On Kestelman Change of Variable Theorem for Riemann Integral

By Ng Tze Beng

Kestelman gave the most general form of the change of variable theorem for Riemann
integral. We present here a proof of this theorem involving a result about the chain rule for
composition and the properties of absolute continuity.

Theorem 1 (Kestelman). Suppose h is Riemann integrable on the closed and bounded
interval [a, b] and H: [a, b] > R is an indefinite integral of h, i.e., H(Xx)=H(a) -|-LX h(t)dt
for x in [a, b]. Suppose f isa bounded function on H([a, b]). Then fis Riemann integrable
on H([a, b]) if, and only if, f o H(x)h(X) is Riemann integrable on [a, b]. Moreover,
whenever f is Riemann integrable on H([a, b]) or f o H(X)h(x) is Riemann integrable on [a,
b], we have the change of variable formula for Riemann integral,

jb f(H (x))h(x)dx = j:((:)’ f(x)dx .

The first assertion in Theorem 1 of the simple connection between the functions in the above
integrands is stated below in the following Theorem.

Theorem 2. Suppose h is a function Riemann integrable on the closed and bounded interval
[a, b] and H: [a, b] &> R is an indefinite integral of h, i.e., H(X)=H(a)+ IX h(t)dt for x in

[a, b]. Suppose f is a bounded real valued function on H([a, b]) =[c, d]. Then f is Riemann
integrable on [c, d] if, and only if, f(H(X))h(X)is Riemann integrable on [a, b].

Poof.

Since the function h is Riemann integrable on [a, b], h is continuous almost everywhere on
[a, b]. Therefore, there exists a subset A of [a, b] of measure zero and h is continuous on [a,
b] — A. Thus, by the Fundamental Theorem of Calculus, for x in [a, b] — A, H is
differentiable at x and H'(x) = h(X).

Suppose f : [c, d] > R is Riemann integrable. Then f is continuous almost everywhere on [c,

d]. Hence, there exists a subset E in [c, d] of measure zero such that f is continuous on [c, d]—
E. Note that f is bounded on [c, d] and h is bounded on [a, b], it follows that f (H (t))h(t)is

bounded on [a, b].
Suppose x €[a,b]— A and h(x) =0. Since the function h is continuous at X and f is bounded

so that f oH is also bounded, lim f (H(y))h(y)=1limh(y)=0. Hence f(H(t))h(t) is
y—X y—X
continuous at X for X € {t ela,b]-A:H'(t)=h(t) = 0} )
Let L={te[a,b]-A:H'(t)=h(t) # 0} . It remains to show that f(H(t))h(t)is continuous

almost everywhere in L. Let B=H '(E). For xe L—B, H(x) ¢ E X so that f is continuous
at H(X) and since H is continuous at X, it follows that f (H(t))is continuous at X. Therefore,
f (H (t))h(t) is continuous on L—B.



By Theorem 2 of Change of Variables Theorems, since m(H (B L))=0 because
m(H(B))=0, H'(t)=h(t) = 0 almost everywhere on BN L. It follows that f(H(t))h(t)is
continuous almost everywhere on BN L. Hence, f(H(t))h(t) is continuous almost
everywhere on L and so on [a,b]— A and as m(A) =0, it is continuous almost everywhere on
[a, b]. This means that f(H(t))h(t) is Riemann integrable on [a, b].

Suppose f is bounded and f (H(t))h(t) is Riemann integrable on [a, b]. We shall show that f

is continuous almost everywhere on [C, d] and so is Riemann integrable. To do this we use
the following proposition.

Proposition 3. Suppose h is Riemann integrable on the closed and bounded interval [a, b]
and H: [a, b] — R is an indefinite integral of h, i.e., H(x)=H (a)+ J.X h(t)dt for x in [a, b].

Suppose f is bounded on H([a, b]).

Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] — A and
H'(x)=h(x). Then for X in [a, b] = A, f(H(t))h(t) is continuous at X, if, and only if, h(x) =
0 or f is continuous at H(X).

