1. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable. Define the function $H: \mathbf{R} \rightarrow \mathbf{R}$ by

$$
H(x)=\int_{-x}^{x}(f(t)+f(-t)) d t \quad \text { for all } x \text { in } \mathbf{R} .
$$

Find $H^{\prime \prime}(x)$.
2. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ has a continuous second derivative. Prove that

$$
f(x)=f(0)+f^{\prime}(0) x+\int_{0}^{x}(x-t) f^{\prime \prime}(t) d t \quad \text { for all } x \text { in } \mathbf{R} .
$$

3. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous. Define

$$
G(x)=\int_{0}^{x}(x-t) f(t) d t \quad \text { for all } x \text { in } \mathbf{R} .
$$

Prove that $G^{\prime \prime}(x)=f(x)$ for all x in \mathbf{R}.
4. Show that the conclusion of the Mean Value Theorem for Integrals (Theorem 40) can be strengthened so that we can choose the point χ to be in (a, b), not just in $[a, b]$.
5. Suppose that the function $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ is continuous and that $\mathrm{g}(x)>0$ for all x. define

$$
h(x)=\int_{0}^{x} \frac{1}{g(t)} d t \quad \text { for all } x \text { in } \mathbf{R}
$$

and let $J=h(\mathbf{R})$. Prove that if $f: J \rightarrow \mathbf{R}$ is the inverse of $h: \mathbf{R} \rightarrow \mathbf{R}$, then $f: J \rightarrow \mathbf{R}$ is a solution of the non-linear differential equation

$$
\left\{\begin{array}{c}
f^{\prime}(x)=g(f(x)) \text { for all } x \text { in } J \\
f(0)=0
\end{array}\right.
$$

6. Suppose that the function $f:[a, b] \rightarrow \mathbf{R}$ is continuous and let P be any partition of its domain $[a, b]$. Show that there is a Riemann sum $R(f, P, C)$ that equals $\int_{a}^{b} f$.
[Hint: Use the Mean Value Theorem for Integrals.]
7. (i) Let p and n be counting numbers in \mathbf{P} with $n \geq 2$. Prove by induction that

$$
\sum_{k=1}^{n-1} k^{p} \leq \frac{n^{p+1}}{p+1} \leq \sum_{k=1}^{n} k^{p}
$$

(ii) Use (i) to prove that for a counting number p,

$$
\int_{0}^{1} x^{p} d x=\frac{1}{p+1}
$$

8. Suppose $f:[0, \infty) \rightarrow \mathbf{R}$ is continuous and that $\lim _{x \rightarrow \infty} f(x)=a$, where a is a real number. Prove that

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \int_{0}^{x} f(t) d t=a .
$$

9. Suppose that f is continuous on $[a, b]$ and that $\int_{a}^{b} f(x) g(x) d x=0$ for any continuous function g on $[a$, $b]$ such that $\mathrm{g}(a)=\mathrm{g}(b)=0$. Prove that $f=0$ the zero constant function.
