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To study the space of functions on n  from the point of view of continuity and 

measurability, we may start by considering the space of functions on the topological space X, 

which is in some way like the Euclidean space n  for integer n ≥ 1, with the usual metric 

topology.  As for the measure on the topological space X, we may consider one that has the 

properties that the Lebesgue measure on n  has, namely it must contain the Borel subsets of 

X, is finite on compact subsets, regular and complete.  The results that hold true for the space 

of functions on such a topological space X with or without the required measure are true 

when X is replaced by n .  

The closure of any open n-disk in n  is compact by the Heine-Borel Theorem.  Any 

neighbourhood N, of a point x in n , contains a closed n-disk, which is compact and is also a 

neighbourhood of x.  To take this property into the topology of the space X, we require that 

for any point x X , x has a compact neighbourhood.  We say X is locally compact if every 

point in x has a compact neighbourhood.  We know that n with the usual topology is 

Hausdorff, that is, any two distinct points in n  can be separated by open neighbourhoods.  

So, we would want our space X to be Hausdorff, that is, if x and y are distinct points in X, 

then there are open neighbourhoods U and V of x and y respectively such that U V = .  

Hence, we would want X to be a locally compact Hausdorff space.  Now a compact subset of 

a Hausdorff space X is closed in X and a closed subset of a compact set is compact. Hence a 

compact neighbourhood K of a point x in a Hausdorff space is closed.  There is an open set U 

such that x U K   . As U  is closed in X and is contained in K, U  is compact and so U is a 

compact neighbourhood of x.  We say a subset E of X is relatively compact if its closure E  in 

X is compact.  Hence a Hausdorff space is locally compact if and only if every point x in X 

has a relatively compact open neighbourhood.  It is now clear that n with the usual topology 

is a locally compact Hausdorff topological space.   

We shall investigate the space of functions on a locally compact Hausdorff topological space 

when the space of functions is endowed with a suitable norm to form a normed linear space. 

A norm on a linear space, i.e., a vector space V over  or , is a non-negative function  

. : [0, )V →    such that 

(a) a b a b+  +  for all ,a b V  (triangle inequality), 

(b) x x =  for any x in V and any scalar  , 

(c)  0 0x x=  = . 
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The vector space, V, with such a norm is called a normed linear space. 

A norm on a linear space V gives rise to a metric on V.   We shall investigate when a linear 

space can be regarded as a complete metric space with the metric induced by its norm, i.e., if 

every Cauchy sequence in V is convergent in V.  A normed linear space is a Banach space if 

it is complete as a metric space with the metric induced by its norm. 

We begin with the investigation into, among other things, some inequalities including the 

triangle inequality that the norm, which we shall define and elaborate later, must satisfy.  The 

property of a convex function plays a very useful and effective role in proving some of these 

inequalities. Our first section will be devoted to convex functions. 

 

1.  Convex Functions. 

In Calculus, the graph of a real valued function, f, on an open interval, is said to be concave 

upward, if  f  is differentiable and its derivative is an increasing function or the graph of  f  

lies above each of its tangent line.  A typical example is the function 2( )f x x=  . 

  

                       

A careful examination of the above graph will reveal that it satisfies the property (3) stated in 

the next definition.                 

Definition 1.   Let  a b−   .   A function : ( , )f a b →  is convex if 

(1)             , ( , )x y a b  , for 0 1  , ((1 ) ) (1 ) ( ) ( )f x y f x f y   − +  − + ,     or 

equivalently, 

(2)         for  a x z y b     ,  the chord function               

                     
( ) ( ) ( ) ( )

( , ) ( , ) ( , )
f x f z f y f z

p x z p z y p y z
x z y z

− −
=  = =

− −
 ,   

x  
y 
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or equivalently, 

(3) the chord slope function,  
( ) ( )

( , )
f x f z

p x z
x z

−
=

−
 ,  is monotone increasing on 

each argument with the other kept fixed.  

 

We shall show later that a function whose graph is concave upward is a convex 

function. Hence our example, the function 2( )f x x= , is convex on (−∞, ∞). 

We now show that the three conditions above are equivalent. 

(1)  (2) 

Suppose condition (1) is satisfied for the function  f . 

For a x z y b     

( ) ( ) ( ) ( )
( , ) ( , ) ( , )

f x f z f y f z
p x z p z y p y z

x z y z

− −
=  = =

− −
 if and only if  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )y z f x f z f y f z x z− −  − −  

( ) ( ) ( ) ( ) ( ) ( )x y f z x z f y z y f x −  − + −   

( ) ( ) ( )
z x y z

f z f y f x
y x y x

− −
  +

− −
   ----------------    (*) 

If we take 
z x

y x


−
=

−
, then 0 1  , 1

y z

y x


−
− =

−
 and 

(1 )
y z z x

x y x y z
y x y x

 
− −

− + = + =
− −

.  Thus (1) implies 

( )( ) (1 ) ( ) (1 ) ( ) ( ) ( )
z x y z

f z f x y f y f x f y f x
y x y x

   
− −

= − +  + − = +
− −

and by (*) 

implies (2).  

From (*) we have for a x z y b    , 

( ) ( ) ( ) ( )
( , ) ( , ) ( , )

f x f z f y f z
p x z p z y p y z

x z y z

− −
=  = =

− −
 

( ) ( ) ( ) ( )
z x x z

f z f x f y f x
y x y x

− −
 −  +

− −
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( ) ( ) 1 1 ( ) ( )
( ) ( )

f z f x f y f x
f y f x

z x y x y x y x

− − −
  + =

− − − −
,      --------------- (**) 

and   

( ) ( ) ( ) ( )
( , ) ( , ) ( , )

f x f z f y f z
p x z p z y p y z

x z y z

− −
=  = =

− −
 

( ) ( )
( ) ( ) ( ) ( )

z y y z
f z f y f y f x

y x y x

− −
 −  +

− −
 

( ) ( ) 1 1 ( ) ( ) ( ) ( )
( ) ( )

f z f y f y f x f x f y
f y f x

z y y x y x y x x y

− − − −
  + = =

− − − − −
.  -----  (***) 

Note that (2)  (*)  (**)  (***) 

(2) (3). 

By keeping x fixed we see that for all x z y  , ( , ) ( , )p x z p x y  by (**) and by 

keeping y fixed, for all x z y   , ( , ) ( , ) ( , )p y x p x y p y z=   by (***) and together 

with ( , ) ( , )p z x p z y , we see that the chord function p(x, y) is monotone 

increasing in the second argument with the first kept fixed, i.e. on (a, b) – {x}. 

This is because if y > z > x, then ( , ) ( , )p x y p x z ; if x > y > z, then ( , ) ( , )p x y p x z  

and if y > x > z, then ( , ) ( , )p x y p x z .  Since p(x, y) is symmetric it follows that it 

is also monotone increasing in the first argument with the second kept fixed.  

(3)  (2), 

This is obvious. 

(2)  (1) 

Assuming (2). Then if we take (1 )z x y = − + , 0 1  ,  
z x

y x


−
=

−
 and   

1
y z

y x


−
− =

−
, assuming x < y.  Then x < z < y and by (*) 

           ( )(1 ) ( ) ( ) ( ) ( ) (1 ) ( )
z x y z

f x y f z f y f x f y f x
y x y x

   
− −

− + =  + = + −
− −

. 

If y < x, then letting 1 = −  , we have (1 )z x y = + − , 
z y

x y


−
=

−
 , 1

x z

x y


−
− =

−
 

and y < z < x . 
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Assuming (2) we have 
( ) ( ) ( ) ( )

( , ) ( , ) ( , )
f y f z f x f z

p y z p z x p x z
y z x z

− −
=  = =

− −
 and by 

(*) we have 

        ( ) ( ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( )
z y x z

f z f x f y f x f y f y f x
x y x y

   
− −

 + = + − = + −
− −

 

and so ( )(1 ) ( ) (1 ) ( )f x y f y f x   − +  + − . 

Properties of a convex function : ( , )f a b → ,  a b−  . 

(1)  The left and right derivatives of  f  exist (finite) at each point of (a, b). 

(2)  The left derived function and the right derived function, ( )f x−
  and ( )f x+

 , 

 are equal except possibly for a countable number of points x in (a, b). 

(3) The left derived function and the right derived function, ( )f x−
  and ( )f x+

 , are both  

increasing function on (a, b) and ( ) ( )f x f x− +
  and in particular, if x < y, then 

( ) ( )f x f y+ −
  . 

(4) f  is continuous on (a,b). 

 

A support line at a point (x, y) on a curve   in 2  is a line  through (x, y) such that    lies  

either on or entirely on one side of the line . 

(5)  If  : ( , )f a b →  is convex, then for any x in (a, b), any line with a slope  such that 

( ) ( )f x f x− +
   and passing through ( ), ( )x f x on its graph is a support line at ( ), ( )x f x , 

where the graph lies either on or entirely above the line. i.e., ( ) ( ) ( )f y y x f x − + .  

Proof. 

Property (1)   

Take z in (a, b), then for any x and y such that a x z y b    , 

          
( ) ( ) ( ) ( )

( , ) ( , ) ( , )
f x f z f y f z

p x z p z y p y z
x z y z

− −
=  = =

− −
. ---------------------- (1) 

So, by fixing y, 
( ) ( )

( , )
f x f z

p x z
x z

−
=

−
 is bounded above by 

( ) ( )
( , )

f y f z
p y z

y z

−
=

−
.  Since 

( , )p x z  is increasing in the first argument, 
( ) ( )

lim ( , ) lim
x z x z

f x f z
p x z

x z− −→ →

−
=

−
 exists.  That is, 

( )f z−
  exists. 
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Similarly, by fixing x, 
( ) ( )

( , )
f y f z

p y z
y z

−
=

−
 is bounded below by 

( ) ( )
( , )

f x f z
p x z

x z

−
=

−
.  

Since ( , )p y z  is increasing in the first argument, 
( ) ( )

lim ( , ) lim ( )
y z y z

f y f z
p y z f z

y z+ + +
→ →

−
= =

−
 

exists since  
( ) ( )f y f z

y z

−

−
 is decreasing as y decreases to z.  

Properties (2) and (3) 

Moreover, 
( ) ( )

( )
f x f z

f z
x z

+

− 
−

 for all x < z in (a, b) since by (1) 
( ) ( )f x f z

x z

−

−
is a lower 

bound for 
( ) ( )

: ( , )
f y f z

y z b
y z

 −
 

− 
and so  

                 
( ) ( ) ( ) ( )

inf : ( , ) ( )
f x f z f y f z

y z b f z
x z y z

+

 − −   = 
− − 

. 

It follows that ( )f z+
  is an upper bound for 

( ) ( )
: ( , )

f x f z
x a z

x z

− 
 

− 
and so 

( ) ( )
( ) sup : ( , ) ( )

f x f z
f z x a z f z

x z
+ −

−    = 
− 

.    

Hence,  ( ) ( )f z f z− +
   for all z in (a, b)   ---------------------------------------------- (2) 

As 
( ) ( )f z f x

z x

−

−
 is decreasing as z decreases to x, for any x < y in (a, b)        

                       
( ) ( ) ( ) ( )

( ) lim ( , )
z x

f z f x f y f x
f x p x y

z x y x++
→

− − =  =
− −

 

and as  
( ) ( )f y f z

y z

−

−
 is increasing as z increases to y, so that for any x < y in (a, b) by we get            

                         
( ) ( ) ( ) ( )

( ) lim
z y

f x f y f z f y
f y

x y z y−−
→

− − =
− −

. 

Therefore, for any x < y in (a, b),  
( ) ( )

( ) ( , ) ( )
f y f x

f x p x y f y
y x

+ −

−  = 
−

. 

It then follows from (2) that for x < y in (a, b),  

                      
( ) ( )

( ) ( ) ( , ) ( ) ( )
f x f y

f x f x p x y f y f y
x y

− + − +

−     =  
−

.  ----------- (3) 
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This means ( )f x−
  and ( )f x+

  are both increasing function on (a, b). 

Since ( )f x+
  is increasing on (a, b), ( )f x+

  is continuous except for a countable number of 

points in (a, b). 

Let  0 ( , )x a b  be a point of continuity of  f+ .  Then 
0

0lim ( ) ( )
x x

f x f x
− + +

→

 = .  But it follows 

from (3) that for 0x x , 0 0( ) ( ) ( )f x f x f x+ − +
    .  Hence 

0

0 0 0( ) lim ( ) ( ) ( )
x x

f x f x f x f x
−+ + − +

→

   =   .  It follows that 0 0( ) ( )f x f x− +
 =  and so  f  is 

differentiable at x0.  We can now conclude that ( )f x−
  and ( )f x+

   are equal except possibly 

for a countable number of points x in (a, b). That is to say,  f  is differentiable except possibly 

for a countable number of points x in (a, b). 

Property (4) 

We next show that  f  is locally Lipschitz.  

Take any closed interval [ , ] ( , )c d a b . For any x < y in [c, d],        

                       
( ) ( )

( ) ( ) ( , ) ( ) ( )
f x f y

f c f x p x y f y f d
x y

+ + − −

−     =  
−

.   ------------- (*) 

Let  max ( ) , ( )M f c f d+ −
 = . Then it follows from (*) that for any x  y in [c, d], 

( ) ( )f x f y
M

x y

−


−
.   Therefore, for all x, y in [c, d],        

                                         ( ) ( )f x f y M x y−  − . 

Hence f  is Lipschitz on [c, d] and so it is continuous on [c, d] and it follows that  f  is 

continuous on (a, b). 

Property (5) 

We have, from (3), that for any x < y in (a, b),  
( ) ( )

( ) ( , ) ( )
f x f y

f x p x y f y
x y

+ −

−  = 
−

.   It 

follows then that for 0 ( , )x a b , 0
0

0

( ) ( )
( )

f x f x
f x

x x
+

− 
−

 for 0x x  and so           

                          ( )0 0 0( ) ( ) ( )f x x x f x f x+
 − +  

for 0x x .  
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For x < x0 in (a, b),  0
0 0

0

( ) ( )
( ) ( )

f x f x
f x f x

x x
− +

−   
−

 and ( )0 0 0( ) ( ) ( )f x f x x x f x+
 − + for 

0x x . This means  ( )0 0 0( ) ( ) ( )f x x x f x f x+
 − +  for all x in (a, b). 

We also have that ( )0 0 0( ) ( ) ( )f x f x x x f x−
 − +  for 0x x .  And from 

0
0 0

0

( ) ( )
( ) ( )

f x f x
f x f x

x x
− +

−  
−

 for 0x x  , we deduce that ( )0 0 0( ) ( ) ( )f x x x f x f x−
 − + .  

It follows that ( )0 0 0( ) ( ) ( )f x x x f x f x−
 − +  for all x in (a, b). 

Thus, for any 0 0( ) ( )f x f x− +
   , for 0x x ,  

                       ( ) ( )0 0 0 0 0( ) ( ) ( ) ( )f x x x f x f x x x f x+
 − +  − +  

and for 0x x , ( ) ( )0 0 0 0 0( ) ( ) ( ) ( )f x x x f x f x x x f x−
 − +  − + .   Therefore, for all x in (a, 

b), ( )0 0( ) ( )f x x x f x − + .  Hence the line ( )0 0( )y x x f x= − +  is a support line for the 

graph of  f at 0 0( , ( ))x f x  with the graph of  f  lying on or above the line.  