Proof.
We have already shown that if X €[a, b] — A and h(x) = 0 and f is bounded on H([a, b]), then
f (H (t))h(t) is continuous at X.
Take X €[a, b] — A. Plainly, if f is continuous at H(x), then f (H(t)) is continuous at X since H
is continuous at X and so f (H (t))h(t) is continuous at X.
Suppose f(H(t))h(t)is continuous at x €[a,b]— A and h(x) # 0. Then plainly, f (H(t)) is
continuous at X. We shall show that f is continuous at H(x). Note that
ltimw =H'(x)=h(x)#0.
—X — X
We may assume without loss of generality that X is in the interior of [a, b].
Suppose h(x) > 0. Then there exists 6> 0 such that (Xx—0J,Xx+ ) < (a,b) and

[t—x| < &= |h(t)—h(x)| <%h(x) = h(t) >%h(x) >0.
Therefore, for all t, <t, and t,t, €(X-9,Xx+0),
(b th(x) . h(x)
H(t,)-H(t)= L h(t)dt > L =A== -1)> 0.
Hence, H is a continuous and strictly increasing function on (X—3J,X+ ). This means that

the restriction of H to the interval (X—0, X+ ¢) has a strictly increasing continuous inverse g.
As f o H (1) is continuous at X, ltim foH(t)= f(H(x)) and since g is continuous at H(x),

lim g(y)=g(H(x))=X. Therefore, lim)f(y)z lim)(foH)og(y)z f(H(X)).
y—H(x y—H(x

y—H ()
This means f is continuous at H(X).

We deduce similarly that if h(x) <0, f is continuous at H(x).
This concludes the proof of Proposition 3.

Completion of the proof of Theorem 2.



Now suppose f(H(t))h(t) is Riemann integrable on [a, b] and so f (H (t))h(t) is continuous
almost everywhere on [a, b] — A.

Now for X in [a, b] — A, by Proposition 3, f(H(t))h(t) is not continuous at X if, and only if,
h(x) # 0 and f is not continuous at H(X).
Let C= {t e[a,b]-A: f is not ontinuous at H (t)} and

D={te[a,b]-A:h(t)= 0} ={te[a,b]-A:H'(t)=h(t) =0} =L .
Thus, for x in [a, b] — A, f(H(t))h(t) is not continuous at X if, and only if xeCND.
Therefore, since f(H (t))h(t)is continuous almost everywhere on [a, b] — A, m(C D) =0.
Since H is absolutely continuous on [a, b], m(H(C D)) =0.
Let D={te[a,b]-A:h(t)=0}. Then [a,b]-A=DuUD and

C =Cm(Du5)=(CmD)u(Cr\5) :

By Theorem 3 of Functions Having Derivatives, Bounded Variation, Absolute Continuity, the

Banach Zarecki Theorem and de La Vallée Poussin’s Theorem,
m(H(D)=m(H ({te[a,b]- A:H'(®) =h(t) = 0})) = 0.

Thus, since H(C)=H (CND)uUH (C A 5), m(H(C))=0. Since A is of measure zero

and H is absolutely continuous, m( H (A)) =0. If ye[c,d]-H(A)and f is not continuous at

y, then there exists t €[a,b]— A such thaty = H(t) and so t e C. Consequently, if
y e[c,d]—H(A)and f is not continuous aty, y e H(C). As H maps [a, b] onto [c, d], it
follows that

E={ye[c,d]: f is not continuous at y} « H(A)UH(C).

Hence, m(E) = 0. Thus, f is continuous almost everywhere on [C, d] and so is Riemann
integrable on [c, d].

Proof of the Second part of Theorem 1.

By Theorem 2, we may assume that f is Riemann integrable on [c, d]. Let F :[C, d] — R be

an indefinite integral of the function f. Then F is an absolutely continuous function satisfying
a Lipschitz condition. Since H :[a,b] —[c,d] is absolutely continuous, F o H is absolutely

continuous on [a, b]. Therefore, F o H has finite derivative almost everywhere on [a, b].
Since F is absolutely continuous, F is an N-function, therefore by the following Chain Rule
(see Theorem 4 below),

(FoH) (0 =(foH))H(X)=(foH)(X)h(x)

almost everywhere on [a, b]. By Theorem 2, f (H(X))h(X)is Riemann integrable on [a, b].

Therefore, (F oH )l is Riemann integrable on [a, b]. Hence, by the Fundamental Theorem
of Calculus, the Riemann integral,
[[(FoH) (dt=F s H(b) - F o H(a) = F(H (b))~ F(H(@)).

We may also deduce this as follows.



Since F oH is absolutely continuous on [a, b], (F oH )l is Lebesgue integrable on [a, b]

and the Lebesgue integral of the derivative,

Lebesgue j:(F oH) (t)dt = F o H(b)~ F o H(a) = F(H (b)) - F(H(a)).

