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Let I be an interval and suppose :f I   is a function.  We say f satisfies 

Banach Condition T2, if except for a set of measure zero in the image ( )f I , 
every value y in ( )f I  is assumed at most an enumerable number of times in I.   

We say f is a Lusin function or f satisfies Lusin condition N if it maps any set of 
measure zero to set of measure zero.  We say f satisfies Banach Condition T1 if, 
except for a set of measure zero in the image ( )f I , every value y in ( )f I  is 
assumed at most a finite number of times in I.   

 

Let :[ , ]f a b    be a continuous function.  Banach Zarecki Theorem states that f 
is absolutely continuous if, and only if, f is of bounded variation and satisfies 
the Lusin condition N.  A Banach’s Theorem states that f is absolutely 
continuous if, and only if, f is a Lusin function and that f   is Lebesgue 
integrable on the set { :  is differentiable finitely at  and ( ) 0}P x f x f x   . This result 

is proved in “When is a continuous function on a closed and bounded interval 
be of bounded variation, absolutely continuous?” The answer and application 
to generalized change of variable for Lebesgue integral” and involved the 
notion of Lusin condition N and Banach condition T2.  We made use of T2 and 
Banach’s Theorem that if f is continuous and a Lusin function, then it satisfies 
Banach condition T2.  Instead of checking that the function f satisfies Lusin 
condition N and that it is of bounded variation, we could check if f maps the set 
of points, E, where f is not differentiable finitely or infinitely to a set of measure 
zero, if also f maps the set E ,where the derivative is either +∞ or ∞ to a set of 

measure zero, and if the derivative f   is dominated by a Lebesgue integrable 

function on the set where the derivative is non-negative to conclude that f is 
absolutely continuous.  (See Theorem 9 below.) This result is equivalent to 
Banach’s theorem as f is a Lusin function if f maps E E  to a set of measure 

zero. (This is because f is a Lusin function on [ , ]a b E E  , see Theorem 12 of  

“Absolutely Continuous Function on Arbitrary Domain and Function of 
Bounded Variation” or Denjoy Saks Young Theorem”.) 
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Following Banach, we shall prove Banach’s Theorem concerning a continuous 
function on a closed interval satisfying Lusin condition and another concerning 
a continuous function of bounded variation satisfies Banach condition T1.  This 
shall complement the paper “When is a continuous function on a closed and 
bounded interval be of bounded variation, absolutely continuous?” with a proof 
of the Banach Theorem. We explore these three notions of Lusin’s condition, 
Banach’s T1 and T2 in absolute continuity. 

 

Theorem 1 (Banach).   Suppose [ , ]I a b  is a closed and bounded interval with 
a < b.  Suppose :[ , ]f a b    is a continuous function satisfying Lusin’s 

condition N, that is, f maps set of measure zero to set of measure zero.   Then f 
satisfies Banach’s condition T2, that is, except for a set of measure zero in the 
image ( )f I , every value in ( )f I is assumed at most an enumerable number of 

times in I. 

 

To prove Theorem 1, we shall use the following three results. 

 

Theorem 2.  Suppose :f I    is a continuous function, where [ , ]I a b  is a 

closed and bounded interval.  Then for any closed E in I, there exists a 
measurable subset A of E on which the function f assumes each value y in ( )f E  

exactly once. 

Proof.  Take a value y in ( )f E .  Since f is continuous, 1( )f y  is a closed set in I. 

Since E is a closed set, 1( )f y E   is also closed in I.   Since I is bounded, the 

infimum of 1( )f y E   exists.  Let 1inf ( )yx f y E  . Since 1( )f y  is closed, 
1( )yx f y .  Let  : ( )yA x y f E  .  Plainly, f assumes each value of y in ( )f E , 

only once on A. 

Next, we claim that A is measurable. 

