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Kestelman gave the most general form of the change of variable theorem for Riemann 
integral.  We present here a proof of this theorem involving a result about the chain rule for 
composition and the properties of absolute continuity. 

Theorem 1 (Kestelman).  Suppose h is Riemann integrable on the closed and bounded 

interval [a, b] and H: [a, b]  R is an indefinite integral of h, i.e., ( ) ( ) ( )
x

a
H x H a h t dt     

for x in [a, b]. Suppose   f   is a bounded function on H([a, b]).  Then f is Riemann integrable 
on H([a, b]) if, and only if, ( ) ( )f H x h x is Riemann integrable on [a, b].  Moreover, 
whenever f  is Riemann integrable on H([a, b]) or ( ) ( )f H x h x is Riemann integrable on [a, 
b], we have the change of variable formula for Riemann integral, 

                       
( )

( )
( ( )) ( ) ( )

b H b

a H a
f H x h x dx f x dx   . 

 
 
The first assertion in Theorem 1 of the simple connection between the functions in the above 
integrands is stated below in the following Theorem. 
 
 
Theorem 2.  Suppose h is a function Riemann integrable on the closed and bounded interval 

[a, b] and H: [a, b]  R is an indefinite integral of h, i.e., ( ) ( ) ( )
x

a
H x H a h t dt     for x in 

[a, b].  Suppose f is a bounded real valued function on H([a, b]) = [c, d].  Then f is Riemann 
integrable on [c, d] if, and only if, ( ( )) ( )f H x h x is Riemann integrable on [a, b].  
 
Poof. 
Since the function h is Riemann integrable on [a, b], h is continuous almost everywhere on 
[a, b].  Therefore, there exists a subset A of [a, b] of measure zero and h is continuous on [a, 
b] A.  Thus, by the Fundamental Theorem of Calculus, for x in [a, b] A, H is 
differentiable at x and ( ) ( )H x h x  .    

Suppose f : [c, d]  R is Riemann integrable.  Then f is continuous almost everywhere on [c, 
d].  Hence, there exists a subset E in [c, d] of measure zero such that f is continuous on [c, d] 
E.  Note that f is bounded on [c, d] and h is bounded on [a, b], it follows that ( ( )) ( )f H t h t is 
bounded on [a, b]. 
Suppose [ , ]x a b A   and ( ) 0.h x    Since the function h is continuous at x and f is bounded 

so that f H is also bounded, lim ( ( )) ( ) lim ( ) 0
y x y x

f H y h y h y
 

  .  Hence ( ( )) ( )f H t h t  is 

continuous at x for  [ , ] : ( ) ( ) 0x t a b A H t h t     .    

Let  [ , ] : ( ) ( ) 0L t a b A H t h t     .  It remains to show that ( ( )) ( )f H t h t is continuous 

almost everywhere in L.  Let 1( )B H E .   For x L B  , ( )H x E  x so that f is continuous 
at H(x) and since H is continuous at x, it follows that ( ( ))f H t is continuous at x.  Therefore, 

( ( )) ( )f H t h t is continuous on LB.   
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By Theorem 2 of Change of Variables Theorems, since    0m H B L   because    

 ( ) 0m H B  , ( ) ( ) 0H t h t    almost everywhere on B L .  It follows that ( ( )) ( )f H t h t is 

continuous almost everywhere on B L .  Hence, ( ( )) ( )f H t h t  is continuous almost 
everywhere on L and so on [ , ]a b A  and as m(A) =0, it is continuous almost everywhere on 
[a, b].  This means that ( ( )) ( )f H t h t  is Riemann integrable on [a, b].  
Suppose f is bounded and ( ( )) ( )f H t h t  is Riemann integrable on [a, b].  We shall show that f 
is continuous almost everywhere on [c, d] and so is Riemann integrable.  To do this we use 
the following proposition. 
 
Proposition 3.   Suppose h is Riemann integrable on the closed and bounded interval [a, b] 

and H: [a, b]  R is an indefinite integral of h, i.e., ( ) ( ) ( )
x

a
H x H a h t dt     for x in [a, b].  

