Department of Mathematics

Semester 1 (2006/2007)

MA3110 Mathematical Analysis II Tutorial 6

- 1. Suppose $f : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ are functions such that f(x) = x g(x) for all x in **R**. Suppose g is continuous at 0. Prove that f is differentiable at 0 and find f'(0) in terms of g...
- 2. Suppose $g : \mathbf{R} \to \mathbf{R}$ is a twice differentiable function with g(0) = g'(0) = 0 and g''(0) = 31. Let

$$f : \mathbf{R} \to \mathbf{R}$$
 be defined by $f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$

Prove that f is differentiable at x = 0 and find f'(0). [Hint: Use L'Hôpital's Rule.]

3. Suppose $f: [a, b] \rightarrow \mathbf{R}$ is continuous on [a, b] and differentiable on (a, b). Prove that if

 $m \leq f'(x) \leq M$ for all x in (a, b), then

$$m(b-a) + f(a) \le f(b) \le f(a) + M(b-a).$$

4. (i) If $f(x) = x^3 + 1$, find $(f^{-1})'(y), y \neq 1$.

(ii)
$$f(x) = (x-1)^3$$
, find $(f^{-1})'(y), y \neq 0$.

- 5. A point x_0 in *D* is said to be an isolated point of *D* provided that there is a $\delta > 0$ such that the only point of *D* in the interval $(x_0 \delta, x_0 + \delta)$ is x_0 itself. Prove that a point x_0 is either an isolated point or a limit point of *D*.
- 6. Show that if $f : \mathbf{R} \to \mathbf{R}$ is differentiable at $x_0 = 1$

(a)
$$\lim_{t \to 1} \frac{f(\sqrt{t}) - f(1)}{\sqrt{t} - 1} = f'(1)$$
 (b)
$$\lim_{x \to 1} \frac{f(x^2) - f(1)}{x^2 - 1} = f'(1)$$

(c)
$$\lim_{x \to 1} \frac{f(x^2) - f(1)}{x - 1} = 2f'(1)$$
 (d)
$$\lim_{x \to 1} \frac{f(x^3) - f(1)}{x - 1} = 3f'(1)$$

7. Suppose that the function $f : \mathbf{R} \to \mathbf{R}$ is differentiable at *a* in **R**. Prove that

$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a} = f(a) - af'(a)$$

8. Suppose that the function $f : \mathbf{R} \to \mathbf{R}$ is differentiable at 0. Prove that

$$\lim_{x \to 0} \frac{f(x^2) - f(0)}{x} = 0.$$

9. Suppose *I* is a neighbourhood of x_0 . Suppose $f : I \to \mathbf{R}$ is a continuous, strictly monotone function differentiable at x_0 . Assume that $f'(x_0) = 0$. Use the characteristic property of inverses,

$$f^{-1}(f(x)) = x \text{ for } x \text{ in } I$$

and the Chain Rule to prove that the inverse function f^{-1} : $f(I) \rightarrow \mathbf{R}$ is not differentiable at $f(x_0)$. Thus the assumption in Theorem 34 Chapter 4 is necessary.