Department of Mathematics

MA3110 Mathematical Analysis II

Semester 1 (2006/2007)

Tutorial 8

- 1. Suppose $f: [a, b] \to \mathbf{R}$ is a Lispchitz function, i.e., there exists a constant *C* such that $|f(x) f(y)| \le C |x y|$ for all *x* and *y* in [a, b]. Prove that *f* is integrable.
- 2. Suppose that *S* is a non-empty bounded subset of **R**. For a real number *k*, define $kS = \{ k s : s \in S \}$. Prove that
 - (i) $\sup kS = k \sup S$ and $\inf kS = k \inf S$ if $k \ge 0$
 - (ii) $\sup kS = k \inf S$ and $\inf kS = k \sup S$ if k < 0.
- 3. Suppose $f : [0, 1] \rightarrow \mathbf{R}$ is defined by $f(x) = \begin{cases} \frac{1}{2}x^2, x \text{ rational} \\ -\frac{1}{2}x^2, x \text{ irrational} \end{cases}$. Prove that f is not integrable.
- 4. Suppose $f : [a, b] \to \mathbf{R}$ is continuous and such that $\int_{a}^{b} f = 0$. Prove that there is a point *c* in [a, b] such that f(c) = 0.
- 5. Suppose $f : [1, 2] \rightarrow \mathbf{R}$ is defined by $f(x) = \begin{cases} 0, x \text{ irrational} \\ \frac{1}{n}, x \text{ rational and } x = \frac{m}{n} \text{ in its lowest term} \end{cases}$. Prove that f is integrable.
- 6. Suppose $f : [a, b] \rightarrow \mathbf{R}$ and $g : [a, b] \rightarrow \mathbf{R}$ are integrable. Prove the following Cauchy Schwarz inequality:

$$\int_a^b fg \le \sqrt{\int_a^b f^2} \sqrt{\int_a^b g^2} \,.$$

[Hint: For each number λ , define $p(\lambda) = \int_{a}^{b} (f - \lambda g)^2$. Then $p(\lambda)$ is a quadratic function always ≥ 0 .]

- 7. Suppose $f : [a, b] \rightarrow \mathbf{R}$ is bounded and continuous except at one point x_0 in the interior (a, b). Prove that f is integrable.
- 8. Suppose $f : [a, b] \rightarrow \mathbf{R}$ and $g : [a, b] \rightarrow \mathbf{R}$ are integrable. Prove that

$$\int_a^b |f+g| \le \int_a^b |f| + \int_a^b |g|.$$