But (F oH )' is Riemann integrable on [a, b] so that the Lebesgue integral is equal to the

Riemann integral and so
b ’
J.a (FoH) (tydt=F(H(b))-F(H(a)).
Since F is an indefinite Riemann integral of f, I:((b)) f(t)dt = F(H(b))-F(H(A))and so

['(FoHY @t = j::; f(tydt .
Hence, j::; foodx=["(FoH) (0= (o H)0n(x)dx.

Theorem 4. Suppose F has finite derivatives almost everywhere on [C, d] and g and F o ¢
have finite derivatives almost everywhere on [a, b]. It is assumed that the range of g is
contained in [C, d]. Suppose F is an N-function, i.e., F maps sets of measure zero to sets of
measure zero. Then (F o g)' = (f og) g' almost everywhere on [a, b], where F' = f almost
everywhere on [C, d], that is to say, the chain rule holds almost everywhere on [a, b].

Theorem 4 is Theorem 3 of Change of Variables Theorems and the proof can be found there.

A necessary condition for the Riemann integrability of the function f in Theorem 1 is that the
function f be bounded on [H(a),H (b)]. If fis bounded on [H(a),H(b)] and f o H(t)h(t)is

Riemann integrable on [a, b], then f is Riemann integrable on [H (a), H (b)]and the Change of
variable formula holds even though f may not be bounded on H([a, b]).

Theorem 5.
Suppose h is Riemann integrable on the closed and bounded interval [a, b] and H: [a, b] > R

is an indefinite integral of h, i.e., H(X) =H (a) +jx h(t)dt for x in [a, b].

Suppose A is a subset of [a, b] of measure zero such that h is continuous on [a, b] — A and
H'(x) = h(x) for x e[a,b]-A.

Suppose f is a function defined on H([a, b]).

Assume that H(a) < H(b).
Suppose f(H(t))h(t) is Riemann integrable on [a, b] and f is bounded on the interval

[H(a),H(b)]. Then fis continuous almost everywhere on [H(a),H (b)] and so is Riemann
integrable on [H (), H(b)]. Moreover, [ f (H(x))h(x)dx = j:(“’: f(x)dx .

Proof.
Since h is Riemann integrable on the closed and bounded interval [a, b], there is a subset A of
measure zero in [a, b] such that h is continuous on [a, b] — A and H'(X) = h(X).



f(H(t))h(t) is Riemann integrable implies that there is a subset E of measure zero in [a, b]
such that f(H(t))h(t) is continuous on [a, b] — E. Let C = AUE. Then the measure of C is
zero. Both f (H(t))h(t) and h(t) are continuous on [a, b] — C. Moreover, H'(x) = h(x) for
all xe[a,b]-C.

Now for x €[a,b]-C, either H'(X)=h(x) #0 or H'(x)=h(x)=0.
Let F ={xe[a,b]-C:H'(x)=h(x)=0}. Then by Theorem 3 of Functions Having

Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki Theorem and de La
Vallée Poussin’s Theorem, m(H (F))=0. Note that m(H(C)) = 0 as H is absolutely

continuous. We have shown in the proof of Proposition 3 that if f (H (t))h(t) is continuous at
x e[a,b]-C and H'(x)=h(x) =0, f is continuous at H(x).

If H is not continuous at y € H([a,b])and y ¢ H(C), then y € H([a,b]-C) and so there
exists t e[a,b]—C such that y=H(t). Since f(H(t))h(t)is continuous on [a, b] — C, by
Proposition 3, H'(t)=h(t)=0 and soy e H(F).

It follows that f is continuous almost everywhere on H([a, b]) and so it is continuous almost
everywhere in [H(a),H(b)]. Asfisbounded on [H(a),H (b)], fis Riemann integrable on

[H(a),H(b)].
Let M =sup{| | f (X)| :xe[H(a),H(b)]}. For each positive integer n let
f(y), if [f(y)|<M+n,
f.(y)=iM +n, if f(y)>M +n,
—M —n, iff(y)<-M —n

Then f, is a bounded function on H([a, b]) bounded by M + n.

Then the restriction of f_ to [H(a),H(b)] is equal to the restriction of f on [H(a), H (b)].
Moreover f convergesto f pointwise on H([a, b]). It follows that f (H(t))h(t) converges
pointwise to f(H (t))h(t) on [a, b]. Note that |fn(y)| < | f (y)| for all y in H([a, b]) and so

| f,(H@®)h®)| <] f(H®)h()| for all tin [a, b].
Next, we shall show that f (H(t))h(t) is Riemann integrable on [a, b]. We shall show that
f.(H(t))h(t) is continuous almost everywhere on [a, b]. Let M, =M +n. Let xe[a,b]-C.
If h(x)=0, then ltl_{rxl f.(H{)h(t) = ltl—{l;(l h(t)=0since f oH isbounded on [a, b] and his
continuous at Xx. Hence f,(H (t))h(t) is continuous at x if h(x)=0.

