On Kestelman Change of Variable Theorem for Riemann Integral

By Ng Tze Beng

Kestelman gave the most general form of the change of variable theorem for Riemann integral. We present here a proof of this theorem involving a result about the chain rule for composition and the properties of absolute continuity.

Theorem 1 (Kestelman). Suppose *h* is Riemann integrable on the closed and bounded interval [a, b] and $H: [a, b] \rightarrow \mathbf{R}$ is an indefinite integral of *h*, i.e., $H(x) = H(a) + \int_a^x h(t)dt$ for *x* in [a, b]. Suppose *f* is a bounded function on H([a, b]). Then *f* is Riemann integrable on H([a, b]) if, and only if, $f \circ H(x)h(x)$ is Riemann integrable on [a, b]. Moreover, whenever *f* is Riemann integrable on H([a, b]) or $f \circ H(x)h(x)$ is Riemann integrable on [a, b], we have the change of variable formula for Riemann integral,

$$\int_{a}^{b} f(H(x))h(x)dx = \int_{H(a)}^{H(b)} f(x)dx \; .$$

The first assertion in Theorem 1 of the simple connection between the functions in the above integrands is stated below in the following Theorem.

Theorem 2. Suppose *h* is a function Riemann integrable on the closed and bounded interval [a, b] and $H: [a, b] \to \mathbf{R}$ is an indefinite integral of *h*, i.e., $H(x) = H(a) + \int_{a}^{x} h(t)dt$ for *x* in [a, b]. Suppose *f* is a bounded real valued function on H([a, b]) = [c, d]. Then *f* is Riemann integrable on [c, d] if, and only if, f(H(x))h(x) is Riemann integrable on [a, b].

Poof.

Since the function *h* is Riemann integrable on [a, b], *h* is continuous almost everywhere on [a, b]. Therefore, there exists a subset *A* of [a, b] of measure zero and *h* is continuous on [a, b] - A. Thus, by the Fundamental Theorem of Calculus, for *x* in [a, b] - A, *H* is differentiable at *x* and H'(x) = h(x).

Suppose $f: [c, d] \to \mathbf{R}$ is Riemann integrable. Then f is continuous almost everywhere on [c, d]. Hence, there exists a subset E in [c, d] of measure zero such that f is continuous on [c, d]– E. Note that f is bounded on [c, d] and h is bounded on [a, b], it follows that f(H(t))h(t) is bounded on [a, b].

Suppose $x \in [a,b] - A$ and h(x) = 0. Since the function *h* is continuous at *x* and *f* is bounded so that $f \circ H$ is also bounded, $\lim_{y \to x} f(H(y))h(y) = \lim_{y \to x} h(y) = 0$. Hence f(H(t))h(t) is

continuous at x for $x \in \{t \in [a,b] - A : H'(t) = h(t) = 0\}$.

Let $L = \{t \in [a,b] - A : H'(t) = h(t) \neq 0\}$. It remains to show that f(H(t))h(t) is continuous almost everywhere in *L*. Let $B = H^{-1}(E)$. For $x \in L - B$, $H(x) \notin E$ *x* so that *f* is continuous at H(x) and since *H* is continuous at *x*, it follows that f(H(t)) is continuous at *x*. Therefore, f(H(t))h(t) is continuous on L-B. By Theorem 2 of *Change of Variables Theorems*, since $m(H(B \cap L)) = 0$ because m(H(B)) = 0, H'(t) = h(t) = 0 almost everywhere on $B \cap L$. It follows that f(H(t))h(t) is

continuous almost everywhere on $B \cap L$. Hence, f(H(t))h(t) is continuous almost everywhere on L and so on [a,b]-A and as m(A) = 0, it is continuous almost everywhere on [a, b]. This means that f(H(t))h(t) is Riemann integrable on [a, b].

Suppose f is bounded and f(H(t))h(t) is Riemann integrable on [a, b]. We shall show that f is continuous almost everywhere on [c, d] and so is Riemann integrable. To do this we use the following proposition.

Proposition 3. Suppose *h* is Riemann integrable on the closed and bounded interval [a, b] and $H: [a, b] \rightarrow \mathbf{R}$ is an indefinite integral of *h*, i.e., $H(x) = H(a) + \int_{a}^{x} h(t)dt$ for *x* in [a, b]. Suppose *f* is bounded on H([a, b]).

Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] - A and H'(x) = h(x). Then for x in [a, b] - A, f(H(t))h(t) is continuous at x, if, and only if, h(x) = 0 or f is continuous at H(x).

Proof.

We have already shown that if $x \in [a, b] - A$ and h(x) = 0 and f is bounded on H([a, b]), then f(H(t))h(t) is continuous at x.

Take $x \in [a, b] - A$. Plainly, if f is continuous at H(x), then f(H(t)) is continuous at x since H is continuous at x and so f(H(t))h(t) is continuous at x.

Suppose f(H(t))h(t) is continuous at $x \in [a,b]-A$ and $h(x) \neq 0$. Then plainly, f(H(t)) is continuous at x. We shall show that f is continuous at H(x). Note that

 $\lim_{t \to x} \frac{H(t) - H(x)}{t - x} = H'(x) = h(x) \neq 0.$

We may assume without loss of generality that *x* is in the interior of [*a*, *b*]. Suppose h(x) > 0. Then there exists $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq (a, b)$ and

$$|t-x| < \delta \Rightarrow |h(t)-h(x)| < \frac{1}{2}h(x) \Rightarrow h(t) > \frac{1}{2}h(x) > 0.$$

Therefore, for all $t_1 < t_2$ and $t_1, t_2 \in (x - \delta, x + \delta)$,

$$H(t_2) - H(t_1) = \int_{t_1}^{t_2} h(t) dt \ge \int_{t_1}^{t_2} \frac{h(x)}{2} dt = \frac{h(x)}{2} (t_2 - t_1) > 0.$$

Hence, *H* is a continuous and strictly increasing function on $(x - \delta, x + \delta)$. This means that the restriction of *H* to the interval $(x - \delta, x + \delta)$ has a strictly increasing continuous inverse *g*. As $f \circ H(t)$ is continuous at *x*, $\lim_{t \to x} f \circ H(t) = f(H(x))$ and since *g* is continuous at H(x),

$$\lim_{y \to H(x)} g(y) = g(H(x)) = x. \text{ Therefore, } \lim_{y \to H(x)} f(y) = \lim_{y \to H(x)} \left(f \circ H \right) \circ g(y) = f(H(x)).$$

This means *f* is continuous at H(x).

We deduce similarly that if h(x) < 0, *f* is continuous at H(x). This concludes the proof of Proposition 3.

Completion of the proof of Theorem 2.

Now suppose f(H(t))h(t) is Riemann integrable on [a, b] and so f(H(t))h(t) is continuous almost everywhere on [a, b] - A.

Now for x in [a, b] - A, by Proposition 3, f(H(t))h(t) is not continuous at x if, and only if, $h(x) \neq 0$ and f is not continuous at H(x).

Let $C = \{t \in [a,b] - A : f \text{ is not ontinuous at } H(t)\}$ and

 $D = \{t \in [a,b] - A : h(t) \neq 0\} = \{t \in [a,b] - A : H'(t) = h(t) \neq 0\} = L .$

Thus, for x in [a, b] - A, f(H(t))h(t) is not continuous at x if, and only if $x \in C \cap D$. Therefore, since f(H(t))h(t) is continuous almost everywhere on [a, b] - A, $m(C \cap D) = 0$. Since H is absolutely continuous on [a, b], $m(H(C \cap D)) = 0$.

Let $\widetilde{D} = \{t \in [a,b] - A : h(t) = 0\}$. Then $[a,b] - A = D \cup \widetilde{D}$ and

$$C = C \cap (D \cup D) = (C \cap D) \cup (C \cap D).$$

By Theorem 3 of Functions Having Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem,

$$m(H(\widetilde{D})) = m\left(H\left(\{t \in [a,b] - A : H'(t) = h(t) = 0\}\right)\right) = 0.$$

Thus, since $H(C) = H(C \cap D) \cup H(C \cap \widetilde{D})$, m(H(C)) = 0. Since *A* is of measure zero and *H* is absolutely continuous, m(H(A)) = 0. If $y \in [c,d] - H(A)$ and *f* is not continuous at *y*, then there exists $t \in [a,b] - A$ such that y = H(t) and so $t \in C$. Consequently, if $y \in [c,d] - H(A)$ and *f* is not continuous at *y*, $y \in H(C)$. As *H* maps [a,b] onto [c,d], it follows that

 $E = \{ y \in [c,d] : f \text{ is not continuous at } y \} \subseteq H(A) \cup H(C) .$

Hence, m(E) = 0. Thus, f is continuous almost everywhere on [c, d] and so is Riemann integrable on [c, d].

