Convex Function, LP Spaces, Space of Continuous Functions, Lusin’s
Theorem

By Ng Tze Beng

To study the space of functions on R" from the point of view of continuity and
measurability, we may start by considering the space of functions on the topological space X,

which is in some way like the Euclidean space R" for integer n > 1, with the usual metric
topology. As for the measure on the topological space X, we may consider one that has the

properties that the Lebesgue measure on R" has, namely it must contain the Borel subsets of
X, is finite on compact subsets, regular and complete. The results that hold true for the space
of functions on such a topological space X with or without the required measure are true

when X is replaced by R".

The closure of any open n-disk in R" is compact by the Heine-Borel Theorem. Any
neighbourhood N, of a point x in R", contains a closed n-disk, which is compact and is also a
neighbourhood of x. To take this property into the topology of the space X, we require that
for any point x € X, x has a compact neighbourhood. We say X is locally compact if every
point in x has a compact neighbourhood. We know that R" with the usual topology is

Hausdorff, that is, any two distinct points in R" can be separated by open neighbourhoods.
So, we would want our space X to be Hausdorff, that is, if x and y are distinct points in X,
then there are open neighbourhoods U and V of x and y respectively such that U nV =.
Hence, we would want X to be a locally compact Hausdorff space. Now a compact subset of
a Hausdorff space X is closed in X and a closed subset of a compact set is compact. Hence a
compact neighbourhood K of a point x in a Hausdorff space is closed. There is an open set U

such that xeU K . As U is closed in X and is contained in K, U is compact and so U is a

compact neighbourhood of x. We say a subset E of X is relatively compact if its closure E in
X is compact. Hence a Hausdorff space is locally compact if and only if every point x in X

has a relatively compact open neighbourhood. It is now clear that R" with the usual topology
is a locally compact Hausdorff topological space.

We shall investigate the space of functions on a locally compact Hausdorff topological space
when the space of functions is endowed with a suitable norm to form a normed linear space.

A norm on a linear space, i.e., a vector space V over R or C, is a non-negative function
l]:V —[0,00) such that

(a) |a+b| <|a]+|b| forall a,beV (triangle inequality),
(b) [ x| =|e]||X| for any xin V and any scalar «,

© [x|=0<x=0.



The vector space, V, with such a norm is called a normed linear space.

A norm on a linear space V gives rise to a metric on V. We shall investigate when a linear
space can be regarded as a complete metric space with the metric induced by its norm, i.e., if
every Cauchy sequence in V is convergent in V. A normed linear space is a Banach space if
it is complete as a metric space with the metric induced by its norm.

We begin with the investigation into, among other things, some inequalities including the
triangle inequality that the norm, which we shall define and elaborate later, must satisfy. The
property of a convex function plays a very useful and effective role in proving some of these
inequalities. Our first section will be devoted to convex functions.

1. Convex Functions.

In Calculus, the graph of a real valued function, f, on an open interval, is said to be concave
upward, if f is differentiable and its derivative is an increasing function or the graph of f

lies above each of its tangent line. A typical example is the function f(x)=x" .
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A careful examination of the above graph will reveal that it satisfies the property (3) stated in
the next definition.

Definition 1. Let —w<a<b<o . A function f:(a,b) >R isconvex if

(1) vx,ye(a,b), for 0<A<1, f(L-AD)x+Ay)<@-A)F(X)+Af(y), oOr
equivalently,

(2) for a<x<z<y<b, the chord function

f(x)-f(2) f(y)-1(2)
X—2 ’

y—-12¢

p(x,2) = <p(z,y)=p(y,2) =



or equivalently,

(3) the chord slope function, p(x,z)= F)- ;(Z)

, IS monotone increasing on

each argument with the other kept fixed.

We shall show later that a function whose graph is concave upward is a convex
function. Hence our example, the function f(x)=x?, is convex on (—o, ).

We now show that the three conditions above are equivalent.
(1)=(2)
Suppose condition (1) is satisfied for the function f.

Fora<x<z<y<b

f (x) f (z)

P(x,2) = <p(y)=p(y,2) =+ D= ifand only i
y-2(F0-F@)=(W)-1(@)(x-2)

= 6x=NT@= - TH+2-N T

o f@)s? f(y)+— O — (*)

If we take ;t:ﬂ,then 0<A<1, 1-2=Y=% and
y—X y—X

(1—ﬂ)x+/1y=%x+%y=z. Thus (1) implies

f(z) = f((1—Z)x+}ty)s/tf(y)+(1—l)f(x):S f(y)+% f (x) and by (*)
implies (2).

From (*) we have for a<x<z<y<b,

(Y) f(2)

—-Z

<p(z,y)=p(y,2)=

@f(z)—f(x)<y Z )+ —f(X)



e 1@-f_ 1 f(y)—f(x) (**)

f(Y)+ f(x) W=
Z—X y—X y—X
and
o 2)= 1 =T@ 0 oy iy = fN-T@
X—1Z y—12

o f2)-f(y)<EY y)f(y>+(§ =2 ¢y

1O, L), gy TOT0 W10 (o
-y y—X y—- y—X X-y

Note that (2) < (*) © (**) < (**%)

(2) =(3).

By keeping x fixed we see that for all x<z<y, p(x,z)< p(x,y) by (**) and by
keeping y fixed, forall x<z<y , p(y,x)=p(x,y) < p(y,z) by (***) and together

with p(z,x) < p(z,y), we see that the chord function p(x, y) is monotone
increasing in the second argument with the first kept fixed, i.e. on (a, b) — {x}.
This is because if y >z > x, then p(x,y) > p(x,z) ; if x>y >z, then p(x,y) > p(x,2)
and if y > x>z, then p(x,y) > p(x,z). Since p(x, y) is symmetric it follows that it
Is also monotone increasing in the first argument with the second kept fixed.

(3) = (2),
This is obvious.

)= (1)

Assuming (2). Then if we take z=(@1-2)x+ 1y, 0<A<1, 1=2"% and
y—X

1-2=Y=% assuming x <y. Then x <z <y and by (*)

f(L-2)x+4y)=f(2)<

N
<
>

|
N

Ify <X, then letting x=1-1 , we have z=ux+Q0-p)y, p=—=

andy<z<x.



f(X) f(Z)

Assuming (2) we have p(y,z) = and by

TW=1@ ¢ pz,x) = p(x,2) =T X =1@
y—1

(*) we have
F(2) < 2L f () + 22 f(y) = pf () + (1) F(y) = AT () + A= 2) F (x)
X=y X=y

and so f((1-A)x+Ay)<Af(y)+@-2)f(x).