 

For the next inequality, we shall recall some definitions and facts from measure theory.  

A measure space (X, ℳ ,  ) consists of a non-empty set  X,  a  - algebra  ℳ  of subsets of 

X and a positive measure  : ℳ → [0, ∞]. 

A   - algebra  on a set X is a collection C  of subsets of X such that (i)  X  C   , (ii)  if  A   

C   , then its complement in X , cA   C   and (iii) if   : 1,2,nA n =    C   , then the 

countable union 
1

n

n

A


=

 C   .   It then follows from de-Morgan’s law, that ( )
1

c

n

n

A


=

 C    and 

so since every subset can be written as a complement of its complement, 
1

n

n

A


=

 C   .   In 

particular if A, B   C   , then cA B A B− =    C   .   

A subset X and a   - algebra C  of subsets of X  is also called a measure space when the 

measure function is yet to be defined.  If  (X, C   ) is a measure space and (Y , T   ) a 

topological space, where T    is a collection of subsets (called open sets) of Y , which is closed 

under finite intersection and arbitrary union,  a function  :f X Y→  is said to be measurable, 

if for any open set U in T   , 1( )f U−   C  .   If : [0, ]g X →   is a function into the extended 

non-negative real numbers and (X, C   ) is a measure space, then g is measurable if  



9 
 

1(( , ])g c−  is measurable or 1(( , ])g c−   C    for any real number c .  Likewise, 

: [ , ]g X → −  =  is measurable if 1(( , ])g c−   C    for any real number c. 

Given any non-empty collection of subsets of S of X, there is a smallest  - algebra on X 

containing S.  We say this is the  - algebra generated by S.  If (X, T   ) is a topological space, 

then the  - algebra B  generated by the open sets, that is by T   , is called a Borel measure 

and members of B are called Borel subsets.  Therefore, any continuous function :f X Y→ , 

where we give X the Borel measure or any measure that contains the Borel subsets, is 

automatically measurable and we say  f  is Borel measurable.   

A measure or a positive measure on a measure space (X, ℳ ) is a function  : ℳ  → [0,∞] 

such that ( ) 0  = and  is countably additive, i.e., if   
1n n

E


=
  is a countable disjoint 

collection of measurable subsets in ℳ , then ( )
11

n

n n

nn

E E 


==

 
= 

 
 . 

The triplet, (X, ℳ ,  ) is called a measure space and we sometimes refer to sets in ℳ as -

measurable sets. If  ( ) 1X = , we say (X, ℳ ,  ) is a probability space. 

We shall assume some familiarity with integration over a general measure space. 

 

Jensen’s Inequality 

Theorem 2.  Let (X, ℳ,  ) be a probability space (i.e., a measure space with positive 

measure  and  (X) = 1).  Suppose  : ( , )f X a b→  , with a b−    , is in 1( )L  , i.e.,  

f is measurable and
X

f d  , and   is a convex function on (a, b).  

Then  ( )
X X

f d f d     . 

Proof. 

Note that f  is measurable since   is continuous on (a, b) and  f  is measurable. 

Since ( )a f x b   for all x in X and (X) > 0, 
X X X

ad f d bd       and so 

 ( ) ( )
X

a X f d b X     and we have that 
X

a f d b  .  This is true if  a =−  or 

b =  since 
X X

f d f d    . 

Let 
X

f d =  . Take a support line ( ) ( )y x   = + − at ( , ( ))    with 

( ) ( )    − +
   .   Hence ( ) ( ) ( )x x     + − , for all x in (a, b).  It follows that 
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                   ( ( )) ( ) ( ( ) )f x f x     + −  for all x in X. 

Therefore, 

              ( ) ( )( ) ( )
X X X X X

f d d f d d f d             + − = =     . 

Corollary 3.  Suppose f  is convex on (a, b).  Suppose :[ , ] ( , )g c d a b→  is Lebesgue 

integrable.  Then   

                                    
1

( ( ))

d

d
c

c

g
f f g x dx

d c d c

 
  
 − − 
 


 .   -------------------  (*) 

Proof.  The measure on [c, d] is given by the measure subspace of the Lebesgue measure on 

 and the measure is given by  , the restriction of the Lebesgue measure to the interval [c, 

d].   For any Lebesgue measurable subset U in [c, d], let 
1 1

( ) ( ) ( )
([ , ])

U U U
c d d c

  


= =
−

.  

Then  is a measure on the  algebra of Lebesuge measurable subsets of [c, d].  (Note that for 

the Lebesgue measure space ( , ℳ ,  ), where ℳ is the  algebra of Lebesgue measurable 

subsets of , : ℳ → [0, ∞] is the Lebesgue measure on , ([c, d], ℳ[c,d] ,  ), where 

ℳ[c,d] = { E  ℳ : E  [c, d]} = { E  [c, d]:  E ℳ }  and  : ℳ[c,d] → [0, ∞] is the 

restriction of  to ℳ[c,d] , is a measure space.) 

Then ([ , ]) 1c d = and ([c, d], ℳ[c,d] , ) is a probability space.  Since g is Lebesgue 

integrable, i.e., g is  integrable and so is  integrable.   By Theorem 2, 

                                   ( )
[ , ] [ , ]

( ( ))
c d c d

f gd f g x d   . 

But ( )
[ , ] [ , ]

1 1 d

c d c d c
f gd f gd f g

d c d c
 

   
= =   

− −   
    

 and  
[ , ]

1
( ( )) ( ( ))

d

c d c
f g x d f g x dx

d c
 =

−   and so (*) follows. 

 

Similarly we have 

 

Corollary 4.   

Let (X, ℳ ,  ) be a  measure space with  a positive measure and 0 < (X) < ∞.  Suppose  

: ( , )f X a b→ , with a b−    , is in 1( )L   and   is a convex function on (a, b).  

Then  
1 1

( ) ( )X X
f d f d

X X
   

 

 
 

 
  . 

 

We can extend the idea of convex function to real vector space. 

The Euclidean norm ||  || for n  is convex since for any x , y in n  and 0 1  ,    

                       (1 ) (1 )x y x y   − +  − + . 
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In particular, the modulus function on  is convex on . 

 

Proposition 5.  If   : ( , )g a b →  is twice differentiable on (a, b) and ( ) 0g x   for all x in 

(a, b), or if  g   is increasing on (a, b), then g is convex on (a, b).   

Proof.  ( ) 0g x   for all x in (a, b) implies that  : ( , )g a b →  is increasing on (a, b). 

For  a x z y b    , by the Mean Value Theorem,
( ) ( )

( , ) ( )
g x g z

p x z g c
x z

−
= =

−
 for some c 

such that x < c < z and also by the Mean Value Theorem, 
( ) ( )

( , ) ( )
g y g z

p y z g d
y z

−
= =

−
,  for 

some d such that  z < d < y.  Thus, since c < d, 

( ) ( ) ( ) ( )
( , ) ( ) ( ) ( , )

g x g z g y g z
p x z g c g d p y z

x z y z

− −
 = =  = =

− −
.  Therefore, by condition (2) of 

Definition 1, g is convex on (a, b).   

Remark.  The graph of a differentiable function on an open interval (a, b) is said to be 

concave upward if its derivative is increasing on (a, b).  Proposition 5 implies that such a 

function is convex on (a, b). 

 

Definition 6.  : ( , )f a b →  is said to be strictly convex on (a, b) if  

 

 (1)             , ( , ) and x y a b x y   , for 0 1  , ((1 ) ) (1 ) ( ) ( )f x y f x f y   − +  − + ,     

or equivalently, 

(2)         for  a x z y b     ,  the chord function               

                     
( ) ( ) ( ) ( )

( , ) ( , ) ( , )
f x f z f y f z

p x z p z y p y z
x z y z

− −
=  = =

− −
 . 

Proposition 7.  If   : ( , )g a b →   is twice differentiable on (a, b) and ( ) 0g x   for all x in 

(a, b),  or if  g   is strictly increasing on (a, b), then  g  is strictly convex on (a, b).   

Proof.  The proof is similar to the proof of Proposition 5 with inequality replaced by strict 

inequality.  

The Arithmetic-Geometric Inequality 

Let : →  be defined by ( ) xx e = .  Then  ( ) 0xx e =    and so  is (strictly) convex 

on  . 
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Suppose (X, ℳ ,  ) is a probability space (i.e., a measure space with  (X) = 1) and  f  is in 

1( )L  .  Then by Jensen’s inequality (Theorem 2), ( )exp exp
X X

f d f d   . 

Take  {1,2, , }X n= , n  > 1, ℳ = power set of X  and 
1

({ })i
n

 =  for 1 ≤ i ≤ n  and   f  a real 

valued function on X such that ( ) if i x=  for 1 ≤ i ≤ n . Then (X, ℳ ,  ) is a probability space  

and any function  f  on X is integrable with respect to .  ( )1 2

1
n

X
f d x x x

n
 = + + + and

( )1 2
1

exp nxx x

X
f d e e e

n
 = + + + .  Therefore, 

                               
( )

( )
1 2

1 2

1
1n

n
x x x

xx xne e e e
n

+ + +

 + + + . 

Letting ix

iy e= , we get the Arithmetic-Geometric Inequality, 

                        ( ) ( )
1

1 2 1 2

1
n

n ny y y y y y
n

  + + + . 

 

2.  Inequalities in function spaces. 

In preparation of presenting the Lp space as a normed linear space, where the triangle 

inequality is required for a norm, we discuss here the pertinent inequalities that may be used 

or referred to.  

Definition 8.   If  1 p    ,  1 q    and 
1 1

1
p q
+ =  , then p and q are called conjugate 

indices. 

Generalized Arithmetic-Geometric Inequality 

Let : →  be defined by ( ) xx e =  .  Then  is convex on .   Let X = {1,2}, 

1
({1})

p
 =  , 

1
({2})

q
 = , ℳ = power set of X.  Then (X, ℳ ,  ) is a probability space and 

any real-valued function  f  on X is integrable with respect to .  Therefore, by Theorem 2, 

                            ( )
X X

f d f d     . 

Take  :f X →  , let 1 2(1) and (2)x f x f= = . Then  1 2

1 1

X
f d x x

p q
 = +  and 

1 2
1 1

exp x x

X
f d e e

p q
 = + .  Therefore, 
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1 2

1 2

1 1
1 1x x

x xp qe e e
p q

+

 + . 

Thus letting ix

iy e= , i =1, 2, we have the generalized arithmetic-geometric inequality 

                                    

1 1

1 2 1 2

1 1p qy y y y
p q

  + . 

We denote the extended real numbers [ , ]−  by . 

Definition 9.  Let p ≥ 1 and ( )pL  = { f ;  f : X →  is measurable, (X, ℳ ,  )  any measure 

space and 
p

X
f d   }.   For ( )pf L  , define ( )

1
pp

p X
f f d=   . 

Theorem 10.  Let p and q be conjugate indices and 1 < p < ∞.  Suppose (X, ℳ ,  ) a 

measure space.  Let  f , g :X → be measurable.  Then we have: 

(a) Hölders Inequality.    
1 p q

f g f g  . 

(b) Minkowski Inequality.   
p p p

f g f g+  + . 

(c) For 1  k < ∞,  ( )kL   is a vector space and  
k

  is a norm on equivalence classes of 

almost everywhere equal measurable functions in ( )kL  .  

(d)  In particular, 2 ( )L   is an inner product space with ,
X

f g f g d=  . 

Proof. 

Part (a)   If  0
p

f =  or 0
q

g = , then 
p

f  = 0 or 0
q

g = almost everywhere with respect to 

.  Therefore, 0f g =  almost everywhere with respect to   and so (a) is trivially true if we 

follow the convention on multiplication in [0, ∞]:  0 0 0 = = , x x+ =+ =  for 

0x  .  If 0  and  
p p

f g =   or   and  
p p

g f  =  , then we have nothing to 

prove. 

Assume now that 0
p

f    and 0
q

g   .  Let  

p

f
F

f
=  and 

q

g
G

g
= .   

Apply the Generalised Arithmetic-Geometric Inequality to pF  and qG  to get         

                                         
1 1p qF G F G
p q

  +  . 
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Integrating we get: 

                    ( )
1 1 1 1

1p q

X X X
F G d F d G d

p q p q
    + = + =   ,    --------------------- (4)  

since 

( )
1

p p

p X X

p pX

p X

f d f d
F d

f df

 



= = =
 




 and 

( )
1

q q

q X X

q qX

q X

g d g d
G d

g dg

 



= = =
 




. 

But ( ) X

X
p q

f g d
F G d

f g





 =


  and it follows from (4) that 

                             
1 p qX

f g f g d f g =   . 

This proves part (a). 

Part (b) 
p p p

f g f g+  +  

If  0
p

f g+ = , then we have nothing to prove.   If    or  
p p

f g=  =  , then we too 

have nothing to prove. 

We now assume 0
p

f g+  ,    and  
p p

f g    . 

If    and  
p p

f g     , then   and   
p p

X X
f d g d    .  Since  

( )1

2 2

p

p pf g
f g

 + 
 + 

 
, on account of the convexity of the function pt  on (0, ∞), 

( ) ( )12  
p p pp

X X X
f g d f d g d  −+  +    . Therefore, as  f g f g+  +  , 

( )
pp

f g f g+  + , it follows that ( )
pp

X X
f g d f g d +  +    .  This means that 

if    and  
p p

f g     , then 
p

X
f g d+  and  

p
f g+   . 

So now we assume that  ,   and   0<
p p p

f g f g    +   . 

Observe that 
1 1 1 1p p p p p

f g f g f g f g f g f f g g f g
− − − −

+ = + +  + + = + + +  . 

Therefore,  

( ) 1 1p p p p

p X X X
f g f g d f f g d g f g d  

− −
+ = +  + + +    

    ( ) ( )
1 1

( 1) ( 1)q qp q p q

p pX X
f f g d g f g d 

− −
 + + +      by Hölders Inequality (part(a)). 
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  But  
1 1

1
p q
+ =   so that 

1 1 1
1

p

q p p

−
= − =   and ( 1)p q p− = .   Hence  

        ( ) ( )
1 1

( 1) ( 1)q qp q p q

p pX X
f f g d g f g d 

− −
+ + +   

      ( )( )
1p

pp

p p X
f g f g d

−

= + + . 

Therefore,  

    ( ) ( )( ) ( )( )
1

1
p

pp pp

p p p p p pX
f g f g f g d f g f g

−
−

+  + + = + + . 

Dividing by ( )
1p

p
f g

−

+ on both sides, we have 
p p p

f g f g+  + .  This proves part (b) 

Part ( c ). ( )kL   is a vector space for k ≥ 1. 

f ,  g   ( )kL      | f | , | g | and | f + g| are measurable and ,
k k

f g  .  

Suppose 1 < k < ∞.  Then by Minkowski inequality (part b) 

k kk k k
f g f g f g+  + = +   .  Note that f g f g+  +   and it follows that 

( )
kk

X X
f g d f g d +  +  .  Hence              

          ( ) ( )( )
11
kk kk

k k kkX X
f g f g d f g d f g f g + = +  + = +  +    . 

