Department of Mathematics

MA3110 Mathematical Analysis II

Semester 1 (2006/2007)

Tutorial 9

1. Suppose that the function $f: \mathbf{R} \to \mathbf{R}$ is differentiable. Define the function $H: \mathbf{R} \to \mathbf{R}$ by $H(x) = \int_{-x}^{x} (f(t) + f(-t)) dt \quad \text{for all } x \text{ in } \mathbf{R}.$

Find H''(x).

- 2. Suppose that the function $f: \mathbf{R} \to \mathbf{R}$ has a continuous second derivative. Prove that $f(x) = f(0) + f'(0)x + \int_0^x (x-t) f''(t) dt$ for all x in **R**.
- 3. Suppose that the function $f: \mathbf{R} \to \mathbf{R}$ is continuous. Define

$$G(x) = \int_0^x (x-t) f(t) dt \qquad \text{for all } x \text{ in } \mathbf{R}.$$

Prove that G''(x) = f(x) for all x in **R**.

- 4. Show that the conclusion of the Mean Value Theorem for Integrals (Theorem 40) can be strengthened so that we can choose the point χ to be in (*a*, *b*), not just in [*a*, *b*].
- 5. Suppose that the function g: $\mathbf{R} \rightarrow \mathbf{R}$ is continuous and that g(x) > 0 for all x. define

$$h(x) = \int_0^x \frac{1}{g(t)} dt$$
 for all x in **R**

and let $J = h(\mathbf{R})$. Prove that if $f: J \to \mathbf{R}$ is the inverse of $h: \mathbf{R} \to \mathbf{R}$, then $f: J \to \mathbf{R}$ is a solution of the non-linear differential equation

$$\begin{cases} f'(x) = g(f(x)) \text{ for all } x \text{ in } J \\ f(0) = 0 \end{cases}$$

6. Suppose that the function $f : [a, b] \to \mathbf{R}$ is continuous and let *P* be any partition of its domain [a, b]. Show that there is a Riemann sum R(f, P, C) that equals $\int_{a}^{b} f$.

[Hint: Use the Mean Value Theorem for Integrals.]

7. (i) Let *p* and *n* be counting numbers in **P** with $n \ge 2$. Prove by induction that

$$\sum_{k=1}^{n-1} k^p \le \frac{n^{p+1}}{p+1} \le \sum_{k=1}^n k^p$$

(ii) Use (i) to prove that for a counting number p,

$$\int_0^1 x^p dx = \frac{1}{p+1}$$

8. Suppose $f: [0, \infty) \to \mathbf{R}$ is continuous and that $\lim_{x \to \infty} f(x) = a$, where a is a real number. Prove that

$$\lim_{x\to\infty}\frac{1}{x}\int_0^x f(t)dt = a.$$

9. Suppose that f is continuous on [a, b] and that $\int_{a}^{b} f(x)g(x)dx = 0$ for any continuous function g on [a, b] such that g(a) = g(b) = 0. Prove that f = 0 the zero constant function.