Proof of the Second part of Theorem 1.

By Theorem 2, we may assume that *f* is Riemann integrable on [c, d]. Let $F : [c, d] \to \mathbb{R}$ be an indefinite integral of the function *f*. Then *F* is an absolutely continuous function satisfying a Lipschitz condition. Since $H : [a,b] \to [c,d]$ is absolutely continuous, $F \circ H$ is absolutely continuous on [a, b]. Therefore, $F \circ H$ has finite derivative almost everywhere on [a, b]. Since *F* is absolutely continuous, *F* is an *N*-function, therefore by the following Chain Rule (see Theorem 4 below),

$$(F \circ H)'(x) = (f \circ H)(x)H'(x) = (f \circ H)(x)h(x)$$

almost everywhere on [a, b]. By Theorem 2, f(H(x))h(x) is Riemann integrable on [a, b].

Therefore, $(F \circ H)'$ is Riemann integrable on [a, b]. Hence, by the Fundamental Theorem of Calculus, the Riemann integral,

$$\int_{a}^{b} \left(F \circ H\right)'(t)dt = F \circ H(b) - F \circ H(a) = F(H(b)) - F(H(a))$$

We may also deduce this as follows.

Since $F \circ H$ is absolutely continuous on [a, b], $(F \circ H)'$ is Lebesgue integrable on [a, b] and the Lebesgue integral of the derivative,

Lebesgue
$$\int_a^b (F \circ H)'(t)dt = F \circ H(b) - F \circ H(a) = F(H(b)) - F(H(a)).$$

But $(F \circ H)'$ is Riemann integrable on [a, b] so that the Lebesgue integral is equal to the Riemann integral and so

$$\int_{a}^{b} \left(F \circ H \right)'(t) dt = F(H(b)) - F(H(a))$$

Since F is an indefinite Riemann integral of f, $\int_{H(a)}^{H(b)} f(t)dt = F(H(b)) - F(H(A))$ and so

 $\int_{a}^{b} (F \circ H)'(t) dt = \int_{H(a)}^{H(b)} f(t) dt .$ Hence, $\int_{H(a)}^{H(b)} f(x) dx = \int_{a}^{b} (F \circ H)'(x) = \int_{a}^{b} (f \circ H)(x) h(x) dx .$

Theorem 4. Suppose *F* has finite derivatives almost everywhere on [c, d] and *g* and $F \circ g$ have finite derivatives almost everywhere on [a, b]. It is assumed that the range of g is contained in [c, d]. Suppose *F* is an *N*-function, i.e., *F* maps sets of measure zero to sets of measure zero. Then $(F \circ g)' = (f \circ g) g'$ almost everywhere on [a, b], where F' = f almost everywhere on [c, d], that is to say, the chain rule holds almost everywhere on [a, b].

Theorem 4 is Theorem 3 of Change of Variables Theorems and the proof can be found there.

A necessary condition for the Riemann integrability of the function f in Theorem 1 is that the function f be bounded on [H(a), H(b)]. If f is bounded on [H(a), H(b)] and $f \circ H(t)h(t)$ is Riemann integrable on [a, b], then f is Riemann integrable on [H(a), H(b)] and the Change of variable formula holds even though f may not be bounded on H([a, b]).

Theorem 5.

Suppose *h* is Riemann integrable on the closed and bounded interval [a, b] and $H: [a, b] \to \mathbb{R}$ is an indefinite integral of *h*, i.e., $H(x) = H(a) + \int_{a}^{x} h(t)dt$ for x in [a, b].

Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] - A and H'(x) = h(x) for $x \in [a,b] - A$.

Suppose f is a function defined on H([a, b]).

Assume that $H(a) \leq H(b)$.

Suppose f(H(t))h(t) is Riemann integrable on [a, b] and f is bounded on the interval [H(a), H(b)]. Then f is continuous almost everywhere on [H(a), H(b)] and so is Riemann integrable on [H(a), H(b)]. Moreover, $\int_{a}^{b} f(H(x))h(x)dx = \int_{H(a)}^{H(b)} f(x)dx$.

Proof.

