1. For each of the following statements, determine whether it is true or false and justify your answer.
(a) If the function $f+g: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, then the function $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ also are continuous.
(b) If the function $f^{2}: \mathbf{R} \rightarrow \mathbf{R}$ is continuous, then so is the function $f: \mathbf{R} \rightarrow \mathbf{R}$.
(c) If the function $f+g: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ are continuous, then so is the function $f: \mathbf{R} \rightarrow \mathbf{R}$.
(d) Every function $f: \mathbf{N} \rightarrow \mathbf{R}$ is continuous, where \mathbf{N} is the set of natural numbers.
2. Suppose that the function $f:[0,1] \rightarrow \mathbf{R}$ is continuous and that $f(x) \geq 3$ for $0 \leq x<1$. Show that $f(1) \geq 3$.
3. Suppose that the function $f:[0,1] \rightarrow \mathbf{R}$ is continuous, $f(0)>0, f(1)=0$. Prove that there is a number x_{0} in $(0,1]$ such that $f\left(x_{0}\right)=0$ and $f(x)>0$ for all $0 \leq x<x_{0}$.
4. Prove that there is a solution of the equation

$$
x^{179}+\frac{163}{1+x^{2}+\sin ^{2}(x)}=119
$$

5. Suppose $p: \mathbf{R} \rightarrow \mathbf{R}$ is a polynomial function of odd degree. Prove that there is a solution of the equation $p(x)=0, x$ in \mathbf{R}.
6. Suppose that the function $f:[a, b] \rightarrow \mathbf{R}$ is continuous. For a positive integer k, let $x_{1}, x_{2}, \ldots, x_{k}$ be points in $[\mathrm{a}, \mathrm{b}]$. Prove that there is a point z in $[a, b]$ such that

$$
f(z)=\frac{f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{k}\right)}{k}
$$

7. Suppose that $f:[2,3] \rightarrow \mathbf{R}$ is continuous and that its image is a subset of the rational numbers. Prove that f is a constant function.
8. Show that there dose not exist a strictly increasing function $f ; \mathbf{Q} \rightarrow \mathbf{R}$ such that $f(\mathbf{Q})=\mathbf{R}$. Here \mathbf{Q} is the set of rational numbers.
9. Let $f:[0,1] \rightarrow \mathbf{R}$ be defined by $f(x)=\sqrt{ } x$.
(a) Prove that f is continuous.
(b) Show that f is uniformly continuous.
(c) Show that f does not satisfy the Lipschitz condition.
[f is said to satisfy a Lipschitz condition or is a Lipschitz function if there exists a constant C such that $|f(x)-f(y)| \leq C|x-y|$.]
10. Suppose that the function $f:(a, b) \rightarrow \mathbf{R}$ is uniformly continuous. Prove that then $f:(a, b) \rightarrow \mathbf{R}$ is bounded.
11. Prove that if $f: D \rightarrow \mathbf{R}$ and $g: D \rightarrow \mathbf{R}$ are uniformly continuous, then so is $f+g: D \rightarrow \mathbf{R}$ but it is not necessary that the product $f g: D \rightarrow \mathbf{R}$ be uniformly continuous.
12. Show that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by $f(x)=x^{3}$ is not uniformly continuous.