Therefore, f + g  ( )kL  . 

If k = 1, for f , g   1( )L  , by the triangle inequality, f g f g+  + , 

                   
1 1 1X X X

f g f g d f d g d f g  + = +  + = +    . 

Hence, f + g  1( )L  . 

If  , then plainly  
k k

f f =   and so  f   ( )kL  .  Thus ( )kL   is a vector 

space for k ≥ 1.    

We note that (1) 0
k

f   , (2)  0 0 0
k

k X
f f d f=  =  =  almost everywhere on X .  

(3) 
k k

f f = and 
k k kk

f g f g f g+  +  + .   Hence 
k

  is a norm on 

equivalence classes of almost everywhere equal measurable functions in ( )kL  .  
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Part (d).  In 2 ( )L  , ( ) ( )
1 1
2 22

2 X X
f f d f f d = =  .  If we define the inner product on 

2 ( )L   by ,
X

f g f g d=  , then  
1
2

2
,f f f= .  Note that 

1 2 21
,

X X
f g f g d f g d f g f g f g =  =  =      by Hölders Inequality.  

Observe that , ,
X X X

g f g f d f g d f gd f g  = = = =   .  It is then easily seen that 

2 ( )L   is an inner product space.  

 

Remark.   

When thought of as a normed linear space, the function space ( )pL  consists of equivalence   

classes of almost everywhere equal measurable functions.  In practice in most of our 

argument we merely proceed by taking a representative of an equivalence class without 

explicitly mentioning the class it represents. 

 

3.  Lp  Spaces,  L∞  Space 

The first result that we present here is that the equivalence classes of almost everywhere 

equal functions of  ( )pL  , with the metric induced by its norm is a Banach space.  

For a normed linear space V with the norm  , the metric d induced by the norm on V is 

defined by ( , )d x y x y= − .  Then it is easily seen that for all x, y and z in V, 

(1)   ( , ) 0d x y  , 

(2)  ( , ) 0d x y x y=  = , 

(3)  ( , ) ( , )d x y d y x= , 

(4)  Triangle inequality, ( , ) ( , ) ( , )d x y d x z d z y + .  

Recall that a set M with a metric function :d M M → is called a metric space if the 

function d satisfies the properties (1) to (4) above.  An open ball of radius r > 0 and centred at 

x in M is the set  ( ) : ( , )rB x y M d y x r=   .  A sequence ( )nx in M is convergent in M, if 

there is a point x in M such that for any  > 0, there is an integer N such that  

                         ( )nn N x B x   , i.e., ( , )nn N d x x    .  

A sequence ( )nx in M is said to be Cauchy, if for any  > 0, there is an integer N such that 

, ( , )n mn m N d x x    .   Plainly any convergent sequence is a Cauchy sequence.  But not 
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all Cauchy sequence is convergent. A metric space (M, d) is complete if every Cauchy 

sequence in (M, d) converges to a point in M.  

For a normed linear space V, we can consider V as a metric space with the metric induced by 

the norm on V.  If the normed linear space with the metric induced by its norm is complete as 

a metric space, then we say the normed linear space is a Banach space.  It is to be noted that 

this definition is dependent on the norm specified on V.  As a topological space, V has the 

topology given by the open balls of V.   In general, for a metric space (M, d ), the induced 

metric topology Td on (M, d ) is generated by the family of open sets, i.e., open balls and 

arbitrary union of open balls in (M, d ).  Hence different norms on the linear space may give 

rise to different metric spaces with different topologies induced by the respective induced 

metric.   

If the norm of a Banach space V arises from an inner product, then it is called a Hilbert space.    

More precisely, an inner product on a (real or complex) linear space V is a scalar valued 

function on V V  , whose value on (x, y) in V V  is denoted by ,x y and the function 

satisfies the following properties:   

(1) , 0; , 0 0x x x x x =  = ; 

(2) , ,x y y x= , the complex conjugate of ,y x ; 

(3) , , ,x y z x z y z+ = + ; 

(4) , ,x y x y = . 

An inner product gives rise to an associated norm    on V defined by ,x x x= .  That 

this is a norm is a consequence of the (Schwarz Inequality) for inner product: 

, , ,x y x x y y x y = .    For instance, 

( )
22 2 2 2 2

, 2Real part , 2x y x y x y x y x y x y x y x y+ = + + = + +  + + = +  

and the triangle inequality follows.  

Hence, we can consider a linear space with an inner product as a normed linear space with the 

associated norm defined above.  If the inner product space, considered as a normed linear 

space with the associated norm, is a Banach space, then it is called a Hilbert space. 

Now the equivalence classes of almost everywhere equal measurable functions in ( )pL   

under the norm ( )
1
pp

p X
f f d=  for  f  a representative of [ f ], the equivalence class  

which  f  belongs, is a normed linear space and the same collection of  equivalence classes 

with the induced metric is a metric space.  By abuse of notation we simply say ( )pL  is a 
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Banach space if the equivalence classes of almost everywhere equal measurable functions in  

( )pL   is a complete metric space under the metric induced by the norm.    

Theorem 11.   For 1 ≤ p < ∞,  ( )pL   is a Banach space.  In particular, 2 ( )L   is a Hilbert 

space. 

Proof. 

We shall show that any Cauchy sequence ( )nf  in ( )pL  has a subsequence that converges 

pointwise almost everywhere to a function  f  in ( )pL  . 

(This subsequence will be an “effective” Cauchy sequence.  We shall find integers 

1 2n n    such that 
1

1

2i in n ip
f f

+
−   . ) 

Since ( )nf  is a Cauchy sequence, there exists an integer n1 such that for all n ≥  n1 ,  

1 1

1

2
n n

p
f f−  .   Then there exists an integer n2  >  n1 , such that for all n ≥  n2 ,  

2 2

1

2
n n

p
f f−  , in particular,  

2 1 1

1

2
n n

p
f f−  .  Next there exists an integer n3  >  n2 , such 

that for all n ≥  n3 , 
3 3

1

2
n n

p
f f−   and  

3 2 2

1

2
n n

p
f f−  .  Inductively we find integers 

1 2n n    such that for all n ≥  ni , 
1

2in n ip
f f−   and  

1

1

2i in n ip
f f

+
−  .   

Define for each integer k ≥ 1, 
1

1
i i

k

k n n

i

g f f
+

=

= − . Then  
1

1
i i

k

k n n

i

g f f
+

=

= −  is measurable and  

1 1

1 1 1

1
1

2i i i i

k k k

k n n n n ip p
i i ip

g f f f f
+ +

= = =

= −  −      and so ( )p

kg L  . 

This means ( ) ( )
1 1

1
p pp p

k k
X X

g d g d =    , and so 1p

k
X

g d  .   It follows that 

1( )p

kg L  .   Note that ( )p

kg is an increasing sequence of non-negative functions. 

We also have that 
1

1
i ik n n

i

g f f
+



=

→ −  and so if we let 
1

1
i in n

i

g f f
+



=

= − then 
p p

kg g→ and pg  

is measurable.  (Note that we only assert that the limit exists and may be infinity.) 

Therefore, by Fatou’s Lemma, 

                  liminf liminf 1p p p

k k
X X Xk k

g d g d g d  
→ →

=     . 
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It follows that pg  is finite almost everywhere with respect to  and so g is finite almost 

everywhere with respect to .  Hence the series ( )
1

1
i in n

i

f f
+



=

−  converges pointwise 

absolutely almost everywhere with respect to .  That is to say there is a set M of   measure 

zero, such that  ( )
1

1

( ) ( )
i in n

i

f x f x
+



=

−  converges pointwise absolutely, for all x in X but outside 

M. 

Define   
( )

1 1

1

( ) ( ) ( )   \
( )

0   ,  

i in n n

i

f x f x f x x X M
f x

x M

+



=


+ − 

= 
 


 . 

Then  
( )

1 1

1

1

lim ( ) ( ) ( )   \
( )

0   ,  

i i

k

n n n
k

i

f x f x f x x X M
f x

x M

+

−

→
=

  
+ −   =   

 


 

                   
lim ( )  \

0   ,  

kn
k

f x x X M

x M

→


= 


 

Hence 
knf  converges pointwise to  f   almost everywhere with respect to . 

We shall show next that ( )pf L   and that  nf f→  in  ( )pL  . 

Since ( )nf  is a Cauchy sequence in ( )pL  , given  > 0, there exists an integer N such that 

for all n, m ≥ N,   

                                            n m p
f f −  . 

Fixed an n ≥ N.   Then 
i

p

n nf f−  converges pointwise almost everywhere with respect to , 

as i tends to ∞, to 
p

nf f− .  Therefore, by Fatou’s Lemma, 

            | | liminf | | liminf | |
k k

p p p p

n n n n n
X X Xk k

f f d f f d f f d   
→ →

− = −  −    . 

The last inequality holds since for kn N , ( )
1
p

k k

p

n n n n
p X

f f f f − = −  . 

This implies that  ( )
1

| |
pp

n np X
f f f f d − = −    and we conclude that for all n ≥ N,  

n p
f f −   and ( )p

nf f L −  .   Since ( )p

nf L  , ( ) ( )p

n nf f f f L = − +  .  This 
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means   nf f→  in  ( )pL  .  Thus, any Cauchy sequence ( )nf  in ( )pL  is convergent in 

( )pL   and so ( )pL   is a Banach space. 

Now 2 ( )L  is also a Banach space and the norm is given by an associated inner product (see 

Theorem 10 part (d)) and so it is a Hilbert space.  

Definition 12.  Let (X, ℳ ,  ) be a measure space.  Suppose :f X →  is a measurable 

function.  Then the essential supremum of  f  is defined by 

                 
, ( ) 0

esssup inf sup ( ) :
N X N

f f x x N
 =

=   .   

Equivalently, let ( )( ) 1: ( , ] 0 and inf ( )S f f X   −=   =  ,  

inf  ,  if 
esssup

   ,  if 

S S
f

S


= 

 =
 . 

Note that if S  , then either  inf ( ) inff X S     or inf inf ( )S f X= .  

It is not clear that the two definitions above are equivalent.  We elaborate the proof of this 

fact below.  

Lemma 13.  The two definitions in Definition 12 are equivalent. 

Proof. 

We show the equivalence of the two definitions for the case one of the definitions gives ∞. 

Suppose ( ) 1: ( , ] 0 and inf ( )S f f X   −=   =  = .   

Now either inf ( )f X =  or inf ( )f X   , 

If  inf ( )f X =  , then ( )f X =  and for any proper measurable subset N of X with 

( ) 0N = ,  sup ( ) :f x x N =  and so  
, ( ) 0

inf sup ( ) :
N X N

f x x N
 =

 = . 

Suppose inf ( )f X   and so S =  implies for any real number inf ( )f X  , 

( )1( , ] 0f −   .  It follows that for any measurable N X and ( ) 0N = , 1( , ]f N−    

and so  sup ( ) :f x x N   .  Hence  sup ( ) :f x x N = .  Therefore,  

 
, ( ) 0

inf sup ( ) :
N X N

f x x N
 =

 = .   Note that if inf ( )f X−    , as ( )1( , ] 0f −   for 

inf ( )f X  , ( )1(inf ( ), ] 0f f X −   . 
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Conversely, suppose  
, ( ) 0

inf sup ( ) :
N X N

f x x N
 =

 = , then  sup ( ) :f x x N =  for any 

proper measurable subset N X and ( ) 0N = .  It follows that for any real inf ( )f X  ,

1( , ]f N−    for any proper subset N X and ( ) 0N =  for if  1( , ]f N−   , then 

 sup ( ) :f x x N    contradicting  sup ( ) :f x x N = .  Hence ( )1( , ] 0f −    for 

any real inf ( )f X   and so  

                           ( ) 1: ( , ] 0 and inf ( )S f f X   −=   =  = .   

Case S  . 

Then either inf ( ) inff X S     or inf inf ( )S f X= . 

Case S   and inf inf ( )S f X=  

When S   and inf inf ( )S f X= , we discuss the two possibilities according to (1) 

inf ( ) ( )f X f X  or  (2) inf ( ) ( )f X f X .  

Note that if  S   and inf inf ( )S f X= , then ( )( )1 ( , ] 0f −  = for any 

inf ( )f X  .   

(1)  S  , inf inf ( )S f X=  and inf ( ) ( )f X f X .  Then either inf ( )f X = −  or  

inf ( )f X−    . 

Case S  , inf inf ( )S f X= , inf ( ) ( )f X f X and  inf ( )f X = − . 

     For any  inf ( )f X  = − ,  ( )1 ( , ]f X−    , ( )( )1 ( , ] 0f −  =    

and   1inf ( ) sup ( ) : ( , ]f X f x x f  −     

and so  
, ( ) 0

inf sup ( ) : inf ( ) inf
N X N

f x x N f X S
 =

 = = .   

Case S  , inf inf ( )S f X= , inf ( ) ( )f X f X and  inf ( )f X−    . 

For any inf ( )f X  ,  ( )1 ( , ]f X−    , ( )( )1 ( , ] 0f −  =  and so    

 1inf ( ) sup ( ) : ( , ]f X f x x f  −    .   Taking ( )( )1 ( , ]N f −=  , 

 sup ( ) :f x x N   .  Hence  
, ( ) 0

inf sup ( ) :
N X N

f x x N



 =

   for any 

inf ( )f X  .  Therefore,   
, ( ) 0

inf sup ( ) : inf ( ) inf
N X N

f x x N f X S
 =

 = = . 
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Moreover, for integer n ≥ 1, 1 1
inf ( ) , 0f f X

n
 −  

+  = 
  

so that 

( )( )1 1

1

1
(inf ( ), ] inf ( ) ,

n

f f X f f X
n

 


− −

=

   
 = +   

   
  

                                              1 1
lim inf ( ) , 0
n

f f X
n

 −

→

   
= +  =  

   
 

and so inf infS f S=  . 

(2) Case  S  , inf inf ( )S f X= , inf ( ) ( )f X f X  

If inf ( )f X  − , then 1 1
inf ( ) , 0f f X

n
 −  

+  = 
  

for any integer n ≥ 1.      

           Therefore, ( )( )1 1

1

1
( ) (inf ( ), ] inf ( ) ,

n

X f f X f f X
n

  


− −

=

   
=  = +   

   
 

                                                     1 1
lim inf ( ) , 0
n

f f X
n

 −

→

   
= +  =  

   
 

and so inf inf ( )S f X S=  . 

Note that for any integer n ≥ 1,  1 1
inf ( ) , 0f f X

n
 −   

+  =  
   

, so taking 

1 1
inf ( ) ,N f f X

n

−   
= +  

  
,   

1
sup ( ) : inf ( )f x x N f X

n
  + .  It follows 

that  
, ( ) 0

inf sup ( ) : inf ( )
N X N

f x x N f X
 =

  and so

 
, ( ) 0

inf sup ( ) : inf ( ) inf
N X N

f x x N f X S
 =

 = = . 