For each positive integer n, let 
1

:  there exists  with  and ( ) ( )nE x E k E x k f k f x
n

       
 

.   Note that nx E  

implies that x cannot be a lower bound of 1( ( ))f f x E  .  We next show that the 
set nE  is a closed set. 
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Let m be a limit point of nE .  Then there exists a sequence of points ( )ix  in nE  

such that ix m .  For each ix  there exists a point ik E  such that 1
i ix k

n
   and 

( ) ( )i if k f x  .   Since the sequence ( )ik is bounded, by the Bolzano Weiertrass 

Theorem, it has a convergent subsequence ( )
ink  such that 

ink t .  Since E is 

closed,  t E .  We also have that 
inx m .  Then, 1

i in nx k
n

  ,  ( ) ( )
i in nf k f x .  By 

the continuity of f, ( ) lim ( ) lim ( ) ( )
i in n

i i
f t f k f x f m

 
    and   1

lim
i in n

i
m t x k

n
    .  

It follows that nm E  .   Hence, nE  contains all its limit points and so is closed in 

I.   By definition, 
1

n
n

E



  contains precisely all the non-lower bound of 1( )f y  for 

each y in ( )f E , 
1

n
n

A E E




  .  Since E is closed and each nE  is closed, A is 

measurable. 

 

Lemma 3.  Suppose :f I    is a continuous function, where [ , ]I a b  is a 

closed and bounded interval.  Suppose f satisfies Lusin’s Condition N, that is, f 
maps set of measure zero to set of measure zero.  Every measurable set E in I 
contains for each 0  , a measurable subset Q E  such that  ( ) ( )m f E f Q   , 

where m is the Lebesgue measure and the function f assumes each of its values 
at most once on Q.   

Proof.   Since E I  is measurable, there exists a sequence of closed sets  nF  in 

E such that 1n nF F   for each positive integer n and 
1

n
n

F E




  with 

1

0n
n

m E F




 
  

 
 .   Then E F N  , where 

1
n

n

F F




  and 
1

( ) 0n
n

m N m E F




 
   

 
 . 

( ) ( ) ( )f E f F N f F    since f is a Lusin function so that ( ) 0f N  .  Then 

   
1 1

n n
n n

f F f F f F
 

 

 
  

 
   and    1n nf F f F  .  Note that since f is a Lusin 

function, by Theorem 10 of “Functions Having Finite Derivatives, Bounded 
Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée 
Poussin's Theorem”, each  nf F  is measurable.  By the continuity from below 

property of Lebesgue measure, given 0  , there exists an integer 0n  such that 

for all integer 0n n , ( ( )) ( ( ))nm f F m f F    . Hence, 
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                      ( ( ) ( )) ( ( )) ( ( ))n nm f F f F m f F m f F     . 

Now,  

( ) ( ) ( ) ( ) ( ) ( ) ( )n n nf E f F f F N f F f F f N f F         

                      ( ) ( ) ( ) ( )n nf F f F f N f F    . 

Therefore, for 0n n , 

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n nm f E f F m f F f F m f N f F m f F f F         . 

In particular,  
0

( ) ( )nm f E f F   .  Since 
0nF  is closed in E, by Theorem 2, there 

exists a measurable subset Q of 
0nF  on which the function f assumes each value 

y in ( )f E  exactly once.  Hence, 
0

( ) ( )nf Q f F  and so  ( ) ( )m f E f Q    and f 

assumes each of its values at most once on Q.   

 

Lemma 4.  Suppose :f I    is a continuous function, where [ , ]I a b  is a 

closed and bounded interval.  Suppose f satisfies Lusin’s Condition N, that is, f 
maps set of measure zero to set of measure zero.  Every measurable set E in I 
contains a measurable subset K E  such that  ( ) ( ) 0m f E f K  , where m is the 

Lebesgue measure and the function f assumes each of its values in ( )f K  at most 

an enumerable number of times in K.  That is, for any y in f(K), the preimage
1( )f y  is at most denumerable. 

Proof.  

By Lemma 3, for each positive integer n,  there exists a measurable subset 

nQ E  such that   1
( ) ( )nm f E f Q

n
  and on which f  assumes each of its values 

in ( )nf Q  exactly once in nQ .  Let 
1

n
n

K Q




 .  Then for each positive integer n, 

           
1

( ) ( ) ( ) ( ) ( )n n
n

f E f K f E f Q f E f Q




 
     

 
  . 

Thus,     1
( ) ( ) ( ) ( )nm f E f K m f E f Q

n
     for each positive integer n.  