Properties of a convex function f :(a,b) >R, —o<a<b<oo.

(1) The left and right derivatives of f exist (finite) at each point of (a, b).
(2) The left derived function and the right derived function, f'(x) and f/(x),

are equal except possibly for a countable number of points x in (a, b).
(3) The left derived function and the right derived function, f'(x) and f/(x), are both

increasing function on (a, b) and f'(x) < f/(x) and in particular, if x <y, then

f/(x)< f'(y).
(4) f is continuous on (a,b).

A support line at a point (x, y) on a curve 7~ in R? isa line ¢ through (X, y) such that 7~ lies
either on or entirely on one side of the line (.

(5) If f:(a,b) >R isconvex, then for any x in (a, b), any line with a slope o such that
f'(x) <a < f/(x) and passing through (x, f (x))on its graph is a support line at (x, f (x)),
where the graph lies either on or entirely above the line. i.e., f(y)>(y—x)a+ f(x).

Proof.
Property (1)

Take z in (a, b), then for any x and y such that a<x<z<y<b,

fy)-f(2)

y—z

<p(z,y)=p(y,2) = | e (1)

)= 100 @

fiy)-f(@)

So, by fixingy, p(x,z)= w is bounded above by p(y,z) = . Since

p(x,z) is increasing in the first argument, Ilm p(x,z) = I|mM
X—12

X—>Z"

exists. That is,

f'(z) exists.



Similarly, by fixing x, p(y,z) = M is bounded below by p(x,z) = w
y—-z¢ -
Since p(y,z) is increasing in the first argument, lim p(y,z) = lim M— f/(z)
=V y—>z* y—

fy)-f(2)
y—z

exists since is decreasing as y decreases to z.

Properties (2) and (3)

Moreover, % < f.(z) forall x<zin (a, b) since by (1) % is a lower
bound for {% 1y e(z, b)} and so
fx)-1@) <inf {M ye(z, b)} = 1,(2).
X—1z y
It follows that f,"(z) is an upper bound for { 100~ f(z) x e (a, z)} and so
f'(2)> sup{w: xe(a, z)} = f'(2).
Hence, f'(z)< f.'(z) forallzin(a, b) =-------mmmmmmmemmmmceoo e 2)

s FO- 1)

is decreasing as z decreases to x, for any x <y in (a, b)
Z—X

f x)= ||mM< p(X,y) = f(y)—f(x)
Z*)X X y_X

fy)-f(2)
y-z

f(X)_ f(y) < f,’(y): lim f(Z)— f(y)
X=Yy -y Z—-Y

and as IS increasing as z increases to y, so that for any x <y in (a, b) by we get

fFiy)-f(x)

Therefore, for any x <y in (a, b), f.'(x)< p(x,y)= <f'(y).

It then follows from (2) that for x <y in (a, b),

FO)-f(y)

Fr )< £/ ()< p(xy)= <f'(y)<f/(y). e 3)



This means f'(x) and f/(x) are both increasing function on (a, b).

Since f/(x) isincreasing on (a, b), f'(x) is continuous except for a countable number of
points in (a, b).

Let X, (a,b) be a point of continuity of f. Then lim f/(x)= f/(x,). Butit follows
X—>Xg
from (3) that for x <x,, f,"(x) < f'(x,) < f,'(x,) . Hence
f(x)=lim f'(x)< f'(x) < f,(x,). It follows that f'(x,)=f,(x,) andso f is
X—>Xg

differentiable at xo. We can now conclude that f'(x) and f/(x) are equal except possibly

for a countable number of points x in (a, b). That is to say, f is differentiable except possibly
for a countable number of points x in (a, b).

Property (4)
We next show that f is locally Lipschitz.

Take any closed interval [c,d] < (a,b). Forany x <y in [c, d],

f ()= f(y)
X_

f )<t ()<p(xy)= O E A () P — *)

Let M =max{|f/(c)|,| f/(d)|}. Then it follows from (*) that for any x =y in [c, d],

f(x)-f(y)
X—y

<M . Therefore, for all x, y in [c, d],

[FO)—f(y)| <M|x-y].

Hence f is Lipschitz on [c, d] and so it is continuous on [c, d] and it follows that f is
continuous on (a, b).

Property (5)

We have, from (3), that for any x <y in (a, b), f,'(x)< p(x,y) = <f'(y). It

FO) - (%)
X_

0

f(x)—f(y)
X—y

follows then that for x, e (a,b), f,'(x,) < for x> x, and so

FOO2(x=%) £,/ (%) + f (%)

for x>x,.



For x < xoin (a, b), wg f' (%)< f,'(x) and f(x)> . (%)) (x—% )+ f(x)for

0

X<X,. Thismeans f(x)=(x—x,)f, (X)+ f(x,) forallxin (a, b).

We also have that f(x)> f."(x,)(X—%,)+ f(X,) for x<x,. And from

£ (%)< F (%) < w for x> x, , we deduce that f (x) = (x—3) . (%)) + f (%)
%o

It follows that f(x)>(x—x,) f."(%,)+ f(x,) forall x in (a, b).

Thus, forany f'(x,)<a < f/(x,), for x>x,,

f(X)2(x=%) £,"06) + f (%) = (x=x%, ) a+ f ()

and for x<x,, f(x)=(x=%)f (%)+ f(%)=(x=%)a+f(x). Therefore, forall x in (a,
b), f(X)>(x—x,)a+f(x). Hence the liney=(x—x,)a+ f(x,) is asupport line for the
graph of fat (x,, f(x,)) with the graph of f lying on or above the line.

For the next inequality, we shall recall some definitions and facts from measure theory.

A measure space (X, -# , u) consists of a non-empty set X, a o- algebra .# of subsets of
X and a positive measure y: 4 — [0, x].

A o - algebra onaset X is a collection ~ of subsets of X such that (i) X e «, (ii) if A €
", then its complement in X, A° € « and (iii) if {A :n=12-} < ~ ,thenthe

countable union [ JA, € ~ . Itthen follows from de-Morgan’s law, that ()(A,) € ~ and

n=1 n=1
S0 since every subset can be written as a complement of its complement, ﬂ A e 7. In
n=1

particular if A,B € ~,then A~-B=ANnB® ¢ ~

A subset X and a o - algebra ~ of subsets of X is also called a measure space when the
measure function is yet to be defined. If (X, “ ) isa measure space and (Y,. ) a
topological space, where ./~ is a collection of subsets (called open sets) of Y , which is closed
under finite intersection and arbitrary union, a function f: X —Y issaid to be measurable,

if forany opensetUin.~, f*(U) € ~. If g:X —[0,] is a function into the extended
non-negative real numbers and (X, ~ ) is a measure space, then g is measurable if



g7 ((c,]) is measurable or g *((c,]) € ~ for any real number ¢ . Likewise,

g: X > [-0,0]=R is measurable if g7*((c,c]) e ~ for any real number c.