If inf ( )f X = − , then 

            ( )( ) ( ( )1 1

1

( ) (inf ( ), ] ,
n

X f f X f n  


− −

=

 
=  = −  

 
 

                     ( ( )( )1lim , 0
n

f n −

→
= −  = . 
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Observe that for each integer n ≥ 1,  ( ( )1 ,f n X− −   , ( ( )( )1 , 0f n − −  =

and so taking ( ( )1 ,N f n−= −  we have  sup ( ) :f x x N n  − .  It follows 

that   
, ( ) 0

inf sup ( ) : inf ( ) inf
N X N

f x x N f X S
 =

 = − = = . 

In both cases, we get  
, ( ) 0

inf sup ( ) : inf
N X N

f x x N S
 =

 = . 

In the case when S  , inf inf ( )S f X= and inf ( ) ( )f X f X , ( ) 0X = .  This can 

happen only if the measure space (X, ℳ ,  ) is trivial. 

Case S   and inf ( ) inff X S   . 

We claim that if  inf ( ) inff X S   , then inf S S =  .   We show this below.  

Let n be an integer ≥ 1.  Then by definition of inf S , there exists β  S such that  

1

n
    +  and ( )( )1 ( , ] 0f −  = . Since ( ) ( )1 11( , ] ( , ]

n
f f − −+    and 

( )1 1( , ]
n

f − +   is measurable,  ( )( )1 1( , ] 0
n

f − +  = .  Therefore, since 

( ) ( )1 1 1

1

( , ] ( , ]
n

n

f f 


− −

=

 = +   and  ( ) ( )1 11 1
1

( , ] ( , ]
n n

f f − −

+
+   +  , 

( )( ) ( )( )1 1 1( , ] lim ( , ] 0
n

n
f f   − −

→
 = +  = .  Thus  inf S S =  . 

 

Take  1( , ]N f −=  .   Then ( ) 0N =  and  sup ( ) :f x x N   . 

It follows that  
, ( ) 0

inf sup ( ) :
N X N

f x x N



 =

   .  

Now given any  > 0, inf S  −  =  . This means ( )1( , ] 0f  − −   .     Hence, 

for any N X  and  ( ) 0N = ,  1( , ]f N − −    and so  sup ( ) :f x x N    − .  

Therefore,  
, ( ) 0

inf sup ( ) :
N X N

f x x N


 
 =

  − .   Since  > 0 is arbitrarily chosen, 

 
, ( ) 0

inf sup ( ) :
N X N

f x x N



 =

  .  We can now conclude that 

 
, ( ) 0

inf sup ( ) : inf
N X N

f x x N S



 =

 = = .   

This completes the proof of Lemma 13.  
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We say f  is essentially bounded if esssup f  . 

Note that if  f  is a non-negative function, then   

                   ( )( ) 1esssup inf : ( , ] 0 and inf ( ) 0f f f X   −=   =    ≥ 0. 

Let  ( ) : ; measurable and esssupL f X f f = →   .  I.e.,  ( )L   is the space of 

essentially bounded measurable functions and we define esssupf f

=  for f  in  ( )L  .   

We shall show that ( )L  is a linear space, i.e., a vector space over , and 

  is a norm on 

( )L  .   

Note that for ( )f L  , ( ) 1
0 inf : ( , ] 0 and inf 0f f f   

−


 =   =     .  

Here we regard f  as a measurable function of  X into [0, ∞].  Therefore, there exists a 

( )( ) 1
: ( , ] 0 and inf 0n f f    

−
   =   such that 

1
n f

n



 + .  That is ,

( )( )1
( , ] 0nf 

−
 = .  Let ( )

1
( , ]n nE f 

−
=  . Then ( ) 0nE = . 

This means 
1

( )f x f
n

 +   for all x in ( )
c

nE  .     If we let  
1

n

n

A E


=

=  , then  

                       ( )f x f


   for all x in  cA   and  ( ) 0A = . 

We can now conclude that for any g in ( )L  , there exists a set B of measure zero such that 

                       ( )g x g


   for all x in  cB   and  ( ) 0B = . 

Therefore, 

               ( ) ( ) ( ) ( )f x g x f x g x f g
 

+  +  +  

for all x in  ( )
c

A B   and  ( ) 0A B  = .  Hence, ( )
1

( , ]f g f g A B
−

 
+ +    and so 

( )( ) 1
: ( , ] 0, inff g f g f g   

−

 
+   +  =  + .  It follows then from the 

definition of infimum that 

                                       f g f g
  

+  +  .     -------------------------   (1) 

Therefore, ( )f g L +  . 
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Take any ( )f L   and    0.  There exists a set N of measure zero such that  

                                  ( )f x f


   for all x in  
cN . 

Hence, ( )f x f 


  for all x in 
cN .  Therefore, f f 

 
  . This means 

( )f L  .  

Thus ( )L   is a linear space. 

If  0f

= , then there exists a set E of measure zero such that 

                       ( ) 0f x f


 =   for all x in  cE   and  ( ) 0E =  

and so  f  = 0 almost everywhere on X.   We have already shown that the triangle inequality 

(see (1)) holds.  Hence 

  is a norm on equivalence classes of almost everywhere equal 

measurable functions in ( )L  . 

Note that if (X, ℳ ,  ) is a measure space and :f X →  is measurable, then

esssup supf f .  Furthermore, if every non-empty measurable set in ℳ has positive  

measure and  f  is measurable, then esssup supf f= . 

Lemma 14.   Suppose X is a topological space. If : [0, )f X →   is continuous and (X, ℳ ,  

) is a measure space such that ℳ  contains all the Borel subsets of X  and any non-empty 

open subset of  X  has non-zero measure or nX = and (X, ℳ ,  ) is the Lebesgue measure 

on n , then esssup supf f= . 

Proof.  Suppose  : [0, )nf →   is continuous.  Note that inf 0f  .  

Suppose esssup f =  .  Then ( )( ) 1: ( , ] 0 and inf ( )S f f X   −=   =  = .    

This means for any real inf f  , ( )( )1 ( , ] 0f −    and so ( )1 ( , ]f −   .   Hence  f   

is  unbounded and so sup f =  . Conversely, suppose sup f =  .  Then the function  f   is 

not bounded above.  Therefore, for any real   ≥ inf f ,  ( )1 ( , ]f −    and since  f  is 

continuous ( )1 ( , ]f −  is open and non-empty and so ( )( )1 ( , ] 0f −    .  This means for 

any real    ≥ inf f , ( )( ) 1: ( , ] 0 and inf ( )S f f X    − =   =   and so  S =  . 

Thus esssup f =  . 
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Now suppose esssup f =   .  Plainly esssup supf f=   .  As S  ,

( )( )1 ( , ] 0f −  = .   Since ( )1 ( , ]f −   is open and of measure zero it must be an empty set 

as the only open set of measure zero in ℳ  is the empty set.  Therefore, ( )f x   for all x in 

X.  This means sup f   and so sup f = . 

Theorem 15.  Suppose (X, ℳ ,  ) is a measure space. ( )L   is a Banach space.  More 

precisely, the equivalence classes of almost everywhere equal measurable functions on X, 

which are essentially bounded, is a Banach space with the metric induced by the essential sup 

norm. 

Proof:          

Let ( )nf  be a Cauchy sequence in ( )L  . 

Let { : ( ) }n n nA x X f x f


=    .  Then by definition of  
nf 

 , ( ) 0nA = . Let  

, { : ( ) ( ) }m n n m n mB x X f x f x f f


=  −  − .  Then we too have ,( ) 0m nB = . 

Let ,
1 1, 1

n m n
n m n

N A B
 

= = =

=   .  Then by countable additivity, ( ) 0N = .  Thus, if x is in the 

complement of N, then ( ) ( )n m n mf x f x f f


−  − .   Now given any  > 0, since ( )nf  is a 

Cauchy sequence in ( )L  , there exists an integer M such that n, m ≥ M implies that 

n mf f 


−  .  Therefore, for all x in cN , 

                  ( ) ( )n m n mf x f x f f 


−  −   for n, m ≥ M.  ----------------------------- (1) 

That is, ( )( )nf x is uniformly Cauchy on cN .  Moreover, for each x in cN  , ( )( )nf x is a 

Cauchy sequence of complex numbers and so it is convergent.   Now for all x in cN , n  ≥ M  

implies that 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )n n M M n M M n M M Mf x f x f x f x f x f x f x f f f f
  

= − +  − +  − +  + . 

Therefore, for all x in cN , ( ) lim ( )n M
n

f x f x f
→

=  + .  Hence f (x) is a bounded function 

on cN .  Now define  f (x) = 0 for x  N.  Since cN  is measurable,  f  is a measurable function 

on cN  since it is the pointwise limit of measurable functions on cN .  As N is measurable, 

and so the extension to X by defining f (x) = 0 for x  N, is measurable on X.  (Note that each 

nf   restricted to cN  is measurable in the measure subspace  ( cN , ℳ cN ,  ℳ cN  ) as   

ℳ cN  ℳ .  Therefore, the pointwise limit,  f  , is  ℳ cN  measurable and so is -

measurable.  Extending  f  to include N of  -measure zero, plainly makes  f  a  -measurable 

function on X as the preimage of  f  of  any open set is either the preimage of  the restriction 
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of  f  to cN  or the union of this preimage with the -measurable set N, if 0 belongs to the 

open set.  (The preimage of any open set of the restriction of  f  to cN  is -measurable and so 

the preimage of any open set of the extended function is -measurable. )  Thus,  f  is 

measurable and esssup Mf f f
 
=  +  . This means  f  ( )L  .  Observe that from 

(1) by letting m tend to infinity, for n  ≥ M , ( ) ( )nf x f x −   for all x in cN .  Therefore, 

 sup ( ) ( ) :nf x f x x N −   and as ( ) 0N = , it follows that nf f 


−   . Hence 

nf f→   in ( )L  .  It follows that every Cauchy sequence in ( )L   is convergent and 

converges to a measurable function in ( )L   and so the equivalence classes of almost 

everywhere equal measurable functions in ( )L   with the induced metric is a Banach space. 

 

4.  A Special Dense Subspace of  Lp(),  1 ≤  p < ∞, Approximation by 

Continuous function,  Lusin’s Theorem. 

If  (X, d ) is a metric space, then ( )ˆˆ ,X d  is a completion of (X, d), if ( )ˆˆ ,X d  is complete and 

there is an identification (isometry) of  (X, d) with some dense subset of ( )ˆˆ ,X d .  That is to 

say, there is an isometric map ˆ:i X X→  such that every element of X̂ is the limit of some 

sequence in ( )i X  or that ( )i X  is dense in X̂ .  An isometric map between two metric spaces 

is a distance or metric preserving map, i.e., if 1 1( , )X d  and 2 2( , )X d are metric spaces and 

1 2:T X X→  is a map, then T is an isometry or an isometric map, if for all x and y in X1 , 

( ) ( )2 1( ), ( ) ,d T x T y d x y= . Observe that any isometric map is injective for if ( ) ( )T x T y= , 

then ( ) ( )1 2, ( ), ( ) 0d x y d T x T y x y= =  = .   Note that every metric space has a completion.  

The completion ( )ˆˆ ,X d  is unique up to isometric isomorphism, a bijective isometry.  For 

linear metric space (X, d), the completion ( )ˆˆ ,X d  is also a linear space and the map 

ˆ:i X X→ should be a linear isometric map and the completion ( )ˆˆ ,X d  is unique up to linear 

isometric isomorphism.  More precisely, suppose ( )1 1
ˆˆ ,X d  is also a completion of (X, d) and 

1 1
ˆ:i X X→  is an isometric embedding.  Then there exists an isometric isomorphism 

1
ˆ ˆ:K X X→  such that 1K i i=  . 

                  

 

 

                      K                                    

X̂                                       
1X̂  

                         

       i                           i1 

                       X 
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Take  ˆy X  .  Then there exists a sequence ( )nx  in X such that ( )ni x y→  in ( )ˆˆ ,X d .  Then 

( )( )ni x  is a Cauchy sequence in ( )ˆˆ ,X d . This implies ( )nx  is a Cauchy sequence in ( , )X d .  

Since  
1 1

ˆ:i X X→  is an isometry, ( )1( )ni x  is also a Cauchy sequence in ( )1 1
ˆˆ ,X d and so is 

convergent in ( )1 1
ˆˆ ,X d .   Define

1( ) lim ( )n
n

K y i x
→

= . 

We now show that K is independent of the choice of the sequence  ( )nx . 

Suppose ( )ny  is another sequence in X such that ( )ni y y→  in ( )ˆˆ ,X d .   Then 

( ) ( ) ( ) ( )1 1 1 1 1 1
ˆ ˆ ˆ( ), lim ( ) lim ( ), ( ) lim , lim ( ), ( )k n k n k n k n

n n n n
d i y i x d i y i x d y x d i y i x

→ → → →
= = =  

                                       ( ) ( )ˆ ˆ( ), lim ( ) ( ),k n k
n

d i y i x d i y y
→

= = . 

Therefore, ( ) ( )1 1 1
ˆ ˆlim ( ), lim ( ) lim ( ), 0k n k

k n k
d i y i x d i y y

→ → →
= =  

and hence 
1 1lim ( ) lim ( )n n

n n
i y i x

→ →
= . 

Plainly,  1( ) ( ( )) ( )K i x K i x i x= =  for all x in X. 

K is an isometry.   

( ) ( )1 1 1 1
ˆ ˆ( ), ( ) lim ( ), lim ( )k n

k n
d K x K y d i x i y

→ →
= , where ( )ni y y→  and ( )ki x x→   in ( )ˆˆ ,X d   

                            ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆlim ( ), lim ( ) lim ( ), lim ( ), ,k n k k
k n k k

d i x i y d i x y d i x y d x y
→ → → →

= = = = . 

K is plainly surjective.  Any y in ( )1 1
ˆˆ ,X d  is the limit of a Cauchy sequence in 1( )i X .  That is 

there is a sequence ( )ny in ( , )X d such that 1( )ni y y→ in ( )1 1
ˆˆ ,X d .  Then ( ( ))ni y  is a Cauchy 

sequence in ( )ˆˆ ,X d . Therefore, ( )ni y is convergent in ( )ˆˆ ,X d .  Let  lim ( )n
n

x i y
→

= .  Plainly, 

K(x) = y.  Hence K is a surjective isometry and so is an isometric isomorphism.  If ( , )X d is a 

vector space, then the completion is also a vector space and ˆ:i X X→  is linear. It follows 

that K is a linear isometric isomorphism. 

It is well known that every metric space has a completion that can be defined by equivalence 

classes of Cauchy sequences.  For some function spaces as described below their completions 

are naturally also function spaces.    
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A measurable complex function on a measure space is simple if it takes on only finite number 

of complex values.  

Proposition 16.  Suppose (X, ℳ ,  ) is a measure space.   Let 

 ( ) : ;  is a simple measurable function with : ( ) 0S s X s x s x= →    be endowed 

with ( )pL  norm, i.e., ( )
1
pp

p X
s s d=   .   Then ( )pS L   and is dense in ( )pL  in the 

( )pL  metric.   Hence the completion of ( , )
p

S   is ( )pL  . 

Remark. 

