1. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is a Lispchitz function, i.e., there exists a constant C such that $|f(x)-f(y)| \leq$ $C|x-y|$ for all x and y in $[a, b]$. Prove that f is integrable.
2. Suppose that S is a non-empty bounded subset of \mathbf{R}. For a real number k, define $k S=\{k s: s \in S\}$. Prove that
(i) $\sup k S=k \sup S$ and $\inf k S=k \inf S$ if $k \geq 0$
(ii) $\sup k S=k \inf S$ and $\inf k S=k \sup S$ if $k<0$.
3. Suppose $f:[0,1] \rightarrow \mathbf{R}$ is defined by $f(x)=\left\{\begin{array}{c}\frac{1}{2} x^{2}, x \text { rational } \\ -\frac{1}{2} x^{2}, x \text { irrational }\end{array}\right.$. Prove that f is not integrable.
4. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous and such that $\int_{a}^{b} f=0$. Prove that there is a point c in $[a, b]$ such that $f(c)=0$.
5. Suppose $f:[1,2] \rightarrow \mathbf{R}$ is defined by $f(x)=\left\{\begin{array}{c}0, x \text { irrational } \\ \frac{1}{n}, x \text { rational and } x=\frac{m}{n} \text { in its lowest term }\end{array}\right.$. Prove that f is integrable.
6. Suppose $f:[a, b] \rightarrow \mathbf{R}$ and $g:[a, b] \rightarrow \mathbf{R}$ are integrable. Prove the following Cauchy Schwarz inequality:

$$
\int_{a}^{b} f g \leq \sqrt{\int_{a}^{b} f^{2}} \sqrt{\int_{a}^{b} g^{2}}
$$

[Hint: For each number λ, define $p(\lambda)=\int_{a}^{b}(f-\lambda g)^{2}$. Then $p(\lambda)$ is a quadratic function always ≥ 0.]
7. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is bounded and continuous except at one point x_{0} in the interior (a, b). Prove that f is integrable.
8. Suppose $f:[a, b] \rightarrow \mathbf{R}$ and $g:[a, b] \rightarrow \mathbf{R}$ are integrable. Prove that

$$
\int_{a}^{b}|f+g| \leq \int_{a}^{b}|f|+\int_{a}^{b}|g|
$$