Therefore,  ( ) ( ) 0m f E f K  . 

Let ( )y f K .  Then ( )ny f Q for some positive integer n and there exists 

precisely one point nx Q  such that ( ).y f x  Since K is a countable union of the 
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Qn’s, y can belong to at most an enumerable number of the Qn’s.  Thus, f can 
assume the value y at most an enumerable number of times on K. 

 

Proof of Theorem 1. 

For each measurable set E in I, let       

            
 : ( ) ( ) 0 and

 each  in ( ) is assumed at most enumerable of times in 
E

K E m f E f K
K

y f E K

      
  

 . 

By Lemma 4, EK    . 

Then the set { ( ) : }Em K K K  is bounded above by ( )m I b a   .  Let 

sup{ ( ) : }E Em K K K   . 

Take sup{ ( ) : }I Im K K K   .  Then for any positive integer n, there exists a set 

n IK K  such that 1
( )I n Im K

n
     .  It follows that lim ( )n I

n
m K 


  .  Let 

1
n

n

H K I




   .  Then  
1

n I
n

m H m K 




 
  

 
 .  Note that 

 
1

( ) ( ) ( ) ( )n n
n

f I f H f I f K f I f K




 
     

 
  for any positive integer n.  Thus, 

    ( ) ( ) ( ) 0nm f I f H m f I f K     and so  ( ) ( ) 0m f I f H  .  Take ( )y f H . 

Then ( )ny f K for some positive integer n and there exists at most denumerable 

number of points x in nK  such that ( ) .f x y   Since y can belong to at most 

denumerable number of the sets ( )nf K , there can be at most denumerable 

number of points x in H such that ( ) .f x y  It follows that IH K .  Suppose H = 

I.  Then every value ( ) ( )y f I f H   is assumed at most denumerable number of 
times on I.  This means f satisfies Banach Condition T2. 

We assume now that .H I   

Consider the set I HK  .  By Lemma 4, I HK  is not empty.  Take a set I HU K  . 

Then ( ( ) ( )) 0m f I H f U    and each value of y in ( )f I H is assumed at most 

denumerable number of times in U.  Take  ( )y f H U  .  If  ( )y f U , then 

( )y f I H  and y is assumed at most denumerable number of times on U. If y is 
also in f(H) then y is assumed at most denumerable number of times on H and 
so it is assumed at most denumerable number of times on H U .  If ( )y f U  
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and ( )y f H , then plainly y is assumed at most denumerable number of times 

on H U .  If ( )y f H U   and ( )y f U , then ( )y f H  and so y is assumed at 
most denumerable number of times on H and hence on H U .  Now we have  

( ( ) ( )) 0m f I f H    and so ( ( ) ( )) 0m f I f H U   .  It follows that IH U K  . 

Then since U and H are disjoint, ( ) ( ) ( ) Im H U m H m U      .   Since ( ) Im H  ,

( ) 0m U  . 

Since U I H  ,  ( ) ( ) ( ) ( ) ( )f U f I H f I H f U f U      .  Therefore, 

           ( ) ( ) ( ) ( ) ( ) 0 ( ) ( )m f U m f I H m f I H f U m f U m f U m f U         . 

Thus,    ( ) ( ) 0m f I H m f U    as ( ) 0m U   and f is a Lusin function.  Since  

( ) ( ) ( )f I f I H f H    and  ( ) 0m f I H  , almost every y in ( )f I , that is every 

y not in the image ( )f I H  belongs to ( )f H  and so is assumed at most 

enumerable number of times only on H and so on I.  Since  ( ) 0m f I H  , this 

means f satisfies Banach Condition T2. 

 

Note that Banach Condition T1 implies Banach condition T2.   The next 
theorem provides an easy way to determine Banach condition T1 by examining 
the image of the set where the function is not differentiable finitely or not 
differentiable infinitely.  Checking the cardinality of the preimage is somewhat 
arduous. 

 

Theorem 5.  Suppose :f I    is a continuous function, where [ , ]I a b  is a 
closed and bounded interval.   Let     

               :  has no derivative finitely or infinitely at E x I f x  . 

Then f satisfies Banach Condition T1 if, and only if,  ( ) 0.m f E    

Proof.   Let  1( ) : ( ) is infiniteZ y f I f y  . 