The collection of equivalence classes of almost everywhere equal measurable functions in 

( )pL  forms a normed linear space with the 
p

  norm.  The 
p

 norm induces a metric on this 

collection of equivalence classes.  By abuse of notation, we still denote this collection of 

equivalence classes by the same symbol, ( )pL   and consider it as a metric space with the 

metric topology.  When we say ( )pS L  , we mean as a set S is a subset of     

                          : ;  is measurable and 
p

f X f f→   

and now by taking for each s  S,  the equivalence class it belongs to in ( )pL  , S considered 

as a collection of equivalence classes in ( )pL  is a subset of  all the equivalence classes of 

almost everywhere equal measurable functions in ( )pL  and as a subset of the metric space 

( )pL   (equivalence classes), S (equivalence classes) is dense in ( )pL  (equivalence classes).  

For simplicity of argument, we simply use the same symbol for the function and the 

equivalence class it belongs to in the proof and just use the representative before passing to 

the equivalence class without mentioning this last step.   

Proof.  Obviously, S is a vector space and ( )pS L  .  We shall show, for any f  in ( )pL  , 

that given any  > 0, there exists a function s  S such that 
p

f s −   . 

Now for any f  in ( )pL  , write f  in its real and imaginary part, i.e., f  = u + i v , where u = 

real part of  f  and v  = imaginary part of  f .  Since  f  is measurable,  u and v are measurable.  

Therefore, sup{ ,0}u u+ =  and sup{ ,0}u u− = −  are non-negative and measurable and the same 

is true for  and v v+ − .  Hence f u u i v i v+ − + −= − + −  . 

So now we suppose f    ( )pL   and  f  ≥ 0, i.e.,  f  takes on only non-negative real values.  

Then there exists a sequence of measurable (non-negative) simple function, ( ):ns X +→ ,  

such that ( )ns  is an increasing sequence of functions and ns f→  pointwise.  Now as 
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0 ns f   ,  n p p
s f   and so ns S  for all integer n ≥ 1.  Moreover since 

( )
p p p

n nf s f s f− = −   and p

X
f d   , ( ) p

nf s−  is dominated by the integrable 

function  pf .  Therefore, by the Lebesgue Dominated Convergence Theorem,  

lim 0
p

n
Xn

f s d
→

− = .  Hence ( )
1

lim lim 0
pp

n n pXn n
f s d f s

→ →
− = − = .  This means that 

ns f→  in ( )pL  . 

It now follows that for f u u i v i v+ − + −= − + − , there exist sequences of measurable (non-

negative) simple functions, ( ) ( ) ( ) ( ), ,  and n n n nu u v v+ − + −  such that 

, ,  and n n n nu u u u v v v v+ + − − + + − −→ → → → in ( )pL  .  Therefore,  

                 n n n nu u i v i v u u i v i v f+ − + − + − + −− + − → − + − =   in  ( )pL  . 

Plainly,  n n n n ns u u i v i v+ − + −= − + −   is a measurable simple complex function and so ns S  and

ns f→  in  ( )pL  . 

Hence ( )pL   is the closure of S in the equivalence classes of almost everywhere equal 

measurable functions in the metric topology induced by the  Lp norm and so S is dense in 

( )pL  .  Now any Cauchy sequence ( )ns  in ( , )
p

S  is also a Cauchy sequence in ( )pL   and 

so as ( )pL  is complete, ( )ns converges to a function in ( )pL  .  It follows that the 

completion of S is ( )pL  .  (Here for simplicity we use the same symbol to denote 

equivalence classes as well as its underlying space when considering the equivalence classes 

as metric space.  More precisely, if L  p() denotes the equivalent classes of almost 

everywhere equal measurable functions in ( )pL  , then L  p() is a normed linear space with 

the 
p

  norm and is a metric space with the metric induced by the norm.  If S denotes the 

equivalence classes of almost everywhere equal measurable functions in ( , )
p

S  , then we 

may embed S as a subset of L  p() by simply assigning to each equivalence class in  S , the 

extended equivalence class in ( )pL  .  Thus in this way S is a subset of the metric space       

L  p() and its closure in L  p() is L  p() and so S is dense in  L  p().)  Note that for a 

complete metric space the completion of a dense subspace is the whole metric space itself.  

The above is just a simple verification of this fact.   

When X is a special metric space, for example, the familiar 
n
 with the Euclidean metric, 

what is a suitable useful dense subspace of ( )pL   other than the subspace S defined above? 

Note that 
n
 with the Euclidean metric is a topological space with the usual topology, it is 

locally compact and Hausdorff.  So, we now assume that X is a locally compact Hausdorff 

space.   
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The set of continuous function on X, if endowed with the ( )pL  norm, for some suitable 

measure space, (X, ℳ ,  ), where ℳ  is a suitable  algebra containing the Borel subsets of 

X  and  is some suitable positive measure on ℳ , is a normed linear space and the ( )pL   

norm gives rise to a metric on the equivalence classes of almost everywhere equal continuous 

functions.   

Definition 17.  Suppose Y is a topological space.  Let :f Y →  be a complex function.  

Then the support of  f  , denoted by supp  f , is the closure of  the set  : ( ) 0x Y f x  , i.e.,  

 support    = : ( ) 0f x Y f x   .  The collection of all continuous complex function on Y 

with compact support is denoted by ( )cC Y .  That is to say,  ( )cf C Y  if support of  f  is 

compact in Y.  Then observe that ( )cC Y is a vector space.   We deduce this as follows. If  f  

and g are in  ( )cC Y , then         

                     : ( )( ) 0   : ( ) 0 : ( ) 0x Y f g x x Y f x x Y g x +         

so that       : ( )( ) 0   : ( ) 0 : ( ) 0x Y f g x x Y f x x Y g x +        .  This means 

                 supp ( f + g )   supp f    supp g. 

As supp  f   and  supp g  are compact,  supp ( f + g ) is a closed subspace  of a compact space 

and so is compact.  Therefore, as f + g is also continuous on Y, ( )cf g C Y+  .  For any   0, 

β  0, supp (  f + β g )   supp f    supp g and so the same argument above shows that 

( )cf g C Y +  .  Thus ( )cC Y is a vector pace over  . 

Now we elaborate on the measure space (X, ℳ ,  ).  It should ideally satisfy the following 6 

properties: 

(1) ℳ  is a  algebra containing all the Borel subsets of X ; 

(2)    is a positive measure on ℳ satisfying: 

(3) For all compact K  X, ( )K   . 

(4) For all E  ℳ,  ( ) inf ( ) :  and  is openE V V E V =   (Outer Regularity).  

(5)  For all E  ℳ such that either E is open or ( )E    ,  

        ( ) sup ( ) :  and  is compactE K K E K =     (Inner Regularity). 

(6)   ℳ is -complete, i.e., for all N   ℳ such that (N)=0, for all E  N , E  ℳ .  
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Properties (1) to (6) is satisfied by the Lebesgue measure on .  

If (X, ℳ ,  ) is a measure space that satisfies properties (4) and (5) for all E ℳ without 

any condition, then it is said to be regular .   If (X,  B(X) ,  ) is a Borel measure space, i.e., 

B(X) is the  algebra generated by the Borel subsets of X and  a positive measure on B(X), 

and if it satisfies (3), (4) and (5), then it is called a Radon measure on X.  

Every measure space (X, ℳ ,  ) has a completion (X, ℳ* , * ), where ℳ* is complete and 

* : ℳ* → [0, ∞] is a positive measure whose restriction to ℳ  is  .  Thus the completion 

of a Radon measure (X,  B(X),  ) satisfies all six properties above.  

For  
nX = , the Lebesgue measure space (

n
, ℳ ,  ), where ℳ  consists of the Lebesgue 

measurable sets and  is the n-dimensional Lebesgue measure, satisfies all of the above six 

properties.  

The next result gives an approximation of measurable function on X by function in ( )cC X

and is the key or technical result needed in proving the density of a subspace of the function 

space to be introduced later. 

Theorem 18.  Lusin’s Theorem. 

Suppose X is a locally compact Hausdorff topological space and (X, ℳ ,  ) is a measure 

space satisfying properties (1) to (5) above. 

Suppose :f X →  is a measurable function such that  : ( ) 0x X f x A    and A  ℳ , 

where ( )A   .  Then for any  > 0, there exists ( )cg C X such that 

                                   : ( ) ( )x X g x f x    . 

Moreover, we may arrange it so that sup ( ) sup ( )
x X x X

g g x f x
 

=  .  

Before we prove this theorem, we shall recall some topological facts. 

 

5.   Topological Ideas  

Recall a topological space is a set X with a collection T  of subsets of X called open sets such 

that (i)  , X   T  and (ii) T   is closed under arbitrary union and finite intersection, i.e., if  S 

is any sub-collection of T   , then {U: U S  } T   and if  U1 , U2 ,  , Un   T  , then 
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1

n

i

i

U
=

  T  .  When we speak of a topological space, the topology or the collection T  of open 

sets is understood to be given.  A set is open if it belongs to T   .    We do not normally specify 

the topology T   .   A neighbourhood of a point x or a set E is a set N such that it contains an 

open set U containing the point x or set E respectively.  A set is closed if its complement is 

open.  A sequence  
1n n

x


=
 in a topological space is said to converge to a point x, written 

nx x→ , if for any open set U containing x, there exists an integer M such that   

nn M x U   .  A topological space is Hausdorff  if for any x  y, there are open 

neighbourhoods U and V of x and y respectively such that U V = .  If a topological space 

X is Hausdorff, the limit of a sequence in X is unique.  A point x0 is a limit point of a subset A 

in a topological space if every open set containing x0 also contains a point of A distinct from 

x0 . The closure S  of a subset S in a topological space X is the smallest closed subset 

containing S, more precisely, 

                   : ,   is closedS F F S F=   . 

Let S    be the set of limit points of S, then  S S S=  .  As a consequence of this, a point x   

S  if and only if every neighbourhood N of x has N S  .  Therefore, if there exists an 

open set U containing x such that U S = , then x S .  It is to be noted that if A and B are 

subsets of a topological space X and A B , then A B  and that if F is closed in X and 

S F , then  S F .  A subset E of a topological space X is said to be dense in X if E X= .  

A topological space X is said to be compact if for any open cover S  of X, i.e.,  S  consists  of a 

collection of open sets in X such that { U  S } = X, there exists a finite subcover 

 1 2, , , nU U U   S  such that 1 2 nU U U X   = .  A subset A of a topological space (X, 

T    ) inherits the topology from X called the subspace topology or relative topology T  A = { 

UA : U  T   }.  A subset of a topological space is said to be compact if it is compact with 

the relative topology.  A subset K in 
n
 is compact if and only if it is closed and bounded 

(Generalized Heine-Borel Theorem).  A map  f : (X1 , T   1 ) →(X2 , T   2 ) between two 

topological spaces is said to be continuous if for any open set U in X2, i.e., U  T   2, 
1( )f U−  

is open in X1 or 
1( )f U−

 T   1.  The continuous image of a compact set is compact.  The 

usual or metric topology on a metric space (M, d), is the induced topology Td on (M, d ) 

generated by the family of open balls, i.e., open balls and arbitrary union of open balls in (M, 

d ).  In a metric space (M, d ) the limit point of a subset S in M is precisely the limit of a 

sequence of distinct points in S.  Therefore, if ( )ˆˆ ,X d  is a completion of (X, d) and ˆ:i X X→  

is the isometric embedding of X, then the closure ( )i X of  ( )i X in X̂  is X̂ or equivalently 

( )i X is dense in X̂ .   



34 
 

 (1)  A topological space Y is said to be locally compact if each point y in Y has a compact 

neighbourhood.  That is to say, there exists a compact subspace K of X and an open set such 

that y V K  .   A subset E Y  is said to be relatively compact if its closure E  is 

compact.   

(2)  A compact subspace of a Hausdroff space Y  is closed in Y.  

(3)  A closed subset of a compact set is compact.  

(4)  Therefore, for a Hausdorff space Y, Y is locally compact if for each point y in Y, there 

exists an open set V such that y V  and the closure V  is compact.        

(5)  For a Hausdorff space Y, if  K  is a collection of compact sets in Y such that K = , 

then some finite intersection also has empty intersection.  

Proof. 

Since Y is Hausdorff, each K  is closed in Y.  Therefore, the complement 
cK  of K is open 

in Y.  Choose a member in  K , say 1K .  Then since 
1

1

K K


 = , 

( )1
1 1

c
cK K K 

  

 =  .  Therefore,  : 1cK    is an open cover for 1K .   As 1K  is 

compact, it has a finite subcover say  
1 2

, , ,
n

c c cK K K    and 

 
1 21

1
n j

c
n

c c c

j

K K K K K   
=

 
    =  

 
.  This means 1

1
j

n

j

K K
=

 = . 

(6)  For a Hausdorff space Y, we say Y is regular if  for every closed set A in Y and x A , 

they have disjoint neighbourhoods, i.e., there exists open set N A  and open set V , x V  

such that N V = .  More precisely Y is regular Hausdorff or satisfies the T3 separation 

axiom.   

(7)  For a regular Hausdorff space Y, for any y Y  and any neighbourhood N of y, there 

exists an open neighbourhood V of y such that y V V N   . 

Proof.  

Let y Y and N be an open neighbourhood of y.  Then the complement of N, cN  is closed in 

Y and 
cy N .  Since Y is regular Hausdorff, there exist open sets V and U in Y such that 

y V  , cN U  and  V U =  .  Therefore, cV U  , which is closed in Y.  Hence 

cV U N  . It follows that y V V N   . 

(8)  A Compact Hausdorff space is regular. 
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Proof. 

Suppose Y is a compact Hausdorff topological space. 

Take any closed set A in Y and x A .  Then A is compact and it follows that there exists open 

sets N and V such that  N A , x V  and N V = .  Therefore, Y is regular. 

(9)  For a Hausdorff space Y, Y is locally compact if and only if for each point y  Y and for 

any neighbourhood N of y, there exists a neighbourhood V of y such that  V  is compact and 

V N . 

Proof.  ()  This is obvious.  For any y  Y , take any neighbourhood N of y.  Just take 

K V=  . 

() Take any y  Y and any neighbourhood N of y.   Since Y is locally compact, there exists 

a compact subspace K of X and an open set such that y V K  .  Since Y is Hausdorff , K is 

closed.  Therefore, V K  and K is compact and so by (3), V  is compact. In particular, V  is 

Hausdorff.  Therefore, by (8) V  is a regular topological space with the relative topology. As 

N is a neighbourhood of y, there exists an open set U in Y such that y U N  .  Now U V   

is an open set in V  with the relative topology.  This means U V is a neighbourhood of y in 

V  with the relative topology.  Therefore, by (7), there exists a neighbourhood W of y open in 

V with the relative topology, such that  closure of  in y W W V U V     . 

Since W is relatively open in V , there exists an open set D in Y such that W D V=  .  Let 

E D V=  .  Then E is open and E W  and E V and so E W V  . As 

closure of  in W V  is W V we have y E E U V N     .  Moreover E  is compact. 

(10)  Suppose Y is a locally compact Hausdorff topological space.  Suppose U is open in Y 

and K is a compact subset such that K U .  Then there is a relatively compact open set, i.e., 

an open set V where V  is compact, such that K V V U   . 

Proof.  