Given any non-empty collection of subsets of S of X, there is a smallest o - algebra on X
containing S. We say this is the o - algebra generated by S. If (X, .") is a topological space,
then the o - algebra 2 generated by the open sets, that is by ./, is called a Borel measure
and members of & are called Borel subsets. Therefore, any continuous function f : X Y,

where we give X the Borel measure or any measure that contains the Borel subsets, is
automatically measurable and we say f is Borel measurable.

A measure or a positive measure on a measure space (X, -4 ) is a function u : M — [0,0]
such that () =0and w is countably additive, i.e., if {E,}"

IS a countable disjoint

collection of measurable subsets in .# , then ,u(U Enj => u(E,).
=1

n=1

The triplet, (X, -4 , 1) is called a measure space and we sometimes refer to sets in 4 as u-
measurable sets. If x(X)=1, we say (X, -#, u) is a probability space.

We shall assume some familiarity with integration over a general measure space.

Jensen’s Inequality

Theorem 2. Let (X, ., 1) be a probability space (i.e., a measure space with positive
measure g and z (X) = 1). Suppose f:X —(a,b) ,with —o<a<b<oo ,isin L'(y),i.e.,

f is measurable and _[X| f|d,u <o, and ¢ is a convex function on (a, b).

Tha1¢{L<fdy)ij¢ofdﬂ.

Proof.

Note that ¢o f is measurable since ¢ is continuous on (a, b) and f is measurable.

Since a< f(x)<b forall x in X and z(X) > 0, jxady<jx f d,u<ijd,u and so

ay(X)<jx f du<bu(X) and we have that a<.|‘X fdu<b. Thisistrueif a=—0 or

b=co since |[ fdu|<[ |fldu<o.

Let 'BZIX f d . Take a support line y = p(B)+ (x— B)y at (B,¢(B)) with
@ (B)<y<@ (B). Hence p(x)=ep(p)+(x—p)y, forall xin (a, b). It follows that



o(f(X)=ep(B)+(f(x)— )y forall xin X.

Therefore,
[y oo tduz o), du+([ tdu—pf, du)y=p(A)=o([, tdu).

Corollary 3. Suppose f is convex on (a, b). Suppose g :[c,d]— (a,b) is Lebesgue
integrable. Then

Lol 1 .
d_c SE (O ) *)

Proof. The measure on [c, d] is given by the measure subspace of the Lebesgue measure on
R and the measure is given by 7, the restriction of the Lebesgue measure to the interval [c,

= U
i d])n( )= 77( )

Then x is a measure on the o algebra of Lebesuge measurable subsets of [c, d]. (Note that for
the Lebesgue measure space (R, .4, (), where .# is the o algebra of Lebesgue measurable
subsets of R, (: .4 — [0, o] is the Lebesgue measure on R, ([c, d], 4c.q1, 1), Where
Mica)={EeM:-Ec|c,d]}={En]c,d]: Ee} and n: Mcd — [0, «] is the
restriction of ( to .#cq) , iS a measure space.)

Then u([c,d]) =1and ([c, d], -#cq) , 1) is a probability space. Since g is Lebesgue
integrable, i.e., g is # integrable and so is u integrable. By Theorem 2,

f [cd]gdﬂ)ﬁ [RTCTENCYS

f du)=f dnl=f[-L1_[°
But (I gy)— dT[c’d]QU— Ecg

and [ F(900)du= E Ld £ (g(x))dx and so (*) follows.

d]. For any Lebesgue measurable subset U in [c, d], let x(U) =

Similarly we have

Corollary 4.
Let (X, 4, 1) be a measure space with g a positive measure and 0 <u (X) <. Suppose

f:X —(a,b),with o<a<b<oo,isin L'(u) and ¢ is a convex function on (a, b).

Then go(ﬁ dyj (X)jgoofdy

We can extend the idea of convex function to real vector space.
The Euclidean norm || || for R" is convex since for any x ,y in R" and 0< A <1,

l@—2)x+2y| < @=2) x|+ A]y] -

10



In particular, the modulus function on R is convex on R.

Proposition 5. If g:(a,b) »> R istwice differentiable on (a, b) and g”"(x) >0 for all x in
(a, b), orif g’ isincreasingon (a, b), then g is convex on (a, b).

Proof. g"(x)>0 forall xin (a, b) implies that g':(a,b) - R is increasing on (a, b).

For a<x<z<y<b,bythe Mean Value Theorem, p(x,z) = g'(c) forsomec

9(x)—-9(2) _
X—17

g(y)_ g(Z) — gr(d) , for

such that x < ¢ < z and also by the Mean Value Theorem, p(y,z)=
some d such that z<d <y. Thus, since ¢ <d,

9(x)-9(2) _ g(y) 9()
X—12

p(x,z) = g'(c)<g’'(d)= = p(y, z). Therefore, by condition (2) of
Definition 1, g is convex on (a, b).

Remark. The graph of a differentiable function on an open interval (a, b) is said to be
concave upward if its derivative is increasing on (a, b). Proposition 5 implies that such a
function is convex on (a, b).

Definition 6. f :(a,b) > R is said to be strictly convex on (a, b) if

(1) vx,ye(ab)andx=y, for 0<i<l, f(L-ADx+Ay)<@-A)FX)+Af(y),
or equivalently,

(2) for a<x<z<y<b , the chord function

(Y) (@)

—-Z

TO=1@) _ 5z yy = pry,2) = TW=12)
X—27

p(x,z) =
Proposition 7. If g:(a,b) —> R is twice differentiable on (a, b) and g"(x) >0 for all x in
(a, b), orif g’ isstrictly increasing on (a, b), then g is strictly convex on (a, b).

Proof. The proof is similar to the proof of Proposition 5 with inequality replaced by strict
inequality.

The Arithmetic-Geometric Inequality

Let ¢:R — R be defined by ¢(x) =e*. Then ¢"(x)=e*>0 andso ¢is (strictly) convex
on R .

11



Suppose (X, 4, 1) is a probability space (i.e., a measure space with # (X) =1) and f isin
L'(x). Then by Jensen’s inequality (Theorem 2), eXp(J‘X f dy) < jx expe f du.