Since *h* is Riemann integrable on the closed and bounded interval [a, b], there is a subset *A* of measure zero in [a, b] such that *h* is continuous on [a, b] - A and H'(x) = h(x).

f(H(t))h(t) is Riemann integrable implies that there is a subset *E* of measure zero in [*a*, *b*] such that f(H(t))h(t) is continuous on [*a*, *b*] – *E*. Let $C = A \cup E$. Then the measure of *C* is zero. Both f(H(t))h(t) and h(t) are continuous on [*a*, *b*] – *C*. Moreover, H'(x) = h(x) for all $x \in [a,b] - C$.

Now for $x \in [a,b] - C$, either $H'(x) = h(x) \neq 0$ or H'(x) = h(x) = 0.

Let $F = \{x \in [a,b] - C : H'(x) = h(x) = 0\}$. Then by Theorem 3 of Functions Having

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée Poussin's Theorem, m(H(F)) = 0. Note that m(H(C)) = 0 as H is absolutely

continuous. We have shown in the proof of Proposition 3 that if f(H(t))h(t) is continuous at $x \in [a,b]-C$ and $H'(x) = h(x) \neq 0$, f is continuous at H(x).

If *H* is not continuous at $y \in H([a,b])$ and $y \notin H(C)$, then $y \in H([a,b]-C)$ and so there exists $t \in [a,b]-C$ such that y = H(t). Since f(H(t))h(t) is continuous on [a,b]-C, by Proposition 3, H'(t) = h(t) = 0 and so $y \in H(F)$.

It follows that f is continuous almost everywhere on H([a, b]) and so it is continuous almost everywhere in [H(a), H(b)]. As f is bounded on [H(a), H(b)], f is Riemann integrable on [H(a), H(b)].

Let $M = \sup\{||f(x)|: x \in [H(a), H(b)]\}$. For each positive integer *n* let

$$f_n(y) = \begin{cases} f(y), \text{ if } |f(y)| \le M + n, \\ M + n, \text{ if } f(y) > M + n, \\ -M - n, \text{ if } f(y) < -M - n \end{cases}$$

Then f_n is a bounded function on H([a, b]) bounded by M + n.

Then the restriction of f_n to [H(a), H(b)] is equal to the restriction of f on [H(a), H(b)]. Moreover f_n converges to f pointwise on H([a, b]). It follows that $f_n(H(t))h(t)$ converges pointwise to f(H(t))h(t) on [a, b]. Note that $|f_n(y)| \le |f(y)|$ for all y in H([a, b]) and so $|f_n(H(t))h(t)| \le |f(H(t))h(t)|$ for all t in [a, b].

Next, we shall show that $f_n(H(t))h(t)$ is Riemann integrable on [a, b]. We shall show that $f_n(H(t))h(t)$ is continuous almost everywhere on [a, b]. Let $M_n = M + n$. Let $x \in [a,b] - C$. If h(x) = 0, then $\lim_{t \to x} f_n(H(t))h(t) = \lim_{t \to x} h(t) = 0$ since $f_n \circ H$ is bounded on [a, b] and h is continuous at x. Hence $f_n(H(t))h(t)$ is continuous at x if h(x) = 0.

Suppose now $h(x) \neq 0$. We may assume without loss of generality that x is in the interior of [a, b].

Suppose h(x) > 0. We have either $|f(H(x))| > C_n$, $|f(H(x))| < C_n$ or $|f(H(x))| = C_n$. Suppose $|f(H(x))| > C_n$.

Then $|f_n(H(x))| = C_n$. Since f(H(t))h(t) is continuous at $x \in [a,b] - C$ and $h(x) \neq 0, f(H(t))$ is continuous at x.

Suppose $f(H(x)) > C_n$. Then by the continuity of f(H(t)) at x, there exists $\delta_1 > 0$ such that $(x - \delta_1, x + \delta_1) \subseteq (a, b)$ and $f(H(t)) > C_n$ for $t \in (x - \delta_1, x + \delta_1)$. Hence, $f_n(H(t)) = C_n$ for $t \in (x - \delta_1, x + \delta_1)$. It follows that $f_n(H(t))h(t)$ is continuous at x. Similarly, we can show that if $f(H(x)) < -C_n$, $f_n(H(t))h(t)$ is continuous at x.