Suppose K is compact, K U  and U is open in Y.  For each point y K , y has a relatively 

compact open neighbourhood, yV  .  Then the collection  :yV y Y  is an open covering for 

K.  As K is compact a finite number of these open sets say,  
1 2
, , ,

ny y yV V V , cover K.  Let 

1 2 ny y yG V V V=    . Then G is open, K G   and  G   is compact. 

If U is all of Y, then take V = G and K V V U   . 

Now assume U is not all of Y. 
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Now for y U  and hence y K and as K is compact and Y is Hausdorff, there exists open 

neighbourhood Vy  of  K such that yK V  and open set yE  such that yy E  and  

y yE V = .   As y yE V = , yy V  . 

Then the collection  :c c

yU G V y U    is a collection of compact sets as each 

c

yU G V   is compact for  G  is compact and 
c

yU V  is closed (see (3)).  Since 

 : c c

yV y U U  =  we have that  :c c

yU G V y U   = .  Therefore by (5) a 

finite intersection of these compact sets is also empty.  That is there exists 

 1 2, , , c

ny y y U  such that 
1

i

n
c

y
i

U G V
=

  = . 

Let 
1 2 ny y yV G V V V=     . Then K V  and

1 2 1 2n ny y y y y yV G V V V G V V V=           .  Thus V  is a closed subset of  G , a 

compact set and so it is compact.    

As  ( )
1 2

1
i n

n
c c

y y y y
i

U G V G V V V U
=

  =      = , 
1 2 ny y yG V V V U     . It 

follows that K V V U   . 

(11) A locally compact Hausdorff space Y is regular. 

Proof.  Take a closed set A in Y .  Take any x not in A.  Then cx A  . Now  cU A=  is open 

and so is a neighbourhood of x.  Then by (9) there exists a neighbourhood V of x such that  V  

is compact and V U .  Then ( )
c

V  is open and ( )
c

cV U A = .  Thus ( )
c

V is an open 

neighbourhood of A, V is a neighbourhood of x and ( )
c

V V = .  Hence Y is regular. 

(12) Open subset of a locally compact Hausdorff space is locally compact and Hausdorff; 

closed subset of a locally compact Hausdorff space is locally compact and Hausdorff. 

Proof. 

Suppose X is locally compact.  Then any subset A with the subspace topology is Hausdorff. 

For take any x and y in A with x  y.  Then since X is Hausdorff, there are subsets U and V  

open in X such that x U , y V  and U V = .  Suppose F is a closed subset of X.   Take 

x F .  Then there exists a compact subspace K of X and an open set V such that x V K  . 

Since X is Hausdorff, K is closed and as F is closed, F K is closed in X and is a subset of  

the Compact set K , it follows that F K  is compact.  Moreover K F V F   and V F  

is relatively open in F.  Hence F K  is a compact neighbourhood of  x F  in the relative 

topology.  This means that F with the subspace topology is locally compact.  It is of course 
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Hausdorff.  Suppose H is an open subset of X.   Take x H .  Then H is an open 

neighbourhood of x in X.  Then by (9), there exists a relatively compact open set V  such that 

x V  and V V H  .  As  V is compact and V H ,  V  is a compact neighbourhood of x 

in the subspace topology of H.   Hence H is locally compact.  As shown before, H is 

Hausdorff since X is. 

We can approximate a measurable function by using characteristic functions of measurable 

sets.  Characteristic function is not usually continuous but is nearly continuous, a fact that is 

very useful.  It is semi-continuous. Characteristic functions are, in some sense, building 

blocks of measurable functions. We now discuss some properties of semi-continuity and its 

relation with continuity.  

Lower and Upper Semi Continuous Functions  

Definition 19. 

Suppose X is a topological space.    

Then a function :  or f X →  is said to be lower semi-continuous (abbreviated l.s.c.) if 

 : ( )x f x   is open for all  .  The function  f   is said to be upper semi-continuous 

(abbreviated u.s.c.) if  : ( )x f x   is open for all  . 

We say :f X →  is continuous at x0  X if for all  > 0, there exist an open set 
0xU  

containing x0 such that for all 
0xx U , 0( ) ( )f x f x −  −   .   

:f X →  is lower semi-continuous at x0  X if for all  > 0, there exist an open set 
0xU  

containing x0 such that for all 
0xx U , 0( ) ( )f x f x−  − .   

:f X →  is upper semi-continuous at x0  X if for all  > 0, there exist an open set 
0xU  

containing x0 such that for all 
0xx U , 0( ) ( )f x f x −  .   

It is clear that a real valued function  f   is continuous at x0  X if and only if  f   is lower 

semi-continuous  at x0 and upper semi-continuous at x0. 

Proposition 20.   

(1) :f X →  is u.s.c. if and only if  f  is  u.s.c. at x for all x  X . 

(2)  :f X →  is l.s.c. if and only if  f  is  l.s.c. at x for all x  X . 

Proof.  It is clear that :f X →  is u.s.c. (l.s.c.) implies  f  is  u.s.c. (l.s.c)  at x for all x  X . 

Suppose  f  is  u.s.c. at x for all x  X . 
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Take any  .  Let   : ( )E x f x =  .  For each x in E, there exist an open set xU  

containing x such that for all xy U , ( ) ( )f y f x −  .  Take 
( )

0
2

f x


−
=   .  Then for all 

xy U , 
( )

( ) ( )
2

f x
f y f x


 

+
 + =  .  Therefore, xU  is an open neighbourhood of x 

and xU E .  Hence E is a neighbourhood of each of its points and so E is open.   Hence f  is  

u.s.c .    

Suppose  f  is  l.s.c. at x for all x  X . 

Take any  .  Let   : ( )E x f x =  .  For each x in E, there exist an open set xU  

containing x such that for all xy U , ( ) ( )f y f x −  − .  Take 
( )

0
2

f x 


−
=   .  Then for 

all xy U , 
( )

( ) ( )
2

f x
f y f x


 

+
 − =  .  Therefore, xU  is an open neighbourhood of x 

and xU E .  Hence E is a neighbourhood of each of its points and so E is open.   Therefore, 

f  is  l.s.c .    

Remark. 

:f X →  is continuous if and only if  f  is  both  l.s.c. and  u.s.c. 

The characteristic function A  is u.s.c if A is a closed set and is l.s.c. if A is an open set. 

 Proposition 21. 

(1) If  :f X →  is a collection of lower semi-continuous functions, then sup f


  is  

lower semi-continuous. 

(2)  If  :f X →  is a collection of upper semi-continuous functions, then inf f


  is  

upper semi-continuous. 

Proof.     

(1) Take any  .  Since each :f X →  is lower semi-continuous, the set 

 : ( )U x f x  =   is open in X.  

Observe that   : sup ( ) : ( )E x f x x f x U  
 

 
 

=  =  = 
 

 . 

Plainly, ( ) sup ( )f x f x 


     and so  U E   for each β .  Hence U E


 . 
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Now if  x E  , then sup ( )f x


  and so there exists   such that sup ( ) ( )f x f x 


  .  

Thus x U  .  Therefore, E U


  and so E U


= .  Since U   is open for each  β,  E is 

open in X.   This means  sup f


 is lower semi-continuous. 

(2)  Suppose each :f X →  is upper semi-continuous Take any  .  Since each 

:f X →  is upper semi-continuous, the set  : ( )V x f x  =   is open in X.  

  Observe that     : inf ( ) : ( )D x f x x f x V  
  

 =  =  =  . 

Plainly, ( ) inf ( )f x f x 


     and so  V D   for each β .  Hence V D


 . 

Now if  x D  , then inf ( )f x


  and so there exists   such that inf ( ) ( )f x f x 


  .  

Thus x V  .  Therefore, D V


  and it follows that D V


= .  Since V  is open for each  

β,  D is open in X.   This means  inf f


 is upper semi-continuous. 

We shall use the properties of some special complex function on a locally compact Hausdorff 

topological space to approximate a given function. 

To describe these properties, we introduce the ideas in the definitions that follow. 

Suppose X is a topological space and ( )cC X  is the vector space of all continuous complex 

functions with compact support. 

We write  K f   and say  f  dominates K  if 

(i) K is compact, 

(ii) ( )cf C X , 

(iii) 0 ≤  f  ≤ 1  and 

(iv) f (x) =1 for all x in K.  

We write f U  and say U dominates  f  if 

(i) U X   is open, 

(ii) ( )cf C X , 

(iii) 0 ≤  f  ≤ 1  and 

(iv) Support f   U . 

We write K f U  if K f  and f U  
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Lemma 22.  Urysohn’s Lemma 

Suppose X is a locally compact Hausdorff space, U X  is open, K is compact with K U .  

Then there exists ( )cf C X  such that K f U .    

Remark.  This means the characteristic functions K  and U satisfy  K Uf   . 

Proof.      

We shall make use of the rational number in [0, 1] to construct the Urysohn function  f . Take 

an enumeration : [0,1]r →  of the rational numbers, i.e., a bijective function of  onto [0, 

1] such that 1 (1) 0r r= =  and  2 (2) 1r r= = .  We denote the image ( )r k  by kr .   

Suppose K is compact, K U  and U is open.   

Let 
1 0rU U=  be the relatively open compact set as given by (10) in the section on topological 

ideas, as X is locally compact and Hausdorff, such that 

                                            0 0K U U U    ------------------   (1). 

Let 
2 1rU U=  be the relatively open compact set as given by (10) of topological ideas such 

that 

                                             1 1 0K U U U    ------------------- (2). 

We shall inductively define the relatively compact set 
kr

U . 

Suppose 
1 2
, , ,

nr r rU U U  have been chosen so that if i jr r  , j n  , then 
j j ir r rU U U  .  

Then arrange 1 2, , , nr r r  in increasing order.  Suppose in this sequence 1i n jr r r+  .  Then 

using  
j ir rU U , by (10) choose relatively compact open 

1nr
U

+
 such that  

                                       
1 1j n n ir r r rU U U U
+ +

   .   -----------------------------  (3) 

In this way we obtain a collection of relatively compact open sets  :  rational [0,1] rU r   

satisfying s rU U  whenever s > r , 1K U  and  0U U . 

Define a collection of functions  :  rational [0,1]rf r   by defining : [0,1]rf X →   by 

                    
 ,  if  

( )
0  ,  otherwise

r

r

r x U
f x


= 
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and a collection  :  rational [0,1]sg s   by defining : [0,1]sg X →   by 

                    
1 ,  if  

( )
  ,  otherwise

s
s

x U
g x

s

 
= 


  . 

Note that 
rr Uf r=  .  Since rU  is open for each rational [0,1]r  , rf  is lower semi-

continuous for each rational [0,1]r .  Observe that  : ( )sx g x X =  if  > 1, 

  ( ): ( )
c

s sx g x U = if  1s    and  : ( )sx g x  =  if s  .  Thus sg  is upper semi-

continuous for each rational [0,1]s . 

Therefore, by Proposition 21,  sup :  rational [0,1]r
r

f f r=  is lower semi-continuous and 

 inf :  rational [0,1]r
r

g g r=   is upper semi-continuous. 

We shall next show that f = g and so  f  is both lower and upper semi-continuous and so  f  is 

continuous. 

Firstly, we show that  f g  . 

Suppose on the contrary, there exists x in X such that ( ) ( )f x g x . Then by the definition of 

supremum, there exists r in [0,1]  such that ( ) ( )rf x g x . Next by the definition of 

infimum, there exists s in [0,1]  such that ( ) ( )r sf x g x .  This can only happen if sx U ,  

rx U   and r > s.    But r > s implies that r r s sU U U U    and so  sx U  and we have a 

contradiction.  This proves that f g . 

Next, we show that f g . 

Suppose on the contrary, there exists x in X such that ( ) ( )f x g x . Then by the density of the 

rational numbers we can find rational numbers r and s such that ( ) ( )f x s r g x   . 

Since ( )f x s , sx U   and since ( )g x r , rx U  .   As s < r, r r s sU U U U    and so 

sx U  and we arrived at a contradiction and so we have f g .  Hence  f  = g. 

Plainly 0 ≤  f  ≤ 1.  Now observe that 0rU U  for all r in [0,1] .  Therefore, 

0( ) 0f x x U     and it follows that supp f =   0: ( ) 0x f x U U     and  0U  is compact 

and so the support of  f  is compact.  Hence f U  . As rK U , ( ) 1f x =  for all x in K.  

Therefore,  K f  .  It follows that K f U . 
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5.  Proof of Lusin’s Theorem.  

For convenience, we state the theorem here. 

Suppose X is a locally compact Hausdorff topological space and (X, ℳ ,  ) is a measure 

space satisfying the following five properties: 

(1) ℳ is a  algebra containing all the Borel subsets of X. 

(2)    is a positive measure on ℳ satisfying: 

(3) For all compact K  X, ( )K   . 

(4) For all E  ℳ,  ( ) inf ( ) :  and  is openE V V E V =    (Outer Regularity). 

(5)  For all E  ℳ such that either E is open or ( )E    , 

      ( ) sup ( ) :  and  is compactE K K E K =   (Inner Regularity). 

Suppose :f X →  is a measurable function such that  : ( ) 0x X f x A    and A ℳ, 

where ( )A   .  Then for any  > 0, there exists ( )cg C X such that 

                                   : ( ) ( )x X g x f x    . 

Moreover, we may arrange it so that sup ( ) sup ( )
x X x X

g g x f x
 

=  .  

We prove first for the special case:  

(1)  A is compact and 0 1f   . 

Since  f  is non-negative and measurable, there exists an increasing sequence of measurable 

simple functions ( )ns  converging pointwise to  f  . 

We can construct the sequence ( )ns  as follows, in a similar way for any non-negative 

measurable function.  Then we shall specialize to a non-negative function whose values are 

strictly less than 1.  

For each integer n ≥ 1, divide the interval [0, n] into 2nn  sub-intervals of length 
1

2n
. 

Let 
1

,

1
,

2 2
n i n n

i i
E f −  −  

=  
  

 M  ,  1,2, , 2ni n=  , 
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         ( )1 [ , )nF f n−=   

and  
,

2

1

1

2

n

n i n

n

n E Fn
i

i
s n 

=

−
= +  . 

Since  f  is measurable, the sets ,n iE  and nF  are measurable. 

Note that , 1, 1, 1n i n j n jE E E+ + +=   , where 
1

1 1

2 2n n

j i
+

− −
=  or 2 1j i= − .   On the set ,n iE  ,  1( )ns x+  

takes on the value 
1

1 1

2 2n n

j i
+

− −
=  when x is in 1,n jE +  and  the value 

1

1

2 2n n

j i
+

−
  when x is in 

1, 1n jE + + .   Observe also that   

            ( ) ( )  )( )  )( )1 1 1 1

1[ , ) [ 1, ) , 1 , 1n nF f n f n f n n F f n n− − − −

+=  = +   + =  +  

and  )( )  1 1 1

1,, 1 : 2 1 to ( 1)2n n

n if n n E i n n− + +

++ = = + + . 

Thus on the set 1nF +  ,  1( )ns x+  takes on the value n +1 when x is in 1,n jE +  and on the set  

 )( )1 , 1f n n− + , 1( )ns x+ takes on values  n .  Therefore, 1n ns s+   . 