Take X ={1,2,---,n},n >1, .« = power set of X and y({i}):% for1<i<n and f areal
valued function on X such that f (i) =x; for 1 <i<n.Then (X, 4, u) is a probability space

and any function f on X is integrable with respect to z. IX fdu= %(x1 + X, 4+ xn)and

J'X expe f du :%(eX1 +e% 4. +e" ) Therefore,

E(><1+><2-¢—--~-¢—xn) 1, ., « «
n S—(el+ez+"'+e").
n

Letting y, =e*, we get the Arithmetic-Geometric Inequality,

11
(Y Y,eeey,)m Sﬁ(y1+y2+---+yn)-

2. Inequalities in function spaces.

In preparation of presenting the LP space as a normed linear space, where the triangle
inequality is required for a norm, we discuss here the pertinent inequalities that may be used
or referred to.

Definition 8. If 1< p<w , 1<g<o and %+% =1, then p and g are called conjugate
indices.

Generalized Arithmetic-Geometric Inequality

Let ¢:R — R be defined by ¢(x)=€* . Then ¢isconvexon R. Let X ={1,2},

u{}) = L , u{2}) = 1 , M =power set of X. Then (X, -4, 1) is a probability space and
p q

any real-valued function f on X is integrable with respect to z. Therefore, by Theorem 2,
(D(J.x f dﬂ)SIX¢Of dy.
1 1
Take f:X >R ,let x,=f(1) andx, = f(2). Then J.X f d,UZEX1+aX2 and
1,1
jx expo f du=—e"+=e". Therefore,

q

12
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Thus letting y, =e*, i =1, 2, we have the generalized arithmetic-geometric inequality

We denote the extended real numbers [—o0,00]by R.

Definition 9. Letp>1and L°(u)={f; f: X— C is measurable, (X, .4, ) any measure
space and jx|f|pdy<w}. For f eL?(u), define ||f|| =(J'X|f|'°dy)E
Theorem 10. Let p and g be conjugate indices and 1 < p < o. Suppose (X, 4, p) a

measure space. Let f, g:X — R be measurable. Then we have:

(a) Holders Inequality. | f -g|, <||f ||p ||g||q
(b) Minkowski Inequality. | f +g||p §||f||p +||g||p.

(c) For 1<k <oo, L“(u) isavector spaceand | -|| isanorm on equivalence classes of

almost everywhere equal measurable functions in L* ().
(d) Inparticular, L*(z) is an inner product space with ( f, g) =_|'X f-gdu.
Proof.

Part (a) If |f ||p =0 or ||g||q =0, then | f|” =0 or |g|" = 0almost everywhere with respect to

u. Therefore, |f -g| =0 almost everywhere with respect to x and so (a) is trivially true if we

follow the convention on multiplication in [0, ©]: 0-0c0=00-0=0, X+ =00+ X =00 for
x>0. If ||1‘||p >0 and ||g||p =0 Of ||g||p >0 and ||f||p = o0, then we have nothing to

prove.

Assume now that O<||f||p <oo and 0<||g||q <ow. Let F _l and G = |g|

Apply the Generalised Arithmetic-Geometric Inequality to F? and G® to get

F-GSEF”+1G“ :

Y q

13



Integrating we get:

1 1 1 1
Jy(F-G)dus [ Fru+ [ Gldu=sa o=l oo (4)

N ALC AL [ G- Jlolau [ loldn

(I91,)" LIffax (lol,)" [, l"ax

f-gld
But IX(F -G)dy:M and it follows from (4) that

I, 19l

[-al=],If-gldu<|f],Jol,

since IX FPdu

This proves part (a).

Part (b) |[f +gf, <[ ]|, +[gl,

If | f +g||p =0, then we have nothing to prove. If ||f||p =0 Or ||g||p =0, then we too

have nothing to prove.

We now assume ||f+g||p¢0, ||f||p<oo and ||g||p<oo.
p p .
If |f] <o and |g|, <o , then Ix|f| du<oo and Ix|g| du<oo . since

p
(@j < %(| ik +|g|p), on account of the convexity of the function t” on (0, ),

.[X(|f|+|g|)pd,us2p_l(.[x|f|pd,u+jx|g|pd,u)<oo . Therefore, as |f +g|<|f|+|g| ,
| +9|” <(|f|+]g])", it follows that Ix|f +g|pdyij(|f|+|g|)p du < oo. This means that

if |[f] <o and g|, <co ,then [ |f+g|'du<coand |f+g <co.
So now we assume that ||f||p <o, ||g||p <oo and O<|f +g||p <o,

Observe that | f +g|" =|f +g||f +g|"" <| f|+|g||f +9/" =|f[|f+g|" +|g||f +9|"" .

Therefore,

(||f +g||p)" =[ |f+gffdu<| |f]If+o " du~+] |o]|f +o" du

<6, (17 + 0l dar) +lal, [, 17 + 9" du)} by Holders Inequality (part(a))

14



But i+1=1 sothatlzl—lzp—_1 and (p—1)g=p. Hence
p

P q q p

I, (1 + 0 du) lall, ] 1F+ 0" aa)

=10, 1ol )(J, 17+l du) "

Therefore,
(1, <111, +1al, )(J I +al"d)" =111, +1al, (It +l,)""

Dividing by (||f + g||p)p_l on both sides, we have || f +g|| <||f| +[g], . This proves part (b)

Part (c). L*(u) is a vector space for k> 1.
f, g e L'(x) = [f|.|gland|f+ g|are measurableand | f| ,|g], <.

Suppose 1 < k <. Then by Minkowski inequality (part b)
IHE1+1all, <1l +lloll, =1l +lgl, <. Note that |f +g|<|f|+|g| and it follows that

,Uf +9|k dﬂgjx(|f|+|9|)k du. Hence

[0l =([, 17 +af du)f <(J, (7I+Ia)) du) =[1¢I+lal, <11, +lal, <o
Therefore, f+g € L*(u).

Ifk=1forf,g e L'(x), by the triangle inequality, | f +g|<|f|+|g|,

[£+al,=J|f +aldu<] [f|du~] |oldu=]f], +]g], <.
Hence, f+g e L'(u).

If AeC, thenplainly |Af| =|A||f], < andso Af e L“(x). Thus L*(x) is a vector
space for k> 1.

