1. Let $\left(a_{n}\right)$ be a real sequence. Suppose the subsequences $\left(a_{2 n}\right)$ and $\left(a_{2 n-1}\right)$ are convergent and converges to the same value a. Prove that $a_{n} \rightarrow a$.
2. Prove that a sequence cannot converge to two different limits.
3. Prove that if $a_{n} \rightarrow a$, then $\left|a_{n}\right| \rightarrow|a|$. If ($\left.\left|a_{n}\right|\right)$ converges, show by a counter example that (a_{n}) need not converge.
4. (Existence of n-th root.). Suppose $a \geq 0$ and $n \in \mathbf{N}$, prove that there is a unique b in $\mathbf{R}, b \geq 0$ such that $b^{n}=a$. (Use the completeness property of \mathbf{R}.)
Prove by induction or otherwise, that $h>0 \Rightarrow(1+h)^{n} \geq 1+n h$ and deduce that
$a>1 \Rightarrow 1<a^{1 / n} \leq 1+\frac{a-1}{n}$ and conclude that $a^{1 / n} \rightarrow 1$.
Show that $a>1 \Rightarrow \operatorname{Lim}_{n \rightarrow \infty} a^{n}=+\infty$. I.e., for any $K>0$, there exists an integer N such that $n \geq N \Rightarrow a_{n}$ $>K$.
Show that if $a_{n} \rightarrow+\infty$ and $a_{n} \neq 0$ for all n, then $1 / a_{n} \rightarrow 0$.
Using these results find $\operatorname{Lim}_{n \rightarrow \infty} a^{n}$ and $\operatorname{Lim}_{n \rightarrow \infty} a^{1 / n}$ for $a=1,0<a<1$ and $a=0$.
5. Prove the following
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n}{n+1}=1$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n+1}{n^{3}+4}=0$.
6. Use Squeeze Theorem or the Comparison test to prove
(i) $\operatorname{Lim}_{n \rightarrow \infty} \frac{\sin (n)}{n}=0$
(ii) $\operatorname{Lim}_{n \rightarrow \infty} \frac{n!}{n^{n}}=0$
(iii) $\operatorname{Lim}_{n \rightarrow \infty} n^{1 / n}=1$ [Hint: write let $h_{n}=n^{1 / n}-1$ and show that $n=\left(1+h_{n}\right)^{n} \geq 1+\frac{n(n-1)}{2} h_{n}^{2}$]
(iv) $\operatorname{Lim}_{n \rightarrow \infty} \frac{a(n)}{n}=0$, where $\alpha(n)=$ number of primes dividing n. [Hint: show $\alpha(n) \leq \sqrt{ }$.]
7. Show that if (a_{n}) converges to 0 and (b_{n}) is a bounded sequence, then ($a_{n} b_{n}$) converges to 0 . Hence, or otherwise, show that $\operatorname{Lim}_{n \rightarrow \infty}\left(\frac{2 n-1}{3 n+1}\right)^{n}=0$.
Monotone Convergence Theorem
8. Show that $\left((1+1 / n)^{n}\right)$ is an increasing sequence. Show that $(1+1 / n)^{n}<3$. Hence deduce that it is convergent.
9. (i) Suppose (a_{n}) is a decreasing (respectively increasing) sequence. Show that the sequence (U_{n}), where $U_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}$ is also a decreasing (respectively increasing) sequence. Hence deduce that the sequence $\left(\frac{1}{n}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)\right.$) is convergent.
(ii) Prove that $a_{n} \rightarrow a \Rightarrow U_{n}=\frac{a_{1}+a_{2}+\cdots+a_{n}}{n} \rightarrow a$. Show that the converse is false.
10. Suppose $\left(a_{n}\right)$ is a monotone sequence. Prove that $\left(a_{n}\right)$ is convergent if and only if $\left(a_{n}^{2}\right)$ is convergent.