Since  ( )f x    , take an integer N such that N > f (x), then for all n ≥ N, 1( )ns x N+   and so 

the sequence is pointwise convergence.  Moreover, for each integer n > f (x), f (x) lies in 

1
,

2 2n n

i i− 


 
 for some  i  such that 1 2ni n   and so ( ) ( )ns x f x .   Furthermore,  

1
( ) ( )

2
n n

s x f x − . Hence lim ( ) ( )n
n

s x f x
→

=  . 

Let  1 1t s=  , 1n n nt s s −= −  for n ≥ 2. 

Then  
1 1

lim lim
n

n k k
n n

k k

f s t t


→ →
= =

= = =   . 

Now we specialize to the function  f  such that 0 1f   . 

For 0 1f  , we investigate nt  and approximate it by a continuous function nh   so that 

1

k

k

h


=

  converges uniformly. 
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First of all, note that nF = for all integer n ≥ 1.  For any integer n > 1, 

1

,

1
,

2 2
n i n n

i i
E f −  −  

= = 
  

  if  2 1 2n ni n+   . 

This means for 0 1f  , we partition the interval [0,1] into 2n
 sub-intervals each of length 

1

2n
. 

For n =1, 
1, 1,2

2

1 1

1

1 1

2 2iE E

i

i
t s  

=

−
= = =   since  1F = . 

For n ≥ 2,  

1

, 1,

( 1)22

1 1
1 1

1 1

2 2

nn

n i n i

nn

n n n E En n
i i

i i
t s s  

−

−

−

− −
= =

− −
= − = −   since nF = for all integer n ≥ 1. 

Note that 1, , , 1n i n j n jE E E− +=   where 
1

1 1

2 2n n

j i
−

− −
=  or 2 1j i= − . 

Therefore, for n ≥ 2,  

1 1

1, ,2 1 ,2

( 1)2 ( 1)2

1 1 1
1 1

1 1
( )

2 2

n n

n i n i n i

n n

n E E En n
i i

i i
s   

− −

− −

− −

− − −
= =

− −
= = +  . 

Hence, for n ≥ 2, 

1

, ,2 1 ,2

( 1)22

1 1
1 1

1 1
( )

2 2

nn

n i n i n i

nn

n n n E E En n
i i

i i
t s s   

−

−

−

− −
= =

− −
= − = − +   

   

1 11 1

,2 1 ,2 ,2 1 ,2

( 1)2 ( 1)22 2

1 1
1 1 1 1

2 2 2 1 1 1

2 2 2 2

n nn n

n i n i n i n i

n nn n

E E E En n n n
i i i i

i i i i
   

− −− −

− −

− −

− −
= = = =

− − − −
= + − −     

    

1 1 1

,2 ,2 ,2 1
1 1

( 1)2 2 2

1 ( 1)2 1 ( 1)2 1

1 2 1 2 2

2 2 2

n n n

n i n i n i
n n

n n n

E E En n n
i i n i n

i i
  

− − −

−
− −

−

= = − + = − +

− −
= + +    

    

1

, 2 ,

( 1)2 2

1 ( 1)2 1

1 1

2 2

n n

n i n i
n

n n

E En n
i i n

i
 

−−

= = − +

−
= +   

But 
1

,

1
,

2 2
n i n n

i i
E f −  −  

= = 
  

  if  2 1 2n ni n+    and as ( 1)2 1 2 1n nn− +  + , we have that 

      

1

,2

2

1

1

2

n

n in En
i

t 

−

=

=  for n ≥ 2. 
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Therefore, for n ≥ 2,  

1

,2

2

1

2

n

n i

n

n E

i

t 

−

=

= .  Note that 
1,212 Et = . 

If we let  

12

,2
1

n

n n i
i

T E

−

=

=   for integer n ≥ 1, then nT  is measurable and 2
n

n

n Tt = . 

Note that if ,2n iE   , then ,20 ( )n if E  for  11 2ni −   and so for all x in Tn , ( ) 0f x   . 

Therefore,  nT A  .  Since X is Hausdorff, A is closed.   Then by Property 10 (Topological 

Spaces), since X is locally compact and Hausdorff, there exists a relatively compact open set 

V such that  A V V X    and V  is compact.  Hence,  nT V . 

Since ( )A   , ( )nT   .  Thus, by the outer regularity of   (Property (4)), 

 ( ) inf ( ) :  and  is openn nT U U T U =  .  Hence given any   > 0, there is a measurable 

open set  nV   such that n nV T  and 
1

( ) ( )
2

n n n
V T


 

+
 +  .  Furthermore, we may choose 

nV V .  If nV  is not contained in V, we may replace nV  by nV V  and rename it as nV . 

By the inner regularity of  (Property (5)),  ( ) sup ( ) :  and  is compactn nT K K T K =  .  

Hence, there is a compact set  nK   such that n nK T  and 
1

( ) ( )
2

n n n
K T


 

+
 −  .  Thus, we 

have n n nK T V V   .   Now ( ) ( ) ( )n n n nV V K K  = − +  and so  

                   
1 1

( ) ( ) ( ) ( ) ( )
2 2 2

n n n n n nn n n
V K V K T T

  
    

+ +

 
− = −  + − − = 

 
.   --------- (1) 

By Urysohn’s Lemma, there exists  ( )n ch C X  such that n n nK h V .    

Let 
1

1

2
nn

n

g h


=

=  .    Since 
1 1

0
2 2

nn n
h   and 

1

1

2n
n



=

  , by the Weierstrass M-Test, 

1

1

2
nn

n

h


=

  is uniformly convergent.  As each nh  is continuous, g is continuous.  Since supp hn  

 Vn  V and 0nh  , supp g  V V  .  Since V  is compact, supp g is compact and so 

( )cg C X .  

Note that if  n nx V K −  , 
1

( ) ( )
2

n nn
h x t x= . This is because  2

n

n

n Tt = and for  n nx V K − , 

( ) 1 ( )
nT nx h x = = , if nx K  and ( ) 0 ( )

nT nx h x = =  if  ( )
c

nx V .   Therefore,  
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1

( ) ( )n

n

t x g x


=

=  except possibly for x in ( )
1

n n
n

V K


=

−  M  . 

Now ( ) ( )
1 1 1

1

2
n n n n n

n n n

V K V K   
 

= = =

 
−  −  = 

 
   and so 

1

( ) ( ) ( )n

n

g x t x f x


=

= =  except 

possibly for x in ( )
1

n n
n

V K


=

−  of measure <  .  I.e.,  : ( ) ( )x X g x f x    . 

This proves the case for A compact and 0 ≤  f  < 1. 

(2)  Suppose A is compact and  f  takes on non-negative real values and is bounded, say  by 

M.   That is, 0 ≤  f  < M.   Then applying (1) to 
1

f
M

 , we have that, for any  > 0, there exists 

( )ch C X such that 
1

: ( ) ( )x X h x f x
M

 
 

   
 

.  Then let g = M h. 

(3)  Suppose A is not compact and 0 ≤  f  < M.    

Since ( )A   , by the inner regularity of  ,  given any   > 0,  there exists compact K such 

that K A  , ( ) ( )
2

K A


  −  so that ( )
2

A K


 −  . 

Consider K f  .   Then K f  is measurable, 0 K f M  and   : ( ) 0Kx X f x K   ,  

where ( )K   .  Then by part (2) for any  > 0, there exists ( )cg C X such that 

                                   : ( ) ( )
2

Kx X g x f x


    . 

Let  : ( ) ( )KU x X g x f x=   .   Observe that ( ) ( )Kg x f x=  for x in cU  and  

( ) ( )Kf x f x=  for x in 
cK A .  Therefore, ( ) ( )g x f x=  for x in ( )c cU K A  .  Now  

            ( )( ) ( ) ( ) ( )
c c

c c c cU K A U K A U A K U A K  =   =   =  − . 

Therefore,    ( ): ( ) ( )x X g x f x U A K    −  and so 

                      ( ): ( ) ( ) ( )
2 2

x X g x f x U A K
 

      + −  + =  . 

(4)  Suppose f is not bounded and f  ≥ 0. 
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Let  : ( )nB x f x n=   .  Then 
1

n
n

B


=

= .   Note that nB A and since ( )A   , 

( )nB  .  Therefore, ( ) 0nB → .  Hence, given  > 0, there exists an integer N such that 

( )
2

nn N B


   . 

Take a fixed n such that n ≥ N.  Consider (1 )
nB f−  .   Then 0 (1 )

nB f n −   .  Apply part 

(3) to (1 )
nB f− .  Note that  

                (1 )( ) ( ) 0 ( ) 0  and  (1 )( ) 0
n nB Bx f x f x x −    −   

                                                 ( ) ( ) and 
c c

n nx A x B x A B      . 

Hence  { : (1 )( ) ( ) 0}
nBx x f x A−    and ( )A    . 

This gives by part (3) for any  > 0, a function ( )cg C X such that 

                                   : ( ) (1 ) ( )
2nBx X g x f x


   −  . 

Let  : ( ) (1 ) ( )
nBU x X g x f x=   − .  Then ( ) (1 ) ( )

nBg x f x= −  for x in cU  .  

( ) (1 ) ( )
nBf x f x= −  for x in ( )

c

nB  .  Hence  ( ) ( )f x g x=  for x in ( )
c c

nB U . 

Therefore,   ( )( ): ( ) ( )
c

c c

n nx X g x f x B U B U    =  .  It then follows that 

 ( ): ( ) ( ) ( ) ( )
2 2

nx X g x f x B U
 

      +  + = , 

(5)  Suppose  f  is real valued.   Since  f  is measurable,   sup ,0f f+ =   and  

 sup ,0f f− = −  are measurable and  f f f+ −= −  .  Suppose  : ( ) 0x X f x A    and A  

ℳ, where ( )A   .  Note that 

( ) 0 ( ) 0 ( ) 0 and ( ) 0 ( ) 0f x f x f x f x f x+ + + −     =    and so  : ( ) 0x X f x A+  

. Similarly, we can show that  : ( ) 0x X f x A−   .  Now we apply part (4) to f+  and f−  .  

Given   > 0, there exists , ( )ch k C X such that 

                                   : ( ) ( )
2

x X h x f x


 +      and 
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                                  : ( ) ( )
2

x X k x f x


 −   . 

Let  : ( ) ( )U x X h x f x+ +=    and  : ( ) ( )U x X k x f x− −=   .   Therefore, 

           ( ) ( ) ( ) ( ) ( )h x k x f x f x f x+ −− = − =  for x in ( ) ( )
c c

U U+ − . 

Hence   ( ) ( )( ): ( ) ( ) ( )
c

c c
x h x k x f x U U U U+ − + −−    =   and so  

                        : ( ) ( ) ( ) ( ) ( )x h x k x f x U U   + −−   +  . 

Let g h k= − . Then  ( )cg C X , since support of  g h k= −  lies in the union of support of h 

and the support of k and the union of two compact sets is compact. 

(6)  Suppose  f  is a complex function.  Suppose  : ( ) 0x X f x A    and A  ℳ , where 

( )A   .  Since  f  is measurable,  Re( f ) and Im(f ) are measurable.  Note that 

                   : ( ) 0 : Re ( ) Im ( ) 0x X f x x X f x i f x  =  +   

                    : Re ( ) 0 : Im ( ) 0x X f x x X f x=      . 

Therefore,    : Re ( ) 0 , : Im ( ) 0x X f x x X f x A     .  Thus applying part (5) to Re( f ) 

and Im(f ) we get , ( )ch k C X such that 

            : ( ) Re ( )
2

x X h x f x


       and  : ( ) Im ( )
2

x X k x f x


    . 

Let  : ( ) Re ( )U x X h x f x=    and  : ( ) Im ( )V x X k x f x=   .   Therefore, 

           ( ) ( ) Re ( ) Im ( ) ( )h x ik x f x i f x f x+ = + =  for x in ( ) ( )
c c

U V . 

Hence   ( ) ( )( ): ( ) ( ) ( )
c

c c
x h x ik x f x U V U V+    =   and so  

                        : ( ) ( ) ( ) ( ) ( )x h x ik x f x U V   −   +  . 

So, if we let g h i k= + , then  ( ): ( ) ( )x g x f x   . 

Note that ( )cg h i k C X= +  as the support of g, being a closed subset of the union of the 

support of h and k, is compact.   
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Now we come to the last conclusion. 

If  sup ( )
x X

f x


=  , then we have nothing to prove. 

Suppose now sup ( )
x X

f x M


=    

Define a complex function   by 

  if  | | ,

( )
  if  | |

| |

z z M

z z
M z M

z






= 




 .  Then  is a continuous 

function on  mapping  onto the closed disk of radius M.   Consider the composition 

g  .  Then  ( ) ( )g x f x =  if ( ) ( )g x f x= and so ( ) ( )g x f x   implies ( ) ( )g x f x . 

Hence,    : ( ) ( ) : ( ) ( )x g x f x x g x f x    and so  

                          ( )  ( ): ( ) ( ) : ( ) ( )x g x f x x g x f x       . 

Therefore, we may replace g by 1g g=  since g is continuous and support of g is 

contained in the support of g.  Moreover, 

                                sup ( ) sup ( )
x X x X

g g x f x 
 

=  .  

Theorem 23. 

Suppose X is a locally compact Hausdorff topological space and (X, ℳ ,  ) is a measure 

space satisfying properties (1) to (5) in Lusin’s Theorem. 

Give the space of all continuous functions on X with compact support ( )cC X the (unusual) 

norm 
p

f  ,  1 ≤ p < ∞, for  f  in ( )cC X .  Then ( ) ( )p

cC X L   and the completion of the 

metric space ( )( ),c p
C X   is ( )pL  . 

Proof.  

Suppose ( )cf C X . Let K be the support of  f.   Since  f  is continuous,  | f | is continuous. 

Therefore,    ( ) : ( ) :f x x X f x x K =   is a compact subset of [0, ∞).  Hence 

 ( ) :f x x X is bounded since a compact subset of  is bounded. Suppose  ( ) :f x x X  

is bounded by M.  Plainly, any continuous function on X is -measurable since ℳ contains 

the Borel subsets of X.  Hence,  f  is measurable.  Then for any 1 ≤ p < ∞, 

                  ( )
p p p p

X K K
f d f d M d M K   =  =      
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since by property (3) of the measure space (X, ℳ,  ), ( )K    as K is compact.  

Therefore, ( )
1
pp

p X
f f d=  .  Hence ( )pf L  and it follows that ( ) ( )p

cC X L  . 

By Proposition 16, the set       

        ( ) : ;  is a simple measurable function with : ( ) 0S s X s x s x= →     

is dense in ( )pL  .   

Each simple measurable function in S satisfies the condition of Lusin’s Theorem. 

Note that if  s S , then s is bounded on X.   Hence sup ( )
x X

s s x


=   .  By Lusin’s Theorem, 

given  > 0, if s S , then there exists ( )cg C X such that ( ) ( )g x s x= except on a set of 

measure 
( )2 1

p

p

s




+
 , i.e.,    ( )

( )
: ( ) ( )

2 1

p

p
x g x s x

s


  

+
 and g s . 