We note that (1) | f|, =0, (2) |f], :0<:>Ix|f|k du =0« f =0 almost everywhere on X .
@ 14f1, =121 1], and |1 +gl, <] f|+al, <I7), +]al, . Hence |-], isanom on

equivalence classes of almost everywhere equal measurable functions in L (z).
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Part (d). In L*(u), ||f], :(Ix|f|2d” )éz(J'Xf fdu )é. If we define the inner product on
L*(w) by (f,g)=| fgdu, then |f|,=(f,f)*. Note that
(f.0)|=|f, fadu|<[ [Fgldu=]f-gl,=[I|-lol], <I ], 9], < by Holders Inequality.

Observe that (g, f)z_[x g fdyzfxf_gdyzfx f gdu=(f,g). Itisthen easily seen that

L*() is an inner product space.

Remark.

When thought of as a normed linear space, the function space L" () consists of equivalence

classes of almost everywhere equal measurable functions. In practice in most of our
argument we merely proceed by taking a representative of an equivalence class without
explicitly mentioning the class it represents.

3. LP Spaces, L* Space

The first result that we present here is that the equivalence classes of almost everywhere
equal functions of L° (), with the metric induced by its norm is a Banach space.

For a normed linear space V with the norm |{|, the metric d induced by the norm on V is

defined by d(x,y) =||x—y|. Then it is easily seen that for all x, yand zin V,
(1) d(xy)=0,
(2) d(x,y)=0<=x=Yy,
(3) d(xy)=d(y.x),
(4) Triangle inequality, d(x,y) <d(x,z)+d(z,y).

Recall that a set M with a metric function d : M xM — Ris called a metric space if the
function d satisfies the properties (1) to (4) above. An open ball of radius r > 0 and centred at

x in M is the set B, (x)={y eM :d(y,x)<r}. Asequence (x,)in M is convergentin M, if

there is a point x in M such that for any £ > 0, there is an integer N such that

n=N=x,eB.(x),i.e, n>2N=d(x,,x)<e.

A sequence (x,)in M is said to be Cauchy, if for any ¢> 0, there is an integer N such that
nm>N=d(x,,X,)<e. Plainly any convergent sequence is a Cauchy sequence. But not
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all Cauchy sequence is convergent. A metric space (M, d) is complete if every Cauchy
sequence in (M, d) converges to a point in M.

For a normed linear space V, we can consider V as a metric space with the metric induced by
the norm on V. If the normed linear space with the metric induced by its norm is complete as
a metric space, then we say the normed linear space is a Banach space. It is to be noted that
this definition is dependent on the norm specified on V. As a topological space, V has the
topology given by the open balls of V. In general, for a metric space (M, d ), the induced
metric topology Ta on (M, d ) is generated by the family of open sets, i.e., open balls and
arbitrary union of open balls in (M, d ). Hence different norms on the linear space may give
rise to different metric spaces with different topologies induced by the respective induced
metric.

If the norm of a Banach space V arises from an inner product, then it is called a Hilbert space.

More precisely, an inner product on a (real or complex) linear space V is a scalar valued
function on V xV , whose value on (x, y) in V xV is denoted by (x, y)and the function

satisfies the following properties:

(1) (x,x)=0;(x,x)=0<>x=0;

(2) (x,y)={(y,x), the complex conjugate of (y,Xx);
() (x+y,z)=(x2)+(y,2);
@) (ax,y)=a(xy).

An inner product gives rise to an associated norm ||| on V defined by || =/(x,x) . That

this is a norm is a consequence of the (Schwarz Inequality) for inner product:

(%, y)|< W\/W:”x””y” For instance,

2
[x+ 1" = (v xy) =X +y)| + 2Real part(x, ) < x|+ Iy" + 2] v] = (Ix] +]1y])
and the triangle inequality follows.

Hence, we can consider a linear space with an inner product as a normed linear space with the
associated norm defined above. If the inner product space, considered as a normed linear
space with the associated norm, is a Banach space, then it is called a Hilbert space.

Now the equivalence classes of almost everywhere equal measurable functions in L" (x)

under the norm || f ||p = (IX | f |pdy)é for f arepresentative of [ f], the equivalence class

which f belongs, is a normed linear space and the same collection of equivalence classes
with the induced metric is a metric space. By abuse of notation we simply say L’ (u)is a
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Banach space if the equivalence classes of almost everywhere equal measurable functions in
LP () is a complete metric space under the metric induced by the norm.

Theorem 11. For 1 <p <oo, LP(u) isaBanach space. In particular, L?(z) is a Hilbert
space.

Proof.

We shall show that any Cauchy sequence ( fn) in L () has a subsequence that converges

pointwise almost everywhere to a function f in L? ().

(This subsequence will be an “effective” Cauchy sequence. We shall find integers

<l..)

n<n,<-- 5

Mist - f

n; P
Since ( fn) is a Cauchy sequence, there exists an integer n1 such that for alln> na,

1 : :
< P Then there exists an integer nz > ni1, such that foralln> nz,

f.—f

n nlp

. . 1 . .
<=, inparticular, ||f - fan < —7. Next there exists an integer nz > nz, such
P2

n "2 lp

that foralln> ns, [ f —f, <i3 and ||f, —f, <%. Inductively we find integers
2llp 2llp
1 1
n <n, <--- suchthatforalln> ni, |f —f, ; <§ and (f, —f, ; <§.

k
Define for each integer k> 1, g, = > |f, —f,

i1 N N1 N p

Kk
o, = 2,
i=1

k
%<1 andso g, € L°(u).
=1

This means (_[X l9.[° d,u)'l’ =(IX gkpdy)'lj <1,and so IX g/du<1. It follows that

9’ €L'(u). Note that (gkp) is an increasing sequence of non-negative functions.

We also have that g,

P >gPand ¢°

is measurable. (Note that we only assert that the limit exists and may be infinity.)

Therefore, by Fatou’s Lemma,
°d = liminfa? imi p
ng dﬂ—jxl'rﬂjfgkdﬂﬁl”k‘l'ﬂfjx g,du<l.
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It follows that g* is finite almost everywhere with respect to x and so g is finite almost
everywhere with respect to . Hence the series Z( fo. —f, ) converges pointwise
i=1

absolutely almost everywhere with respect to z. That is to say there is a set M of x measure

zero, such that Z( f, Q- f, (x)) converges pointwise absolutely, for all x in X but outside
i=1

M.

Define f(x)= fm(x)+§(fnm(x)—fni(x)) xeX\M
0 ,xeM

Then f(x)= lm(fq(X)Jr;(an(x)—fni(x))j xe X\M

0 ,xeM

iI<im f, (X) xe X\M
- 0 , xeM

Hence f, converges pointwise to f almost everywhere with respect to z.
We shall show next that f e L°(x) andthat f, — f in L°(u).

Since ( fn) is a Cauchy sequence in L" (), given ¢> 0, there exists an integer N such that

foralln,m>N,

1= fall, <e.