Suppose now h(X) # 0. We may assume without loss of generality that X is in the interior of
[a, b].

Suppose h(x) > 0. We have either | f(H (X))| >C,,
Suppose | f(H(x))|>C,.

Then | f.(H (X))| =C,. Since f(H(t))h(t)is continuous at x €[a,b]-C and h(x) = 0, f (H(t))
is continuous at X.

Suppose f(H(x))>C, . Then by the continuity of f (H(t)) at X, there exists &, >0 such that

(X=0,,Xx+0,)c (a,b)and f(H(t))>C, for te(x—-95,X+0,). Hence, f (H(t))=C, for
te(Xx—0,,x+9,). It follows that f (H(t))h(t)is continuous at x. Similarly, we can show
that if f(H(x))<-C,, f (H(t))h(t)is continuous at x.

f(H(x))|<C,or |[f(H(x)|=C,.

n-



Suppose now | f(H (X))| <C, and h(x)# 0. Then by continuity of f (H(t)) at X, there exists
0, >0 such that (Xx—9,,x+9,) c (a,b)and | f(H (t))| <C, for te(x-0,,Xx+0,). Hence,
f.(H(t) = f(H()) for te(X-0,,X+7,). Therefore, f (H(t))h(t)is continuous at Xx.

Suppose now h(x)>0 and f (H(x))=f(H(x))=C,. Then since f (H(t)) is continuous at
X, given &> 0, there exists 0, >0 such that (X—0J;,X+3,) = (a,b)and

[f(Ht) - f(H(X)| <& for te(x—6,,x+6,). Then

| f(Ht)-f(H (x))| if | f(H (t))| <C, -,

0 if |[f(H(t)|=C,

Thus, f, (H(t))is continuous at x and so f,(H (t))h(t) is continuous at x.

Similarly, we can show that if h(x)>0 and f (H(x))= f(H(x))=-C,, then f (H(t))h(t)is

continuous at X.
Therefore, if x e[a,b]—C and h(x) >0, f (H(t))h(t)is continuous at X.

In the same manner we can show that if x €[a,b]—C and h(x) <0 then f, (H(t))h(t) is
continuous at X. Thus, f (H(t))h(t) is continuous at x e[a,b]-C if h(x) #0. We have
already shown that f (H(t))h(t) is continuous at x €[a,b]-C if h(x)=0. Therefore,
f.(H(t))h(t) is continuous at X e[a,b]—-C . Since f (H(t))h(t)is a bounded function on [a,
b], it follows that f (H(t))h(t) is Riemann integrable on [a, b].
Note that | f,(H(®)h(t)| <|f (H(t)h(t)| for all tin [a, b]. Since f(H(t)h(t) is bounded on
[a, b], [f(H (t))h(t)| < D for some D > 0 and for all t in [a, b]. Hence the sequence of
Riemann integrable functions { f.(H (t))h(t)} is uniformly bounded. Note that
f.(H)h(t) > f(Ht))h(t) pointwise in [a, b]. Therefore, by Arzela's Dominated

| f,(H(®)— f(HX)| ={

Convergence Theorem, .[; f.(H(t))h(t)dt —> I: f(H(t))h(t)dt. By Theorem 1, since

f,(H(t))h(t) is Riemann integrable on [a, b], I: f,(H()h(t)dt = I::: f.(y)dy. But
H(b) H (b) b H(b)

me f (y)dy = jH(a) f(y)dy and so j f (H(t)h(tydt = Lm f(y)dy . It follows that
b H(b)

J, f(H@hde= [ f (bt

Remark. The converse of Theorem 5 is false. It is not necessary that if f is Riemann
integrable on [H(a), H(b)], h is Riemann integrable on the closed and bounded interval [a, b]

and H: [a, b] — R is an indefinite integral of h, then f(H(t))h(t) is Riemann integrable on
[a, b].

We can easily find an unbounded function f and a function H for a counterexample.
1
_ — —, ift#3,
aé‘)g&aﬂd f(t)= |t—3 .
1, ift=3

Take H(t):@ s0 that H'(t) = h(t) =



H(0)=0, H(3)=1. The function f is Riemann integrable on [H (0), H(3)]=[0,1] but
f (H(t))h(t) is unbounded on [0, 3] as 1t1nll f (H(t))h(t) = c0and so is not Riemann integrable

on [0, 3].