Suppose f satisfies Banach Condition T1.  Then ( ) 0m Z  .   

Let  1( ) : ( )F f Z x I f x Z    .  Then  ( ) ( ) 0m f F m Z   . 

Now consider E F .   Then  f E F Z   . 
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Take any point 0x E F  .   Then 1
0( ( ))f f x  is finite and is a set of isolated 

points.  Note that f is not differentiable finitely or infinitely on E F .  By 
Theorem 11 of “When is a continuous function on a closed and bounded 
interval be of bounded variation, absolutely continuous? The answer and 
application to generalized change of variable for Lebesgue integral”, 

   0m f E F  .   Since ( ) ( ) ( )f E f E F f F   , 

                ( ) ( ) ( )m f E m f E F m f F   =0+0=0. 

Hence,  ( ) 0m f E  . 

Conversely, suppose  ( ) 0m f E  .   Let  

                   :  is differentiable at  and ( ) 0H x I f x f x   . 

Then by Theorem 3 of “Functions Having Finite Derivatives, Bounded 
Variation, Absolute Continuity, the Banach Zarecki Theorem and de La Vallée 
Poussin's Theorem”,  ( ) 0m f H  .   

We now examine the set ( )Z f E .  Take any 0 ( )y Z f E  .   Let 1
0 0( )F f y  is 

closed in I since f is continuous.  Moreover, since 0y Z , 0F  is an infinite set.  

As 0 ( )y f E , f is differentiable at each point of 0F .   Let 0x  be an accumulation 

point of 0F .   As 0F  is closed, 0 0x F  and so f is differentiable at 0x .  Since 0x is  

an accumulation of 0F , there exists a sequence of points ( )nx in 0F such that 

0nx x  0nx x  and as 0( ) ( )nf x f x , the difference quotient 0

0

( ) ( )n

n

f x f x

x x




 is 

always 0 and so it tends to 0 as 0nx x .  Thus, 0 is a derived number at 0x .  

Since f is differentiable at 0x , its derivative at 0x  must be 0.  That is 0( ) 0f x  .  

Therefore, 0x H .  It follows that 0 0( ) ( )y f x f H  .  Hence, ( ) ( )Z f E f H  .  It 

follows that  ( ) 0m Z f E  .  Since  ( ) 0m f E  ,   0m Z   and so f satisfies 

Banach Condition T1.   

 

Theorem 6.  Suppose :f I    is a continuous function of bounded variation, 

where [ , ]I a b  is a closed and bounded interval.  Then f satisfies Banach 

Condition T1. 

Proof.  By Theorem 14 (De La Vallée Poussin Theorem) of “Functions Having 
Finite Derivatives, Bounded Variation, Absolute Continuity, the Banach Zarecki 
Theorem and de La Vallée Poussin's Theorem”, there exists a set N of measure 
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zero in I such that  ( ( )) ( ) ( ) 0fm f N m N m N    and that for all x in I N , f is 

differentiable finitely or infinitely at x.  It follows by Theorem 5 that f satisfies 
Banach Condition T1. 

Remark. It follows by Theorem 6, that if f is absolutely continuous, then f 
satisfies Banach condition T1. 

 

Theorem 7.  Suppose :f I    is a continuous function of bounded variation, 

where [ , ]I a b  is a closed and bounded interval.  Then f is absolutely 

continuous if, and only if, ( ( )) 0m f E  , where  : ( )  or ( )E x I f x f x       . 

Proof.   By Theorem 18 of my article “Functions of Bounded Variation and de 
La Vallée Poussin's Theorem”, there exist a null set N in I such that ( ( )) 0m f N 

and for all x in IN, f is differentiable finitely or infinitely at x and that f is a 
Lusin function on I N E  , where  : ( )  or ( )E x I f x f x       .  Since f is a 

continuous function of bounded variation, by Theorem 8 of “Functions of 
Bounded Variation and de La Vallée Poussin's Theorem” f is differentiable 
finitely almost everywhere on I.  Thus, ( ) 0m E  .  