Fixedann>N. Then |f —f, ’ converges pointwise almost everywhere with respect to g,

as i tends to o, to | f — fn|p . Therefore, by Fatou’s Lemma,

jx| f—f | dy:IXIiTJEf| f, =] dyslirerigfIX| f, —f, [P du<e®.

AL

This implies that ||f — fn||p :(le f—f |° d,u)% < ¢ < oo and we conclude that for all n > N,

f. —f

Ny n

The last inequality holds since for n, > N,

£, —f

n

1
p\p
| <z

|f—f.] <eand f—f el’(u). Since f,el’(u), f=(f—f)+f, eLlP(x). This
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means f — f in L°(x«). Thus, any Cauchy sequence (fn) in L"(w)is convergent in

L?(x) and so LP(w) is a Banach space.

Now L?(u) is also a Banach space and the norm is given by an associated inner product (see
Theorem 10 part (d)) and so it is a Hilbert space.

Definition 12. Let (X, .# , 1) be a measure space. Suppose f : X — R is a measurable
function. Then the essential supremum of f is defined by

esssup f = Ngler)IN):osup{ f(x):xeN} .

Equivalently, let S = {a eR:u(f?((e,]))=0and o > inf f(X)} ,

infS, iIfS#Y

esssupfz{ T
o , ifS=

Note that if S =, then either inf f(X)<infS <o or infS =inf f(X).

It is not clear that the two definitions above are equivalent. We elaborate the proof of this
fact below.

Lemma 13. The two definitions in Definition 12 are equivalent.
Proof.

We show the equivalence of the two definitions for the case one of the definitions gives co.
Suppose S ={a eR:u(f(a,])=0and a > inf f(X)} =,

Now either inf f(X)=oo0r inf f(X) <o,

If inf f(X)=o0,then f(X)=o0and for any proper measurable subset N of X with
#(N)=0,sup{f(x):xeN}=co0 and so Ngxi’r)):m:osup{ f(x):xegN}=o0.

Suppose inf f(X) <o and so S =< implies for any real number « > inf f (X)),
(e, %])#0. It follows that for any measurable N < X and (N)=0, f™*(a,] N
and so sup{ f(x):xeN}>a. Hence sup{f(x):xeN}=oo. Therefore,

inf  sup{f(x):xeN}=oo. Notethatif —so<inf f(X)<o,as u(f*(a,0])=0for

NcX,u(N)=0

a>inf f(X), u( f(inf f(X),0])=0.
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Conversely, suppose Ng)!?IN):OSUp{ f(x):xeN}=co, then sup{f(x):xe N}=oo forany

proper measurable subset N < X and x#(N)=0. It follows that for any real « > inf f (X)),
f *(a,0] « N for any proper subset N = X and z(N) =0 forif f*(a,0]< N, then
sup{f(x):xeN}<a contradicting sup{f(x):xeN}=co. Hence y(f‘l(a,oo]);to for

any real o >inf f(X) and so
Sz{aeR:y(f’l(a,oo])zo(’:mdazinf f(X)}z@.

Case S#J.

Then either inf f(X)<infS <o or infS=inf f(X).

Case S= and inf S =inf f(X)

When S =& and inf S =inf f (X), we discuss the two possibilities according to (1)
inf f(X)e f(X) or (2) inf f(X)e f(X).

Note that if S = and inf S =inf f(X), then u(f*((c,]))=0for any
a >inf f(X).

1) S, InfS=inf f(X) and inf f(X)e f(X). Then either inf f(X)=—w or
—oo < inf f(X) <.

Case Sz, infS=inf f(X), inf f(X)e f(X)and inf f(X)=-o.
Forany a>inf f(X)=-, f*((a,0])#X , u(f™*((e,]))=0
and inf f(X)<sup{f(x):xe f*(a o]} <a

andso inf sup{f(x):xeN}=inf f(X)=infS.

NeX,u(N)=0

Case S=@, infS=inf f(X), inf f(X)e f(X)and —w<inf f(X)<oo.
Forany o >inf f(X), f*((a,])#X , u(f™*((e,]))=0 and so

inf f(X)<sup{f(x):xe f*(ao]}<a. Taking N =u(f™((a,])),
sup{f(x):xeN}<a. Hence " Xim:N) OSUp{f(X):XeEN}Sa for any

=X, u(N)=
a >inf f(X). Therefore, inf sup{f(x):ng}:inf f(X)=infS.

NcX, u(N)=0
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Moreover, for integern > 1, ,u(f l[mf f(X)+— ooD 0so that

-1

:my{f-l((inf f(X)+%,ooDj=O

andso infS=inf f €S.

p(£7H((nf £(X),e0])) [O ( inf f(X)+— 0 D

(2) Case SO, infS=inf f(X), inf f(X) ¢ f(X)

If inf f(X)> -0, then y[fl(inf f(X)+1,ooD:0foranyintegernz 1.
n

Therefore, 41(X) = (£ ((inf £ (X),])) =y[[j fl[(inf f(X)+%,oom

n=1

:mﬂ[f-l((inf f(X)+%,oom:o

andso inf S=inf f(X)eS.

Note that for any integern > 1, ,u[ f 1((inf f (X)+1,ooDJ =0, so taking
n

N = f‘l([inf f(X)+1,ooD, sup{f(x):xe N} <inf f(X)+%. It follows
n
that Ngxlgfmzosup{f(x):xe N} <inf f(X)and so

inf  sup{f(x):xeN}=inf f(X)=infS.

N X, u(N)=0

If inf f(X)=—, then

n=1

p(X) = (17 ((inf f(X),oo]))zu[O f‘l((—n,w])j

=lim (£ 7((-n,=])) = 0.

n—oo
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Observe that for each integer n>1, f*((-n,])= X, ,u( f ‘1((—n,oo])) =
and so taking N = f *((—n,oo]) we have sup{f(x):xe N} <-n. It follows
that Ngxiafmzosup{ f(x):xeN}=—oo=inf f(X)=infS.

In both cases, we get N;XIDIN):OSUp{ f(x):xeN}=infS.

In the case when S #J, inf S =inf f(X)and inf f(X)¢g f(X), #(X)=0. Thiscan
happen only if the measure space (X, -4, ) is trivial.

Case Sz and inf f(X)<infS <o,
We claim that if inf f(X)<infS <o, then y=infSeS. We show this below.