Suppose now $|f(H(x))| < C_n$ and $h(x) \neq 0$. Then by continuity of f(H(t)) at x, there exists $\delta_2 > 0$ such that $(x - \delta_2, x + \delta_2) \subseteq (a, b)$ and $|f(H(t))| < C_n$ for $t \in (x - \delta_2, x + \delta_2)$. Hence, $f_n(H(t)) = f(H(t))$ for $t \in (x - \delta_2, x + \delta_2)$. Therefore, $f_n(H(t))h(t)$ is continuous at x.

Suppose now h(x) > 0 and $f_n(H(x)) = f(H(x)) = C_n$. Then since f(H(t)) is continuous at x, given $\varepsilon > 0$, there exists $\delta_3 > 0$ such that $(x - \delta_3, x + \delta_3) \subseteq (a, b)$ and $|f(H(t)) - f(H(x))| < \varepsilon$ for $t \in (x - \delta_3, x + \delta_3)$. Then

$$\left|f_{n}(H(t)) - f(H(x))\right| = \begin{cases} \left|f(H(t)) - f(H(x))\right| & \text{if } \left|f(H(t))\right| < C_{n} \\ 0 & \text{if } \left|f(H(t))\right| \ge C_{n} \end{cases} < \varepsilon$$

Thus, $f_n(H(t))$ is continuous at x and so $f_n(H(t))h(t)$ is continuous at x. Similarly, we can show that if h(x) > 0 and $f_n(H(x)) = f(H(x)) = -C_n$, then $f_n(H(t))h(t)$ is continuous at x.

Therefore, if $x \in [a,b] - C$ and h(x) > 0, $f_n(H(t))h(t)$ is continuous at x. In the same manner we can show that if $x \in [a,b] - C$ and h(x) < 0 then $f_n(H(t))h(t)$ is continuous at x. Thus, $f_n(H(t))h(t)$ is continuous at $x \in [a,b] - C$ if $h(x) \neq 0$. We have already shown that $f_n(H(t))h(t)$ is continuous at $x \in [a,b] - C$ if h(x) = 0. Therefore, $f_n(H(t))h(t)$ is continuous at $x \in [a,b] - C$. Since $f_n(H(t))h(t)$ is a bounded function on [a, b], it follows that $f_n(H(t))h(t)$ is Riemann integrable on [a, b]. Note that $|f_n(H(t))h(t)| \leq |f(H(t))h(t)|$ for all t in [a, b]. Since f(H(t))h(t) is bounded on $[a, b], |f(H(t))h(t)| \leq D$ for some D > 0 and for all t in [a, b]. Hence the sequence of Riemann integrable functions $\{f_n(H(t))h(t)\}$ is uniformly bounded. Note that $f_n(H(t))h(t) \rightarrow f(H(t))h(t)$ pointwise in [a, b]. Therefore, by Arzelà's Dominated Convergence Theorem, $\int_a^b f_n(H(t))h(t)dt \rightarrow \int_a^b f(H(t))h(t)dt$. By Theorem 1, since $f_n(H(t))h(t)$ is Riemann integrable on $[a, b], \int_a^b f_n(H(t))h(t)dt = \int_{H(a)}^{H(b)} f_n(y)dy$. But $\int_{H(a)}^{H(b)} f_n(y)dy = \int_{H(a)}^{H(b)} f(y)dy$ and so $\int_a^b f_n(H(t))h(t)dt = \int_{H(a)}^{H(b)} f(y)dy$. It follows that $\int_a^b f(H(t))h(t)dt = \int_{H(a)}^{H(b)} f(t)dt$.

Remark. The converse of Theorem 5 is false. It is not necessary that if f is Riemann integrable on [H(a), H(b)], h is Riemann integrable on the closed and bounded interval [a, b] and $H: [a, b] \rightarrow \mathbf{R}$ is an indefinite integral of h, then f(H(t))h(t) is Riemann integrable on [a, b].

We can easily find an unbounded function f and a function H for a counterexample.

Take
$$H(t) = \frac{t(t-4)^2}{3}$$
 so that $H'(t) = h(t) = \frac{(t-4)(3t-4)}{3}$ and $f(t) = \begin{cases} \frac{1}{|t-3|}, & \text{if } t \neq 3, \\ 1, & \text{if } t = 3 \end{cases}$

H(0) = 0, H(3) = 1. The function *f* is Riemann integrable on [H(0), H(3)] = [0,1] but f(H(t))h(t) is unbounded on [0, 3] as $\lim_{t \to 1} f(H(t))h(t) = \infty$ and so is not Riemann integrable on [0, 3].