1. Prove that for any two counting numbers n and m in \boldsymbol{P},

$$
\int_{0}^{1} x^{m}(1-x)^{n} d x=\int_{0}^{1}(1-x)^{m} x^{n} d x
$$

2. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ has a continuous second derivative. Prove that for any two numbers a and b,

$$
\int_{a}^{b} x f^{\prime \prime}(x) d x=b f^{\prime}(b)+f(a)-a f^{\prime}(a)-f(b) .
$$

3. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ has a continuous second derivative. Fix a number a. Prove that

$$
\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t=-(x-a) f^{\prime}(a)+f(x)-f(a) \text { for all } x .
$$

4. Suppose that the function $f:[0, \infty) \rightarrow \mathbf{R}$ is continuous and strictly increasing and that f is differentiable on $(0, \infty)$. Suppose $f(0)=0$. Consider the formula

$$
\int_{0}^{x} f+\int_{0}^{f(x)} f^{-1}=x f(x) \text { for all } x \geq 0
$$

Provide a geometric interpretation of this formula in terms of areas. Then prove this formula.
5. Suppose that the function $f:[\mathbf{0}, \infty) \rightarrow \mathbf{R}$ is continuous and strictly increasing with $f(0)=0$ and $f([\mathbf{0}$, $\infty)=[0, \infty)$. Then define

$$
F(x)=\int_{0}^{x} f \quad \text { and } \quad G(x)=\int_{0}^{x} f^{-1} \quad \text { for all } x \geq 0 .
$$

(i) Prove Young's Inequality:

$$
a b \leq F(a)+G(b) \quad \text { for all } a \geq 0 \text { and } b \geq 0 .
$$

(ii) Use Young's Inequality with $f(x)=x^{p-1}$ for all $x \geq 0$ and $p>1$ fixed, to prove that if the number q is chosen to have the property $1 / p+1 / q=1$, then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} \quad \text { for all } a \geq 0 \text { and } b \geq 0
$$

6. (a) Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is differentiable and $f^{\prime}=c f$ for some constant c. Prove that there is a constant k such that $f(x)=k e^{c x}$ for all x in \mathbf{R}.
(b) Show that if $f(x)=\int_{0}^{x} f(t) d t$ for all real number x, then $f=0$, the 0 constant function.
7. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuously differentiable, i.e., f is differentiable and $f^{\prime}:[a, b] \rightarrow \mathbf{R}$ is continuous. Use integration by parts to prove that

$$
\lim _{x \rightarrow \infty} \int_{a}^{b} f(t) \sin (x t) d t=0
$$

8. Use the Second Mean Value Theorem for Integrals (Theorem 66) to prove that

$$
\left|\int_{1}^{10} \frac{\sin (x)}{x} d x\right|<2
$$

9. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ is continuous. Prove that

$$
\int_{0}^{x} f(u)(x-u) d u=\int_{0}^{x}\left(\int_{0}^{u} f(t) d t\right) d u
$$

[Hint: Differentiate both sides.]
10. Evaluate (a) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2 n} \sin \left(\frac{k \pi}{2 n}\right)$ (b) $\int_{1}^{e}(\ln (x))^{2} d x$ (c) $\int_{2}^{\pi} x^{2} \cos (x) d x$.