Let n be an integer > 1. Then by definition of inf S, there exists # € S such that
y<pB< 7/+1 and u( f‘l((ﬂ,oo])) =0. Since f_l((y+%,oo])g f‘l((ﬂ,oo])and
n

f7((y+2,0]) is measurable, z(f™((y+%,]))=0. Therefore, since

o0

((y,]) Uf H((y+t,0]) and T ((r+3,000) < FH((r +5, ),

n=

,u(f_l((y,oo])):!i_r)E\oy(f_l((y+%,oo]))20. Thus y=infSeS.

Take N =f"(y,00]. Then x(N)=0 and sup{f(x):xeN}<y.

It follows that NgXI,r)IN)=OSUp{ f(x):xeN}<y.

Now givenany £> 0, y —¢ <y =Iinf S . This means ,u(f*l(y—g,oo])>0. Hence,
forany Nc X and x(N)=0, f7(y—&0]zN andso sup{f(x):xeN}>y—¢.

Therefore,  inf sup{ f(X):xg N} >y—¢. Since g > 0is arbitrarily chosen,
NeX,u(N)=0

Ng)(lgEN)zosup{ f(x):xeN}>y. We can now conclude that

inf  sup{f(x):xegN}=infS=yp.

NeX,u(N)=0

This completes the proof of Lemma 13.
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We say f is essentially bounded if esssup| f | <0,
Note that if f is a non-negative function, then

esssup f =inf {are R (£ ((ar,0])) =0 and @ >inf f(X)=0} 0.

Let L°°(,u):{f : X = C; f measurable and esssup|f|<oo}. l.e., L(u) is the space of

essentially bounded measurable functions and we define || f|| =esssup|f| for f in L*(x).

We shall show that L™ () is a linear space, i.e., a vector space over C, and |  isanorm on

L (41) -

Note that for f & L"(x), 0<[f], =inf {a e R: (| f|" (e, 1) =0 and ax >inf | [ > 0} <o,
Here we regard | f| as a measurable function of X into [0, «]. Therefore, there exists a

a, e{aeR:y(|f|—l((a,oo]))=O and azinf|f|20}such that o, <||f||w+%. That is ,

,u(|f|71((05n,oo])):0. Let E, =|f| " ((e,,]). Then u(E,)=0.

This means |f(x)|£||f||w+% forallxin (E,)" . If we let A:GEn , then

b
|fq|<||f|, forallxin A° and u(A)=0.
We can now conclude that for any g in L”(u), there exists a set B of measure zero such that
lg()|<|g|, forallxin B° and x(B)=0.
Therefore,
|00+ <[f ()| +{gCal<[f], +]g].

forallxin (AUB)" and u(AUB)=0. Hence, |f +g| " ((|f], +]g], .])< AuBand so

£l +lal. E{aeRiﬂ(H +g|71((06,oo]))20,a2 inf| f +g|}. It follows then from the

definition of infimum that
| +al, <[, +lall <o, oo )

Therefore, f +g9eL”(u).
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Takeany f eL”(u) and A # 0. There exists a set N of measure zero such that
|f(q)|<|/f|, forallxin N°.

Hence, |Af(x)|<||| f|_ forallxin N°. Therefore, |Af| <|||f| <oo.This means
Af el (u).

Thus L” () is a linear space.

If ||| =0, then there exists a set E of measure zero such that
|f()|<|f|| =0 forallxin E° and x(E)=0

and so f =0 almost everywhere on X. We have already shown that the triangle inequality
(see (1)) holds. Hence [ is a norm on equivalence classes of almost everywhere equal

measurable functions in L (x) .

Note that if (X, .4, 1) is a measure space and f : X — R is measurable, then

esssup| f|<sup|f|. Furthermore, if every non-empty measurable set in .4 has positive

measure and f is measurable, then esssup|f|=sup|f|.

Lemma 14. Suppose X is a topological space. If f : X —[0,0) is continuous and (X, -# , u
) is a measure space such that .# contains all the Borel subsets of X and any non-empty
open subset of X has non-zero measure or X =R"and (X, -.# , i) is the Lebesgue measure
on R", then esssup f =sup f .

Proof. Suppose f:R" —[0,) is continuous. Note that inf f >0.
Suppose esssup f =co. Then S ={aeR:y(f_l((a,oo]))=0 and o >inf f(X)}=®.

This means for any real o > inf f, 4 (f™((cr,]))=0 and so f~*((er,0])=@. Hence f
is unbounded and so sup f = . Conversely, suppose sup f =c. Then the function f is
not bounded above. Therefore, for any real & >inff, f=((a,])= & andsince f is

continuous f‘l((a,oo]) is open and non-empty and so ,u( f *l((a,oo])) #0 . This means for
any real a >inff, a ¢S ={aeR:y(f‘1((a,oo]))=0 and o >inf f(X)} andso S=&.

Thus esssup f =o0.
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Now suppose esssup f =y <o, Plainly esssup f =y <supf . As y €S,
,u( f *1((7,oo])) =0. Since f™((y,]) is open and of measure zero it must be an empty set

as the only open set of measure zero in .# is the empty set. Therefore, y > f(x) forall x in
X. Thismeans y >sup f andso y=sup f .

Theorem 15. Suppose (X, # , 1) is a measure space. L”(x) is a Banach space. More

precisely, the equivalence classes of almost everywhere equal measurable functions on X,
which are essentially bounded, is a Banach space with the metric induced by the essential sup
norm.

Proof:

Let (f,) be a Cauchy sequence in L”(x).

Let A ={xe X:|f,(q|>]f,|.} . Then by definition of ||f | . x(A)=0. Let
B, ={Xxe X:|f, (x)— ()| >|f, - f.|.}. Thenwe too have u(B,,)=0.

0

Let N = [OJ A v U B, , . Then by countable additivity, #(N)=0. Thus, if x is in the
n=1 m=1,n=1 ’

complement of N, then | f, (x)— f, ()| <|/f, — f,,|| . Now given any £>0, since (f,) isa
Cauchy sequence in L”(u) , there exists an integer M such that n, m > M implies that

|f,— .| <e&. Therefore, forall x in N°,
|£,00 = £, <[, = f]. <& forn, m =M. =weemememmmeoem oo (1)

That is, ( f,(x))is uniformly Cauchy on N°. Moreover, for each xin N°, (f (x))isa

Cauchy sequence of complex numbers and so it is convergent. Now for all xin N°, n >M
implies that

£,00] =] £,00 = fu 00+ Fu 0] <[ £,00 = Fu O] +] Fu OO <[ £, = Fua | +] Fur . <&+ f

wll.

