National University of Singapore

Department of Mathematics

Semester 1 (2006/2007) MA3110 Mathematical Analysis II Tutorial 4

- For each of the following statements, determine whether it is true or false and justify your answer.
 (a) If the function f + g : R → R is continuous, then the function f : R → R and g : R → R also are continuous.
 - (b) If the function $f^2 : \mathbf{R} \to \mathbf{R}$ is continuous, then so is the function $f : \mathbf{R} \to \mathbf{R}$.
 - (c) If the function $f + g : \mathbf{R} \to \mathbf{R}$ and $g : \mathbf{R} \to \mathbf{R}$ are continuous, then so is the function $f : \mathbf{R} \to \mathbf{R}$.
 - (d) Every function $f: \mathbf{N} \to \mathbf{R}$ is continuous, where **N** is the set of natural numbers.
- 2. Suppose that the function $f:[0, 1] \rightarrow \mathbf{R}$ is continuous and that $f(x) \ge 3$ for $0 \le x < 1$. Show that $f(1) \ge 3$.
- 3. Suppose that the function $f:[0, 1] \rightarrow \mathbf{R}$ is continuous, f(0) > 0, f(1) = 0. Prove that there is a number x_0 in (0, 1] such that $f(x_0) = 0$ and f(x) > 0 for all $0 \le x < x_0$.
- 4. Prove that there is a solution of the equation $x^{179} + \frac{163}{1 + x^2 + \sin^2(x)} = 119$
- 5. Suppose $p : \mathbf{R} \to \mathbf{R}$ is a polynomial function of odd degree. Prove that there is a solution of the equation p(x) = 0, x in **R**.
- 6. Suppose that the function $f: [a, b] \to \mathbf{R}$ is continuous. For a positive integer k, let x_1, x_2, \ldots, x_k be points in [a, b]. Prove that there is a point z in [a, b] such that $f(z) = \frac{f(x_1) + f(x_2) + \cdots + f(x_k)}{k}$
- 7. Suppose that $f:[2,3] \rightarrow \mathbf{R}$ is continuous and that its image is a subset of the rational numbers. Prove that *f* is a constant function.
- 8. Show that there dose not exist a strictly increasing function f; $\mathbf{Q} \to \mathbf{R}$ such that $f(\mathbf{Q}) = \mathbf{R}$. Here \mathbf{Q} is the set of rational numbers.
- 9. Let $f: [0, 1] \rightarrow \mathbf{R}$ be defined by $f(x) = \sqrt{x}$.
 - (a) Prove that f is continuous.
 - (b) Show that f is uniformly continuous.
 - (c) Show that f does not satisfy the Lipschitz condition.

[*f* is said to satisfy a Lipschitz condition or is a Lipschitz function if there exists a constant *C* such that $|f(x) - f(y)| \le C |x - y|$.]

- 10. Suppose that the function $f:(a, b) \to \mathbf{R}$ is uniformly continuous. Prove that then $f:(a, b) \to \mathbf{R}$ is bounded.
- 11. Prove that if $f: D \to \mathbf{R}$ and $g: D \to \mathbf{R}$ are uniformly continuous, then so is $f + g: D \to \mathbf{R}$ but it is not necessary that the product $fg: D \to \mathbf{R}$ be uniformly continuous.
- 12. Show that the function $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^3$ is not uniformly continuous.