Suppose f is absolutely continuous, then it is a Lusin function and so 
( ( )) 0m f E  , since E is a null set.  Conversely, if ( ( )) 0m f E  , then as f is a Lusin 

function on I N E  , and  ( ) 0m f E N  , it follows that f is a Lusin function 

on I.  Therefore, by the Banach Zarecki Theorem, f is absolutely continuous. 

 

Suppose we know that a continuous function f maps its set of points, where f is 
not differentiable finitely or infinitely, to a set of measure zero.  Then we only 
need to check if f   is Lebesgue integrable on the set where f  is finite and 

whether f maps the set where f  is infinite to a set of measure zero.    

Theorem 8.  Suppose [ , ]I a b  is a closed and bounded interval and :f I    is 
a continuous function.  Let  :  is not differentiable finitely or infinitely at E x I f x  . 

Suppose ( ( )) 0m f E  .   

Then f is absolutely continuous if, and only if, f   is Lebesgue integrable on 

I E  and ( ( )) 0m f E  , where  : ( )  or ( )E x I f x f x        . 

Proof.  ( ( )) 0m f E   implies that f satisfies Banach condition T1 and hence T2.  
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Suppose f   is Lebesgue integrable on I E .  Therefore, f   is Lebesgue 

integrable on the set of points, where f is differentiable finitely. Since f satisfies 
Banach condition T2, by Theorem 13 of the article “When is a continuous 
function on a closed and bounded interval be of bounded variation, absolutely 
continuous? The answer and application to generalized change of variable for 
Lebesgue integral.”, f is of bounded variation.  By the de La Vallée Poussin's 
Theorem (Theorem 15 of “Functions of Bounded Variation and de La Vallée 
Poussin's Theorem”), ( ( )) 0m f E  . Suppose ( ( )) 0m f E  .  Since f  is 

differentiable finitely on I E E  , by Theorem 17 of “Functions of Bounded 

Variation and de La Vallée Poussin's Theorem”, f is a Lusin function on 
I E E  . As ( ( )) 0m f E E   , f is a Lusin function on I.  Therefore, by the 

Banach Zarecki Theorem, f is absolutely continuous. 

Conversely, suppose f is absolutely continuous.  Then f is of bounded variation 
and consequently f   is Lebesgue integrable on I E .   f is also a Lusin function 

and so ( ( )) 0m f E  since ( ) 0m E  . 

 

Following Banach we also have the following: 

Theorem 9.  Suppose [ , ]I a b  is a closed and bounded interval and :f I    is 
a continuous function.  Let  :  is not differentiable finitely or infinitely at E x I f x  . 

Suppose ( ( )) 0m f E  .  Let  :  is differentiable finitely at  and  ( ) 0P x I f x f x      

Then f is absolutely continuous if, and only if,  ( ( )) 0m f E  , where 

 : ( )  or ( )E x I f x f x         and there exists a function :[ , ]g a b    such 

that f g  on P  and g is Lebesgue integrable on P . 

Proof.  If f is absolutely continuous, then f is of bounded variation and so f   is 
Lebesgue integrable and so it is Lebesgue integrable on P . Take g to be f 

Moreover, f is a Lusin function, it follows that ( ( )) 0m f E  , since ( ) 0m E  . 

Conversely, suppose ( ( )) 0m f E  . As ( ( )) 0m f E  , ( ( )) 0m f E E    and f is 

differentiable finitely on I E E  .  Suppose there exists a function :[ , ]g a b    

such that f g  on P  and g is Lebesgue integrable on P .  Then by Theorem 17 

of “When is a continuous function on a closed and bounded interval be of 
bounded variation, absolutely continuous? The answer and application to 
generalized change of variable for Lebesgue integral.”, f is absolutely 
continuous. 
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Remark.  Theorem 9 is a little easier to use for we only need to check two 
things: ( ( )) 0m f E  and that f be dominated above by a Lebesgue integrable 

function on P . 

Given that ( ( )) 0m f E  , where

 :  is not differentiable finitely or infinitely at E x I f x  , by Theorem 6, f satisfies 

Banach condition T1 and hence T2.   