Suppose f is bounded on H([a, b]). 
Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] A and   

( ) ( )H x h x  .   Then for x in [a, b] A, ( ( )) ( )f H t h t  is continuous at x, if, and only if, h(x) = 
0 or f is continuous at H(x). 
 
Proof.   
We have already shown that if x [a, b] A and h(x) = 0 and f is bounded on H([a, b]), then 

( ( )) ( )f H t h t is continuous at x.  

Take x [a, b] A.  Plainly, if f is continuous at H(x), then f (H(t)) is continuous at x since H 
is continuous at x and so ( ( )) ( )f H t h t is continuous at x.   

Suppose ( ( )) ( )f H t h t is continuous at [ , ]x a b A   and h(x)  0.  Then plainly, f (H(t)) is 
continuous at x.  We shall show that f is continuous at H(x).  Note that 

( ) ( )
lim ( ) ( ) 0
t x

H t H x
H x h x

t x

   


. 

We may assume without loss of generality that x is in the interior of [a, b]. 
Suppose h(x) > 0.  Then there exists  > 0 such that ( , ) ( , )x x a b     and  

                  
1 1

( ) ( ) ( ) ( ) ( ) 0
2 2

t x h t h x h x h t h x        . 

Therefore, for all 1 2t t   and 1 2, ( , )t t x x    , 

               
2 2

1 1
2 1 2 1

( ) ( )
( ) ( ) ( ) ( ) 0

2 2

t t

t t

h x h x
H t H t h t dt dt t t       . 

Hence, H is a continuous and strictly increasing function on ( , )x x   .  This means that 
the restriction of H to the interval ( , )x x   has a strictly increasing continuous inverse g.   

As ( )f H t  is continuous at x, lim ( ) ( ( ))
t x

f H t f H x


  and since g is continuous at H(x), 

( )
lim ( ) ( ( ))

y H x
g y g H x x


  .  Therefore,  

( ) ( )
lim ( ) lim ( ) ( ( ))

y H x y H x
f y f H g y f H x

 
   . 

 
This means f is continuous at H(x).  
We deduce similarly that if h(x) < 0, f is continuous at H(x).  
This concludes the proof of Proposition 3. 
 
 
Completion of the proof of Theorem 2. 
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Now suppose ( ( )) ( )f H t h t  is Riemann integrable on [a, b] and so ( ( )) ( )f H t h t is continuous 

almost everywhere on [a, b] A.   
 
Now for x in [a, b] A, by Proposition 3, ( ( )) ( )f H t h t  is not continuous at x if, and only if,  

( ) 0h x   and f is not continuous at H(x). 

Let  [ , ] :  is not ontinuous at ( )C t a b A f H t     and 

         [ , ] : ( ) 0 [ , ] : ( ) ( ) 0D t a b A h t t a b A H t h t L           . 

Thus, for x in [a, b] A, ( ( )) ( )f H t h t  is not continuous at x if, and only if x C D  .  

Therefore, since ( ( )) ( )f H t h t is continuous almost everywhere on [a, b] A, ( ) 0m C D  . 

Since H is absolutely continuous on [a, b],  ( ) 0m H C D  .  

Let    [ , ] : ( ) 0D t a b A h t    .  Then [ , ]a b A D D    and  

                                C C D D C D C D        . 

By Theorem 3 of Functions Having Derivatives, Bounded Variation, Absolute Continuity, the 
Banach Zarecki Theorem and de La Vallée Poussin’s Theorem,  

                     ( ( )) [ , ] : ( ) ( ) 0 0m H D m H t a b A H t h t      . 

Thus, since    ( )H C H C D H C D    ,   ( ) 0m H C  .  Since A is of measure zero 

and H is absolutely continuous,  ( ) 0m H A  .  If [ , ] ( )y c d H A  and f is not continuous at 

y, then there exists [ , ]t a b A   such that ( )y H t and so t C .  Consequently, if 
[ , ] ( )y c d H A  and f is not continuous at y, ( )y H C .   As H maps [a, b] onto [c, d], it 

follows that 
              [ , ] :  is not continuous at ( ) ( )E y c d f y H A H C    . 

