1. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are functions such that $f(x)=x g(x)$ for all x in \mathbf{R}. Suppose g is continuous at 0 . Prove that f is differentiable at 0 and find $f^{\prime}(0)$ in terms of g..
2. Suppose $g: \mathbf{R} \rightarrow \mathbf{R}$ is a twice differentiable function with $g(0)=g^{\prime}(0)=0$ and $g^{\prime \prime}(0)=31$. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=\left\{\begin{array}{c}\frac{g(x)}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$. Prove that f is differentiable at $x=0$ and find $f^{\prime}(0)$. [Hint: Use L' Hôpital's Rule.]
3. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Prove that if $m \leq f^{\prime}(x) \leq M$ for all x in (a, b), then

$$
m(b-a)+f(a) \leq f(b) \leq f(a)+M(b-a) .
$$

4. (i) If $f(x)=x^{3}+1$, find $\left(f^{-1}\right)^{\prime}(y), y \neq 1$.
(ii) $f(x)=(x-1)^{3}$, find $\left(f^{-1}\right)^{\prime}(y), y \neq 0$.
5. A point x_{0} in D is said to be an isolated point of D provided that there is a $\delta>0$ such that the only point of D in the interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ is x_{0} itself. Prove that a point x_{0} is either an isolated point or a limit point of D.
6. Show that if $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at $x_{0}=1$
(a) $\lim _{t \rightarrow 1} \frac{f(\sqrt{t})-f(1)}{\sqrt{t}-1}=f^{\prime}(1)$
(b) $\lim _{x \rightarrow 1} \frac{f\left(x^{2}\right)-f(1)}{x^{2}-1}=f^{\prime}(1)$
(c) $\lim _{x \rightarrow 1} \frac{f\left(x^{2}\right)-f(1)}{x-1}=2 f^{\prime}(1)$
(d) $\lim _{x \rightarrow 1} \frac{f\left(x^{3}\right)-f(1)}{x-1}=3 f^{\prime}(1)$
7. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at a in \mathbf{R}. Prove that

$$
\lim _{x \rightarrow a} \frac{x f(a)-a f(x)}{x-a}=f(a)-a f^{\prime}(a)
$$

8. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable at 0 . Prove that

$$
\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(0)}{x}=0 .
$$

9. Suppose I is a neighbourhood of x_{0}. Suppose $f: I \rightarrow \mathbf{R}$ is a continuous, strictly monotone function differentiable at x_{0}. Assume that $f^{\prime}\left(x_{0}\right)=0$. Use the characteristic property of inverses,

$$
f^{-1}(f(x))=x \text { for } x \text { in } I
$$

and the Chain Rule to prove that the inverse function $f^{-1}: f(\mathrm{I}) \rightarrow \mathbf{R}$ is not differentiable at $f\left(x_{0}\right)$. Thus the assumption in Theorem 34 Chapter 4 is necessary.