Suppose there exists a function :[ , ]g a b    such that f g  on P  and g is 

Lebesgue integrable on P . Then by Theorem 13 of “When is a continuous 

function on a closed and bounded interval be of bounded variation, absolutely 
continuous? The answer and application to generalized change of variable for 
Lebesgue integral.”, f is of bounded variation.  Then by Theorem 15 of 
“Functions of Bounded Variation and de La Vallée Poussin's Theorem”, there 
exists a subset N I  such that f is differentiable finitely or infinitely on I N , 

( ) ( ( )) 0m N m f N  .  Since E N , ( ( )) 0m f E  .  Thus, f is differentiable finitely 

on the set  I E E  , where  : ( )  or ( )E x I f x f x        . By Theorem 12 

of “Absolutely Continuous Function on Arbitrary Domain and Function of 
Bounded Variation”, f is a Lusin function on  I E E  .  If ( ( )) 0m f E  , then 

( ( )) 0m f E E   .  It follows that f is a Lusin function on I.  Therefore, by the 

Banach Zarecki Theorem, f is absolutely continuous. 

If f is absolutely continuous, then f is of bounded variation.  Then by Theorem 
15 of “Functions of Bounded Variation and de La Vallée Poussin's Theorem”, 
there exists a subset N I  such that f is differentiable finitely or infinitely on 
I N , ( ) ( ( )) 0m N m f N  .  Since E N , ( ( )) 0m f E  . Thus, the condition 

( ( )) 0m f E  is necessary for a function f to be absolutely continuous. If f is 

absolutely continuous, then it is a Lusin function.  Since E is a null set, 

( ( )) 0m f E  . Since f is also of bounded variation on I, by Theorem 6 of 

“Absolutely Continuous Function on Arbitrary Domain and Function of 
Bounded Variation”, f is differentiable almost everywhere in I and f  is 

Lebesgue integrable.  We can take g to be f  in Theorem 9.  This gives another 
proof of Theorem 9. 

Remark.   We have shown that if the continuous function :f I   is absolutely 

continuous, then it must satisfy Lusin’s Condition N and Banach’s Condition 
T1.   

Banach had shown that Lusin Condition N and Banach Condition T1 is 
equivalent to Banach’s condition S. 
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A function :f I   , where I is the closed interval [ , ]a b  with a < b, is said to 

satisfy Condition S, if given any 0  , there exists 0   such that for any 
measurable set E I , ( ) ( ( ))m E m f E    . 

Theorem 10.  Suppose [ , ]I a b  is a closed and bounded interval and :f I    is 

a continuous function.  Then f satisfies Condition S if, and only if, f satisfies 
Lusin Condition N and Banach Condition T1. 

Proof. 

Suppose f satisfies Condition S.   

We shall show that f satisfies Lusin Condition N and Banach Condition T1. 

As f satisfies Condition S, for any positive integer n there exists 0  such that 
1

( ) ( ( ))m E m f E
n

   .   Therefore, for any measurable set E with ( ) 0m E  , 

1
( ( ))m f E

n
  for any positive integer n. It follows that ( ( )) 0m f E  .  Hence, f 

satisfies Lusin Condition N. 

We shall show that f satisfies Banach Condition T1, by using a contradiction 
argument.  

Suppose on the contrary, f does not satisfy Banach Condition T1.  Then there 
exists a set of values, ( )H f I , where each y H is assumed infinitely often on I 

and which has positive Lebesgue outer measure, i.e., *( ) 0m H  .  Since f is 
continuous, the Banach indicatrix function fN  of f is measurable. (A theorem of 

Banach, see Theorem 3, Chapter VIII page 225 of Natanson, Theory of 
functions of a real variable volume 1.) It follows that H is measurable and 

( ) *( ) 0m H m H  .  The Banach indicatrix function is defined on the range ( )f I , 
which is a closed and bounded interval, by 

                    
1 1

1

The number of points in ( ),  if ( ) is finite,
( )

,  if  ( ) is infinite 
f

f y f y
N y

f y

 



 


 . 

Then, we claim that there exists a closed measurable set Y H  such that 
( ) 0.m Y   We shall define a sequence of measurable sets  iX  such that 

(i)  i jX X   for i j  , 

(ii) ( )
( ( ))

2i

m Y
m f X   , for all i and 



12 
 

(iii) For each positive integer i, f assumes each of its values in ( )if X  

exactly once on iX . 