Hence, m(E) = 0.  Thus, f is continuous almost everywhere on [c, d] and so is Riemann 
integrable on [c, d]. 
 
 
Proof of the Second part of Theorem 1. 
 
By Theorem 2, we may assume that f is Riemann integrable on [c, d].  Let  : ,F c d    be 

an indefinite integral of the function f.  Then F is an absolutely continuous function satisfying 
a Lipschitz condition.  Since :[ , ] [ , ]H a b c d  is absolutely continuous, F H  is absolutely 
continuous on [a, b].  Therefore, F H  has finite derivative almost everywhere on [a, b].  
Since F is absolutely continuous, F is an N-function, therefore by the following Chain Rule 
(see Theorem 4 below), 

                                ( ) ( ) ( ) ( ) ( )F H x f H x H x f H x h x       

almost everywhere on [a, b].   By Theorem 2, ( ( )) ( )f H x h x is Riemann integrable on [a, b].  

Therefore,  F H    is  Riemann integrable on [a, b].  Hence, by the Fundamental Theorem 

of Calculus, the Riemann integral, 

                    ( ) ( ) ( ) ( ( )) ( ( ))
b

a
F H t dt F H b F H a F H b F H a        . 

We may also deduce this as follows. 
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Since F H  is absolutely continuous on [a, b],   F H   is Lebesgue integrable on [a, b] 

and the Lebesgue integral of the derivative, 

                    Lebesgue ( ) ( ) ( ) ( ( )) ( ( ))
b

a
F H t dt F H b F H a F H b F H a        . 

But  F H    is  Riemann integrable on [a, b] so that the Lebesgue integral is equal to the 

Riemann integral and so 

                                 ( ) ( ( )) ( ( ))
b

a
F H t dt F H b F H a    . 

Since F is an indefinite Riemann integral of  f, 
( )

( )
( ) ( ( )) ( ( ))

H b

H a
f t dt F H b F H A  and so 

 
( )

( )
( ) ( )

b H b

a H a
F H t dt f t dt   .  

Hence,    
( )

( )
( ) ( ) ( ) ( )

H b b b

H a a a
f x dx F H x f H x h x dx     . 

                
 
Theorem 4.  Suppose F has finite derivatives almost everywhere on [c, d] and g and F  g 
have finite derivatives almost everywhere on [a, b].  It is assumed that the range of g is 
contained in [c, d].  Suppose F is an N-function, i.e., F maps sets of measure zero to sets of 
measure zero.  Then (F  g)' = (f g) g' almost everywhere on [a, b], where F' = f almost 
everywhere on [c, d], that is to say, the chain rule holds almost everywhere on [a, b]. 
 
Theorem 4 is Theorem 3 of Change of Variables Theorems and the proof can be found there. 
 
 
A necessary condition for the Riemann integrability of the function f in Theorem 1 is that the 
function f be bounded on [ ( ), ( )]H a H b .  If f is bounded on [ ( ), ( )]H a H b  and ( ) ( )f H t h t is 
Riemann integrable on [a, b], then f is Riemann integrable on [ ( ), ( )]H a H b and the Change of 
variable formula holds even though f may not be bounded on H([a, b]).   
 
 
Theorem 5.   
Suppose h is Riemann integrable on the closed and bounded interval [a, b] and H: [a, b]  R 

is an indefinite integral of h, i.e., ( ) ( ) ( )
x

a
H x H a h t dt     for x in [a, b].  

Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] A and   
( ) ( )H x h x   for [ , ]x a b A  . 

Suppose   f   is a function defined on H([a, b]).   
Assume that H(a) < H(b). 
Suppose ( ( )) ( )f H t h t  is Riemann integrable on [a, b] and f is bounded on the interval 
[ ( ), ( )]H a H b .  Then f is continuous almost everywhere on [ ( ), ( )]H a H b  and so is Riemann 

integrable on [ ( ), ( )]H a H b .  Moreover, 
( )

( )
( ( )) ( ) ( )

b H b

a H a
f H x h x dx f x dx  . 

