then

h+h+-+h  +h =1-(1-g)l-g,)-(1-g,)+g,(0-g)1-g,)(1-g,,)
=1-(I-g)1-g)1l-g,)(1-g,,).

Forany xeK, (1-g,(x))(1-g,(x))---(1—-g,(x))=0 andso h +h,+---+h =1on K.
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