We shall define this sequence  iX inductively. 

Since the set H is measurable, there exists a F  set, F, which is a countable 

union of closed sets  nF , i.e., 
1

n
n

F F




 
  
 
  and such that 

1

0n
n

m H F




 
  

 
  and 

1
n

n

H F N




 
  
 
 , where   0m N  .   

Then ( ) ( ) 0m F m H  .   By the continuity from below property of the Lebesgue 

measure, 
1

( ) lim
k

ik
i

m F m F




 
  

 
  and so there exists a positive integer 0n  such that 

for all 0n n , 
1

( ) ( )

2 2

n

i
i

m F m H
m F



 
  

 
 .  Let 

0

1

n

i
i

Y F


 
  
 
 .  Then Y  is closed in ( )f I .  

As f is continuous, 1( )X f Y  is closed in I.  Then by Theorem 2, there exists a 

measurable set 1X in 1( )f Y  such that f assumes each value of Y  exactly once. 

Moreover, 1

( )
( ( )) ( )

2

m Y
m f X m Y  .   

Suppose now that the first k sets of the  iX  is defined with the properties,  

(i)                 i jX X   for i j  , 

(ii) ( )
( ( ))

2i

m Y
m f X   , for all i and 

(iii) For each positive integer i, f assumes each of its values in ( )if X  

exactly once on iX . 

Note that 1X X and 1

( )
( ( ))

2

m Y
m f X  . 

Let 
1

k

k i
i

E I X


  .  Now f can only assume each of its values on  
1

k

i
i

X

  (at most k 

times) a finite number of times.  It follows that each value 
0

1

n

i
i

y Y F


 
   

 
  is in 

the image of 
1

k

k i
i

E I X


  , since 1( )f y  is infinite, that is, ( )kY f E .  Therefore,  

 ( ) ( ) 0km f E m Y  .  Since f satisfies Lusin’s Condition N, by Lemma 3, there 
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exists a measurable set 1
1

k

k k i
i

X E I X


    such that f assumes each of its values 

on 1kX  exactly once and 
 

1

( )
( ( ) ( ))

2
k

k k

m f E
m f E f X   . Note that 1k jX X    

for 1 j k  . Since        1 1( )k k k kf E f E f X f X    ,   

    1 1( ) ( ( ) ( ))k k k km f E m f E f X m f X     so that 

     
1 1

( ) ( )
( ) ( ) ( ( ) ( ))

2 2
k

k k k k

m f E m Y
m f X m f E m f E f X      .  In this way, we 

define the sequence  iX inductively.  Plainly, this sequence is a sequence of 

disjoint measurable subsets in I satisfying properties (i), (ii) and (iii).   

We shall now derive a contradiction.  

By the Bolzano Weierstrass Theorem, as the sequence  ( )nm X  is bounded it has 

a convergence subsequence  ( )
inm X .  We claim that lim ( ) 0

in
i

m X


 .  Suppose on 

the contrary, lim ( ) 0
in

i
m X


 .  Then there exists an integer N, such that for all i N

,  ( ) 0
2in

K
m X   , where lim ( )

in
i

K m X


 .  Therefore, as the sequence  iX consists 

of disjoint sets, ( )
in

i N

m X




  .  But as the sets  iX  are mutually disjoint subsets 

of I, ( ) ( )
in

i N

m X m I




    and so ( )
in

i N

m X




   is not valid. This contradiction 

shows that lim ( ) 0
in

i
m X


 .  Since f satisfies Condition S, this implies that for any 

positive integer n, there exists 0n   such that, for any measurable set B in I, 
1

( ) ( ( ))nm B m f B
n

    .  As lim ( ) 0
in

i
m X


 , there exists an integer nN  such that 

( )
in nm X   for all ni N  . It follows that 1

( ( ))
inm f X

n
  for all ni N .  Therefore, 

lim ( ( )) 0
in

i
m f X


 .  But ( )

( ( )) 0
2in

m Y
m f X    and so the sequence  ( ( ))

inm f X  

cannot converge to zero as it is bounded below by ( )
0

2

m Y
 .  This contradiction 

shows that ( ) 0m H  .  Therefore, f must satisfy Banach Condition T1.  