Now  

   ( )
{ : ( ) ( )} { : ( ) ( )}

p p p p

p X x g x s x x g x s x
g s g s d g s d g s d  

= 
− = −  − + −    and so 

   ( ) ( ) ( )
{ : ( ) ( )}

0 2 2 { : ( ) ( )}
p p p

p x g x s x
g s s d s x g x s x 


−  +    

                     ( )
( )

2
2 1

p
p p

p
s

s


 

+
. 

Hence, 
p

g s −  . 

Since ( ),
p

S   is dense in ( )pL  , for  any  f  in ( )pL  and for any  > 0, there exists s  S 

such that 
2p

s f


−  .   By what we have just proved above using 
2


 instead of   , there 

exists  ( )cg C X  such that 
2p

g s


−  .  Therefore,   

                        
2 2p p p p

g f g s s f g s s f
 

− = − + −  − + −  + = . 

It follows that  ( )( ),c p
C X   is dense in ( )pL  .  Hence the completion of ( )( ),c p

C X   is 

( )pL  . 



51 
 

Remark. 

The unit interval [0, 1] is compact and Hausdorff and so is locally compact. Hence the space 

of all continuous function on [0, 1], C[0,1], is the same as the space of all continuous function 

with compact support, [0,1]cC .  By Theorem 23, the completion of ([0,1])C  with respect to 

the metric, 
1

0
( , )d f g f g= − , for  f and g in ([0,1])C , where the integral is the Lebesgue 

integral, is 1([0,1])L  and the measure is the Lebesgue measure on .  Note that every 

continuous function on [0, 1] is Riemann integrable and is also Lebesgue integrable and both 

integrals are the same.  ( )
1

[0,1],C   is a normed linear space and ( )[0,1],C d is a metric space 

because for any [0,1]f C ,
1

1 0
0 0 0f f d f=  =  =  since a continuous non-negative 

function, whose integral over the interval [0, 1] is 0, must be the zero constant function.  But 

the completion 1([0,1])L is the equivalence classes of almost everywhere equal Lebesgue 

integrable functions on [0,1].  The norm on ( )
1

[0,1],C   is of course given by the Riemann 

integral 
1

1 0
( )f f x dx=   since it is the same as the Lebesgue integral but the norm on the 

completion is given by the Lebesgue integral.  In some sense, we may regard the Lebesgue 

integral as a natural generalization of the Riemann integral.  

For locally compact Hausdorff space X and for (X, ℳ,  ) satisfying properties (1) to (5) of 

Lusin’s Theorem, although the underlying linear space ( )cC X is the same, for different Lp 

norm, the completion of the space of all continuous function with compact support is in 

general different Lp space. 

6.  Space of Continuous function. 

Suppose X is a locally compact Hausdorff topological space.  Let ( )C X  be the space of all 

continuous complex functions on X.  A function  f  in ( )C X is said to vanish at infinity if for 

any  > 0, there exists a compact set K in X such that ( )f x   for all x K .  Let 0 ( )C X be 

the collection of continuous functions on X that vanish at infinity. 

If  f  vanishes at infinity, we may say  f  is zero at infinity if we attach a point called ‘infinity’ 

to X.  More precisely, if we take the one-point compactification { }X X=    of X.  The open 

sets in X  are given by  open sets in ,  { },  compactcX K K   and all those sets generated 

by this class.  Then 0 ( )C X  is the ideal of functions in ( )C X  consisting of functions that are 

zero at infinity. 

Let ( )BC X  be the set of all bounded continuous complex functions on X.   Then the sup 

norm,  sup ( ) :f f x x X=  is a norm on ( )BC X and moreover f   for all  f  in 

( )BC X . 
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Then we have: 

Proposition 24. 

(1) 0( ) ( ) ( ) ( )cC X C X BC X C X    ; 

(2) If X is compact, then 0( ) ( ) ( ) ( )cC X C X BC X C X= = = . 

 

Proof.   

Plainly 0( ) ( )cC X C X .  If  0 ( )f C X ,  for any  > 0, there exists a compact set K in X 

such that ( )f x   for all x K .  Since  f  is continuous, ( )f K  is compact and so  f  is 

bounded say by M on K.  Hence  f  is bounded by max{ , M }.  Therefore, ( )f BC X .  This 

proves (1) 

Suppose X is compact.  Take any ( )f C X . Then the support of  f  is closed in X.  Since X is 

compact, the support of  f  is compact.  Hence ( )cf C X .  Thus ( ) ( )cC X C X=  and (2) 

follows. 

Proposition 25.   Suppose X is a locally compact Hausdorff topological space.   

(1) 0 ( )C X  and ( )BC X  with the sup norm, sup ( )
x X

f f x


= , are Banach spaces. 

(2)  ( )( ),cC X  , with the sup norm  , is a normed space, not usually complete. 

(3)  ( )0 ( ),C X   is the completion of ( )( ),cC X  . 

Proof: 

(1)  It is obvious that  ( )0 ( ),C X   is a normed space.  Let ( )nf  be a Cauchy sequence in

( )0 ( ),C X  .  Then given any  > 0, there exists an integer N such that   

                , sup ( ) ( )
3

n m n m
x X

n m N f f f x f x




  − = −    and so  

                , ( ) ( ) sup ( ) ( )
3

n m n m n m
x X

n m N f x f x f x f x f f




  −  − = −  for all x in X. 

This means ( ( ))nf x is uniformly Cauchy.   Since  is complete, ( ( ))nf x  converges 

uniformly.   We claim that the pointwise limit,  f  , of  ( )nf  is a continuous function. 
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Note that for any n ≥ N and for all x in X,  

                             ( ) ( ) lim ( ) ( ) lim
3

n n m n m
m m

f x f x f x f x f f


→ →
− = −  −     --------- (1) 

Take x0 in X.   

For all x in X, 

         0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )N N N Nf x f x f x f x f x f x f x f x− = − + − + −     

                                0 0 0( ) ( ) ( ) ( ) ( ) ( )N N N Nf x f x f x f x f x f x − + − + −  

                                 0 0

2
( ) ( ) ( ) ( )

3 3 3
N N N Nf x f x f x f x

  
 + + − = + − .   ------------------  (2)    

Since Nf   is continuous at x0 , there exists an open neighbourhood U of  x0 such that  

0( ) ( )
3

N Nx U f x f x


  −   . It then follows from (2) that  

                                0( ) ( )x U f x f x   −  . 

This means  f  is continuous at x0 .  Hence,  f  is continuous on X. 

Now we show that  f  vanishes at infinity.  By (1), given  > 0, we can find an integer N such 

that ( ) ( )
3 2

nn N f x f x
 

  −    for all x in X.   This means  

                                  
2

nn N f f


  −  . 

Since  Nf   vanishes at infinity, there exists a compact set K such that 

                    ( )
2

Nx K f x


    . 

Therefore, for  x K , 

        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

N N N N N Nf x f x f x f x f x f x f x f f f x
 

= − +  − +  − +  + =  . 

Hence,  f  vanishes at infinity and so 0 ( )f C X .  Thus, any Cauchy sequence in ( )0 ( ),C X 

converges to a function in ( )0 ( ),C X   and so ( )0 ( ),C X   is complete and hence is a Banach 

space. 
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Next ( )( ),BC X   is a Banach space.  Plainly it is a normed linear space. 

Let ( )nf  be a Cauchy sequence in ( )( ),BC X  .   We have already shown that ( ( ))nf x is 

uniformly Cauchy and that ( ( ))nf x  converges uniformly to a continuous function  f .   We 

claim that f  is bounded. 

As ( ( ))nf x converges uniformly to  f   given  > 0,  we can find in integer N such that                                   

nn N f f   −  . 

Take n = N.  Since  Nf   is bounded, ( )Nf x M for some M > 0 and for all x in X. 

Therefore, for all x  X, 

        ( ) ( ) ( ) ( ) ( ) ( ) ( )N N N N nf x f x f x f x f x f x f x f f M M = − +  − +  − +  +  . 

Hence  f  is bounded by M +   and so ( )f BC X .  Thus ( )( ),BC X   is a Banach space. 

(2) Plainly ( )( ),cC X   is a normed linear space. ( )( ),cC X   is usually not complete. 

More precisely, if X is locally compact and Hausdorff but not compact and can be written as a 

strictly increasing sequence of relatively compact open sets, then ( )( ),cC X   is not complete. 

Suppose  1 1 2 2 n nU U U U U U        

is a strictly increasing sequence of relatively compact sets such that 
1

n

n

U X


=

= .  

By Urysohn’s Lemma (Lemma 22), since 1n nU U +  and nU  is compact, there exists 

( )n cf C X such that 
1n n nU f U +
 and so we have a sequence of functions ( )nf  such that  

  (a)  1
n

n U
f =   

  (b)  Support  f n  1nU +   and 

  (c)  0 1f   . 

Let 
2

1

1n

n k

k

g f
k=

=  .   Then by the Weierstrass M Test, ( )ng  converges uniformly to a 

continuous function g on X.   Obviously ( )ng  is a Cauchy sequence in ( )( ),cC X  .  But 
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2
1

1
( ) ( ) 0k

k

g x f x
k



=

=   for all x.   This is because for any x in X,  nx U  for some n and 

( ) 1nf x =  so that 
2 2 2

1

1 1 1
( ) ( ) ( ) 0k n

k

g x f x f x
k n n



=

=  =  . Thus, support of g is X, which is not 

compact.  Hence, ( )cg C X  and so ( )( ),cC X  is not complete. 

For instance, ( )( ),cC   is not complete.  Take ( , )nU n n= − .   We can define  

  

1 if  ,

1 1
2( ) if  ,

2 2
( )

1 1
2  if ,

2 2

0  otherwise.

n

n x n

n x n x n

f x

x n n x n

−  

 + −   +


= 
  + + − −   − 

  



 . 

Then 
2

1

1
( ) ( )k

k

g x f x
k



=

=  is continuous but not in ( )cC . 

(3)  0 ( )C X  is the completion of ( )cC X . 

Take any 0 ( )g C X .  Then given any   > 0, there exists compact set K X  such that 

( )
2

g x


  for all x not in K.  Then by Property (10) (topological spaces), since X is locally 

compact and Hausdorff, there is a relatively compact open set, i.e., an open set V, where V  is 

compact, such that K V V X   . 

By Urysohn’s Lemma, there exists ( )cf C X , such that K f V  , i.e.,   0 ≤  f  ≤ 1  and f 

(x) =1 for all x in K and the support of  f  V  .  Since  V  is compact, the support of  f  is also 

compact.  Therefore,  g f  is continuous and the support of g f  is also compact, being a 

closed subset of the compact support of  f.  This means  ( )cg f C X . 

 Now  ( ) ( ) ( ) 0g x g x f x− =  if x is in K.  Thus since ( ) 1f x  ,  

            ( ) ( ) ( ) 2 ( )g x g x f x g x −    for all x  X. 

Therefore, sup ( ) ( ) ( )
x X

gf g g x g x f x 


− = −  .  This means ( )cC X is dense in 0 ( )C X  and so 

the completion of ( )( ),cC X   is ( )0 ( ),C X  .  

Remark: 
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Suppose X is a locally compact Hausdorff topological space and (X, ℳ,  ) is a measure 

space.    

Then  ( ) : : is measurable and esssupL f X f f = →   .  I.e.,  ( )L   is the space of 

essentially bounded measurable functions and the norm on ( )L  is given by 

esssupf f

=   for f  in  ( )L  .  Theorem 15 asserts that ( )( ),L 


  or more precisely, 

the equivalence classes of almost everywhere equal measurable functions in ( )L   is a 

Banach space and so ( )L  is complete. 

Suppose X is locally compact and Hausdorff and (X, ℳ,  ) is a measure space where ℳ 

contains all the Borel subsets of X.  Suppose further that every non-empty open set in X has 

positive  measure. Then every continuous function  :f X →  is measurable and for  f  in 

0 ( )C X , esssup supf f f f

= = =  .  Hence ( )0 ( ),C X   is a subspace of 

( )( ),L 


 .  More precisely, ( ) ( )0 0( ), ( ),C X C X


 =  .  We know ( )0 ( ),C X


  is 

complete by Proposition 25 part (1).  Similarly, ( ) ( )( ), ( ),c cC X C X


 =  .  We have just 

shown that the completion of ( )( ),cC X   is ( ) ( )0 0( ), ( ),C X C X


 =  and so the completion 

of ( )( ),cC X

 is ( )0 ( ),C X


 .  Even though ( )( ),cC X


  is a subspace of ( )L   and 

( )( ),L 


 is complete, the completion of  ( )( ),cC X


  in the metric induced by the 

essential supremum norm generally is not ( )L  .  More precisely, ( )L  may have 

measurable function  f   that is essentially bounded but not bounded or not continuous, i.e.,  

f

  but  supf f= =  or  f  is not continuous on X.  An example is the Lebesgue 

measure space (
n

, ℳ ,   ), where ℳ is the  algebra of Lebesgue measurable subsets of 
n
, and  : ℳ → [0, ∞] is the Lebesgue measure on 

n
.  The completion of ( )( ),n

cC



is ( )0 ( ),nC

 and not  ( )nL

.  For n =1, the function :f →  defined by 

,   is rational,
( )

1,   is irrational

x x
f x

x


= 


 is measurable, essentially bounded by 1 since 1f

= but plainly 

unbounded and also not continuous.  If there is a sequence ( )ng in ( )( ),cC

  that tends to f  

in ( )L  then ( )ng  is a Cauchy sequence in ( )L  and so is a Cauchy sequence in 

( )( ),cC

 , which is identically the same as ( )( ),cC  and hence a Cauchy sequence in 

( )0 ( ),C

 . Thus its pointwise limit must be continuous and bounded.  This contradicts that 

f  is not bounded.  Thus there does not exist a sequence in ( )( ),cC

  that tends to f  in 

( )L . 

Remark.  
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We may replace all the results stated involving a locally compact Hausdorff topological space 

X by an open or closed non-empty subspace of X or non-empty intersection of a closed set 

and an open set, since such sets are also locally compact and Hausdorff and if measure is also 

involved, the measure space (X, ℳ,  ) is required to satisfy conditions (1) to (5) in Lusin’s 

Theorem.  For instance if  X  is 
n
, the measure space (

n
, ℳ ,  ) may be taken to be the 

Lebesgue measure on 
n
, which satisfies all the conditions (1) to (5) in Lusin’s Theorem. 

Furthermore, the Lebesgue measure on n  is complete. 

Suppose X is a locally compact Hausdorff topological space and B(X) is the -algebra 

generated by the open sets of X.  A Borel measure, i.e., a positive measure  : B(X) → [0, ∞] 

on B(X), satisfying conditions (3), (4) and (5) in Lusin’s Theorem but not necessary -

complete is a Radon measure.  We extend this Radon measure to a complete measure ℳ, that 

is, ℳ is the collection of subsets B of X of the form B E A=  where E  B(X) and A C  

for some subset C  B(X) with ( ) 0C = . For such a set B define ( ) ( )B E = .  Then (X, ℳ, 

  ) is a complete measure space satisfying all 5 conditions in Lusin’s Theorem.  For such 

measure, Theorem 23 holds true.  Such a measure space, generalizes the Lebesgue measure 

on n  .    