Proof. 
Since h is Riemann integrable on the closed and bounded interval [a, b], there is a subset A of 
measure zero in [a, b] such that h is continuous on [a, b] A and ( ) ( )H x h x  . 
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( ( )) ( )f H t h t  is Riemann integrable implies that there is a subset E of measure zero in [a, b] 

such that ( ( )) ( )f H t h t  is continuous on [a, b] E.  Let C A E  .  Then the measure of C is 

zero.  Both ( ( )) ( )f H t h t  and h(t) are continuous on [a, b] C.   Moreover, ( ) ( )H x h x   for 
all [ , ]x a b C  .   
Now for [ , ]x a b C  , either ( ) ( ) 0H x h x    or ( ) ( ) 0H x h x   .   

Let  [ , ] : ( ) ( ) 0F x a b C H x h x     .  Then by Theorem 3 of Functions Having 

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La 
Vallée Poussin’s Theorem, ( ( )) 0m H F  .  Note that m(H(C)) = 0 as H is absolutely 
continuous.  We have shown in the proof of Proposition 3 that if ( ( )) ( )f H t h t is continuous at 

[ , ]x a b C  and ( ) ( ) 0H x h x   , f is continuous at H(x).   
If H is not continuous at ([ , ])y H a b and ( )y H C , then ([ , ] )y H a b C   and so there 

exists [ , ]t a b C   such that ( )y H t . Since ( ( )) ( )f H t h t is continuous on [a, b]  C, by 
Proposition 3, ( ) ( ) 0H t h t    and so ( )y H F . 
It follows that f is continuous almost everywhere on H([a, b]) and so it is continuous almost 
everywhere in [ ( ), ( )]H a H b .  As f is bounded on [ ( ), ( )]H a H b ,  f is Riemann integrable on 
[ ( ), ( )]H a H b . 

Let sup{| ( ) : [ ( ), ( )]}M f x x H a H b  .  For each positive integer n let   

                              

( ),  if  ( ) ,

( ) ,  if  ( ) ,

,  if ( )  
n

f y f y M n

f y M n f y M n

M n f y M n

  


   
    

.   

Then nf  is a bounded function on H([a, b]) bounded by M + n. 

Then the restriction of nf  to [ ( ), ( )]H a H b  is equal to the restriction of f on [ ( ), ( )]H a H b .  

Moreover nf  converges to  f  pointwise on H([a, b]).  It follows that ( ( )) ( )nf H t h t  converges 

pointwise to ( ( )) ( )f H t h t on [a, b].  Note that ( ) ( )nf y f y  for all y in H([a, b]) and so 

( ( )) ( ) ( ( )) ( )nf H t h t f H t h t  for all t in [a, b]. 

Next, we shall show that ( ( )) ( )nf H t h t  is Riemann integrable on [a, b].  We shall show that 

( ( )) ( )nf H t h t is continuous almost everywhere on [a, b].  Let nM M n  .  Let [ , ]x a b C  .  

If ( ) 0h x  , then lim ( ( )) ( ) lim ( ) 0n
t x t x

f H t h t h t
 

  since nf H  is bounded on [a, b] and h is 

continuous at x.  Hence ( ( )) ( )nf H t h t is continuous at x if ( ) 0h x  . 

Suppose now ( ) 0h x  . We may assume without loss of generality that x is in the interior of 
[a, b]. 
Suppose h(x) > 0.  We have either ( ( )) nf H x C ,  ( ( )) nf H x C or ( ( )) nf H x C . 

Suppose ( ( )) nf H x C .  

Then ( ( ))n nf H x C .   Since ( ( )) ( )f H t h t is continuous at [ , ]x a b C   and h(x)  0, f (H(t)) 

is continuous at x.   
Suppose ( ( )) nf H x C . Then by the continuity of   f (H(t)) at x, there exists 1 0   such that 

1 1( , ) ( , )x x a b    and ( ( )) nf H t C  for 1 1( , )t x x    . Hence, ( ( ))n nf H t C  for 

1 1( , )t x x    . It follows that ( ( )) ( )nf H t h t is continuous at x.  Similarly, we can show 

that if ( ( )) nf H x C  , ( ( )) ( )nf H t h t is continuous at x.   
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Suppose now ( ( )) nf H x C  and ( ) 0h x  . Then by continuity of   f (H(t)) at x, there exists 

2 0   such that 2 2( , ) ( , )x x a b    and ( ( )) nf H t C  for 2 2( , )t x x    . Hence, 

( ( )) ( ( ))nf H t f H t  for 2 2( , )t x x    .  Therefore, ( ( )) ( )nf H t h t is continuous at x. 