 

Now we prove the converse by contrapositive argument.  Suppose f satisfies 
Lusin Condition N and Banach Condition T1 but not Banach Condition S. 
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Therefore, there exists 0   such that for any positive integer n, there exists a 

measurable set nE I  such that  1
( )  but ( )

2n nn
m E m f E   .   

Let 
1

limsup n k
n n k n

E E E
 

 

 
   

 
    and    

1

limsup n k
n n k n

A E f E
 

 

 
   

 
  .  

If y A , then  k k
k n k n

y f E f E
 

 

 
   

 
   for all 1n  .   Then y must belong to 

infinite numbers of the  kf E s , for if y belong to only finite number of the  

 kf E s , then there exists an integer 0n  such that ( )ky f E  for all 0k n  and so 

 
0

k
k n

y f E




 and so  
1

k
n k n

y f E A
 

 

 
  

 
  , giving a contradiction. 

Suppose 
1

k
n k n

x E E
 

 

 
  

 
  . Then x belongs to infinite number of the kE s .  

Therefore, ( )y f x  belongs to infinite numbers of the  kf E s  and so 

 
1

k
n k n

y f E A
 

 

 
  

 
  .  Hence, ( )f E A .  

 Take  
1

k
n k n

y f E A
 

 

 
  

 
   and ( )y f E . 

Then there exists a sequence of distinct integers  kn  such that  
kny f E .  

Therefore, there exists a sequence of points in I,  kx such that 
kk nx E and 

 kf x y .  The sequence  kx  is a bounded sequence.  Therefore, it has a 

monotone convergent subsequence  
kj

x .  Suppose  
kj

x is increasing.  If the 

values the sequence takes is finite, then it has a constant subsequence whose 

limit is x, then 
1

k
n k n

x E E
 

 

 
  

 
   and so ( )y f E .  Since  ( )y f E , the values the 

sequence  
kj

x  takes must be infinite and so 1( )f y  is infinite.  Suppose  
kj

x is 

decreasing.  If the values the sequence  
kj

x takes is finite, then it has a constant 

subsequence whose limit is x, then 
1

k
n k n

x E E
 

 

 
  

 
   and so ( )y f E .  As 

( )y f E  the values the sequence takes must be infinite, and so 1( )f y  is infinite.  
Thus, every ( )y A f E   is assumed infinite number of times by f in I. 
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Now 1
( )

2k k
k nk n

m E m E
 



 
  

 
  for all positive integer n.  Since 1

0
2k

k n





 as n  , 

we conclude that ( ) 0m E  .  Since f satisfies Condition N,  ( ) 0m f E  .  Now, 

note that    
1

k k
k n k n

f E f E
 

  

  for any positive integer n.  By the continuity from 

above property of Lebesgue measure,    
1

( ) limk kn
n k n k n

m A m f E m f E
  


  

    
     

    
   . 

As each  k
k n

m f E 




 
 

 
 , ( )m A  .  Note that ( )f E A  and so 

 ( ) ( ( )) ( ) ( ( ))m A m A f E m f E m A f E     . Hence, ( ( ))m A f E   .  As every 

value in ( )A f E is assumed infinite number of times in I and ( ( )) 0m A f E    , 
this contradicts that f satisfies Condition T1.  

Hence, if f satisfies Lusin Condition N and Banach Condition T1, then f satisfies 
Banach Condition S. 

This completes the proof of Theorem 10.   

 

Corollary 11.   Suppose [ , ]I a b  is a closed and bounded interval and :f I    

is a continuous function.  If f is absolutely continuous on I, then f must satisfy 
Banach Condition S. 

Proof. Suppose f is absolutely continuous on I.  Then by the Banach Zarecki 
Theorem, f satisfies Lusin’s Condition N and is of bounded variation.  Since f is 
of bounded variation, by Theorem 6, f satisfies Banach Condition T1 and so by 
Theorem 10, f satisfies Banach Condition S. 

Corollary 11 says that Banach Condition S is a necessary condition for a 
continuous function on a closed and bounded interval to be absolutely 
continuous. 

 

 

  

  


