1. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ satisfies $f(x+y)=f(x)+f(y)$ for all x and y in \mathbf{R} and that f is continuous at some point a in \mathbf{R}. Prove that.
(a) f is continuous everywhere and
(b) there is a constant C such that $f(x)=C x$ for all x in \mathbf{R}.
2. Prove that for any constant $b, x^{3}-3 x+b=0$ has at most one root in [-1. 1].
3. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are continuous, $f^{2}=g^{2}$ and that $f(x) \neq 0$ for all x in \mathbf{R}. Prove that either $f(x)=g(x)$ for all x or else $f(x)=-g(x)$ for all x.
4. Let the function $f:[a, b] \rightarrow \mathbf{R}$ be continuous and injective and such that $f(a)<f(b)$. For any c in (a, b), prove that $f(a)<f(c)<f(b)$.
5. Assuming that temperature varies continuously along the equator of the earth, prove that there are at any time antipodal points on the equator with the same temperature. [Hint: Let f be a continuous function on $[0,2 \pi]$ such that $f(0)=f(2 \pi)$. Define g on $[0, \pi]$ by $g(x)=f(x)-f(\mathrm{x}+\pi)]$

Definition.

1. We write $\lim _{x \rightarrow+\infty} f(x)=L \in \mathbf{R}$ if, given $\varepsilon>0$, there exists $K>0$ such that $x>K \Rightarrow|f(x)-L|<\varepsilon$.
2. We write $\lim _{x \rightarrow-\infty} f(x)=L$ if, given $\varepsilon>0$, there exists $K<0$ such that $x<K \Rightarrow|f(x)-L|<\varepsilon$
3. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a continuous function with $f(x)>0$ for all x in \mathbf{R}. Suppose $\lim _{x \rightarrow+\infty} f(x)=0$ and $\lim _{x \rightarrow-\infty} f(x)=0$. Prove that there is a point c in \mathbf{R} such that $f(c) \geq f(x)$ for all x in \mathbf{R}.
4. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function such that $f^{\prime}(a)$ exists. Determine which of the following statements are true. Justify your answer.
(i) $f^{\prime}(a)=\lim _{h \rightarrow a} \frac{f(h)-f(a)}{h-a}$; (ii) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a)}{h}$
(iii)) $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h}$; (iv) $f^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a-h)}{2 h}$
5. Suppose that $f: \mathbf{R} \rightarrow \mathbf{R}$ is a function such that $f(x+y)=f(x) f(y)$ for all x and y in \mathbf{R}. If $f(0)=1$ and $f^{\prime}(0)$ exists, prove that $f^{\prime}(x)=f^{\prime}(0) f(x)$ for all x in \mathbf{R}.