 
Suppose now ( ) 0h x   and ( ( )) ( ( ))n nf H x f H x C  .   Then since ( ( ))f H t  is continuous at 

x, given  > 0, there exists 3 0   such that 3 3( , ) ( , )x x a b    and 

( ( )) ( ( ))f H t f H x    for 3 3( , )t x x    .  Then 

            
( ( )) ( ( ))  if  ( ( ))

( ( )) ( ( ))  
0  if ( ( ))  

n

n

n

f H t f H x f H t C
f H t f H x

f H t C


    


. 

Thus, ( ( ))nf H t is continuous at x and so ( ( )) ( )nf H t h t is continuous at x. 

Similarly, we can show that if ( ) 0h x   and ( ( )) ( ( ))n nf H x f H x C   , then ( ( )) ( )nf H t h t is 

continuous at x. 
Therefore, if [ , ]x a b C  and h(x) > 0, ( ( )) ( )nf H t h t is continuous at x. 

In the same manner we can show that if [ , ]x a b C  and h(x) < 0 then ( ( )) ( )nf H t h t is 

continuous at x.  Thus, ( ( )) ( )nf H t h t  is continuous at [ , ]x a b C   if ( ) 0h x  .  We have 

already shown that ( ( )) ( )nf H t h t  is continuous at [ , ]x a b C   if ( ) 0h x  .  Therefore, 

( ( )) ( )nf H t h t is continuous at [ , ]x a b C  .  Since ( ( )) ( )nf H t h t is a bounded function on [a, 

b], it follows that ( ( )) ( )nf H t h t is Riemann integrable on [a, b]. 

Note that ( ( )) ( ) ( ( )) ( )nf H t h t f H t h t  for all t in [a, b].  Since ( ( )) ( )f H t h t  is bounded on 

[a, b], ( ( )) ( )f H t h t D for some D > 0 and for all t in [a, b].  Hence the sequence of 

Riemann integrable functions  ( ( )) ( )nf H t h t is uniformly bounded. Note that 

( ( )) ( ) ( ( )) ( )nf H t h t f H t h t pointwise in [a, b].   Therefore, by Arzelà's Dominated 

Convergence Theorem, ( ( )) ( ) ( ( )) ( )
b b

na a
f H t h t dt f H t h t dt  .  By Theorem 1, since 

( ( )) ( )nf H t h t is Riemann integrable on [a, b], 
( )

( )
( ( )) ( ) ( )

b H b

n na H a
f H t h t dt f y dy  .  But 

( ) ( )

( ) ( )
( ) ( )

H b H b

nH a H a
f y dy f y dy   and so 

( )

( )
( ( )) ( ) ( )

b H b

na H a
f H t h t dt f y dy  .  It follows that 

( )

( )
( ( )) ( ) ( )

b H b

a H a
f H t h t dt f t dt  . 

 
Remark.   The converse of Theorem 5 is false.  It is not necessary that if f is Riemann 
integrable on [ ( ), ( )]H a H b , h is Riemann integrable on the closed and bounded interval [a, b] 

and H: [a, b]  R is an indefinite integral of h, then ( ( )) ( )f H t h t  is Riemann integrable on 
[a, b]. 
 
We can easily find an unbounded function f and a function H for a counterexample. 

Take 
2( 4)

( )
3

t t
H t


  so that 

( 4)(3 4)
( ) ( )

3

t t
H t h t

     and 

1
,  if 3,

3( )

1  ,  if 3   

t
tf t

t

   
 

 . 
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(0) 0,  (3) 1H H  .  The function f is Riemann integrable on [ (0), (3)] [0,1]H H   but 

( ( )) ( )f H t h t is unbounded on [0, 3] as 
1

lim ( ( )) ( )
t

f H t h t


  and so is not Riemann integrable 

on [0, 3]. 
 
 
 
 
 
 