Therefore, for all xin N°, | f (x)|=lim|f,(x)|<&+| f,]|, - Hence f (x) is a bounded function

on N°. Now define f(x) =0 forx e N. Since N° is measurable, f isa measurable function
on N° since it is the pointwise limit of measurable functions on N°. As N is measurable,
and so the extension to X by defining f (x) = 0 for x € N, is measurable on X. (Note that each
f restricted to N° is measurable in the measure subspace (N°©, 4NN, ul M~N° ) as

MNNE < M . Therefore, the pointwise limit, f , is ,u| MNN® measurable and so is u-

measurable. Extending f to include N of g-measure zero, plainly makes f a g-measurable
function on X as the preimage of f of any open set is either the preimage of the restriction
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of f to N° or the union of this preimage with the z~measurable set N, if O belongs to the
open set. (The preimage of any open set of the restriction of f to N° is y-measurable and so
the preimage of any open set of the extended function is x#-measurable. ) Thus, f is
measurable and| f | =esssup|f|<&+]||f,|| <oo. This means f e L*(x). Observe that from

(1) by letting m tend to infinity, forn > M, |fn(x)— f(x)| <g forall xin N°. Therefore,
sup{[f,(x)— f(X)|:x& N} <zand as x(N)=0, it follows that || f, — f| <& . Hence
f.—> f in L"(w). Itfollows that every Cauchy sequence in L”(x) is convergent and

converges to a measurable function in L” () and so the equivalence classes of almost

everywhere equal measurable functions in L”(z) with the induced metric is a Banach space.

4. A Special Dense Subspace of LP(x), 1< p <o, Approximation by
Continuous function, Lusin’s Theorem.

If (X, d) isametric space, then (X : 6I) is a completion of (X, d), if (X : &) is complete and

there is an identification (isometry) of (X, d) with some dense subset of (X , d). That is to

say, there is an isometric map i: X — X such that every element of X is the limit of some
sequence in i(X) orthat i(X) isdense in X . An isometric map between two metric spaces
IS a distance or metric preserving map, i.e., if (X,,d,) and (X,,d,) are metric spaces and

T: X, —> X, isamap, then T is an isometry or an isometric map, if for all xand y in X1,

d, (T(x),T(y))=d,(x,y). Observe that any isometric map is injective for if T (x) =T (y),
then d,(x,y)=d,(T(x), T(y))=0=x=y. Note that every metric space has a completion.

The completion (X : d) IS unique up to isometric isomorphism, a bijective isometry. For
linear metric space (X, d), the completion (X , &) is also a linear space and the map

i: X — X should be a linear isometric map and the completion (Xd) is unique up to linear
isometric isomorphism. More precisely, suppose ()21, &1) is also a completion of (X, d) and

i, : X — X, is an isometric embedding. Then there exists an isometric isomorphism

K :X — X, such that Koi=i, .
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Take ye X . Then there exists a sequence (xn) in X such that i(x,) > y in (Xd) Then
(i(x,)) is a Cauchy sequence in (X , &). This implies (x,) is a Cauchy sequence in (X,d).
Since i,: X — X, is an isometry, (i,(x,)) is also a Cauchy sequence in ()21, dl)and S0 is

convergent in ()Zl,&l). Define K (y) = limi,(x,).
We now show that K is independent of the choice of the sequence (X, ).

Suppose (yn) Is another sequence in X such that i(y,) —y in ()Zd) Then
d, (1,50, imiy () = lim d, (1,5, (5.)) = lim d (y,.,,) = limd (i(y,),i(x,))
=d(i(y ) limicx,)) = (i%), ).

Therefore, Jim &l(il(yk),Iimil(xn))=1imci(i(yk),y)=0
and hence limi,(y,) =limi(x,).

Plainly, Koi(x)=K(i(x))=i,(x) forall xin X.

K is an isometry.

6|1(K(x),K(y))zal(mil(xk),mil(yn)),where i(y,)—>y and i(x,)—x in (Xd)
= limd (i(x),limi(y,)) = limd (i(x), y) = d (fimi(x), y) =d (x ).

K is plainly surjective. Anyy in ()21,&1) is the limit of a Cauchy sequence in i,(X). That is
there is a sequence (y,)in (X,d)such that i,(y,) > yin ()Zl,&l). Then (i(y,)) is a Cauchy
sequence in (Xd) Therefore, i(y,) is convergent in(X,d). Let x=Ilimi(y,). Plainly,

K(x) =y. Hence K is a surjective isometry and so is an isometric isomorphism. If (X,d)isa

vector space, then the completion is also a vector space and i: X — X is linear. It follows
that K is a linear isometric isomorphism.

It is well known that every metric space has a completion that can be defined by equivalence
classes of Cauchy sequences. For some function spaces as described below their completions
are naturally also function spaces.
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A measurable complex function on a measure space is simple if it takes on only finite number
of complex values.

Proposition 16. Suppose (X, 4 , 1) is a measure space. Let
S= {s : X — C;s is a simple measurable function with z({x:s(x) = 0}) < oo} be endowed

with L?(z)norm, i.e., ||s||p =(J‘X|s|pd,u)’1’ . Then S < L°(u) and is dense in L°(u)in the

LP () metric. Hence the completion of (S,||.||p) is LP(u).

Remark.

The collection of equivalence classes of almost everywhere equal measurable functions in
L? () forms a normed linear space with the ||||p norm. The ||||p norm induces a metric on this

collection of equivalence classes. By abuse of notation, we still denote this collection of
equivalence classes by the same symbol, L° () and consider it as a metric space with the

metric topology. When we say S < L” (), we mean as a set S is a subset of

{f : X > C; f is measurable and || f ||p <oo}

and now by taking for each s € S, the equivalence class it belongs to in L” (), S considered
as a collection of equivalence classes in L°(u)is a subset of all the equivalence classes of
almost everywhere equal measurable functions in L” () and as a subset of the metric space

L® (1) (equivalence classes), S (equivalence classes) is dense in L” () (equivalence classes).

For simplicity of argument, we simply use the same symbol for the function and the
equivalence class it belongs to in the proof and just use the representative before passing to
the equivalence class without mentioning this last step.

Proof. Obviously, S is a vector space and S < L"(x). We shall show, forany f in L° (),
that given any &> 0, there exists a function s € S such that | f —s||p <e .

Now for any f in L”(«), write f in its real and imaginary part, i.e.,f =u+iv,whereu=
real part of f and v =imaginary part of f. Since f is measurable, uand v are measurable.
Therefore, u™ =sup{u,0} and u~ =sup{-u, (0} are non-negative and measurable and the same

is true for v andv™. Hence f =u"—u +iv —iv .

So now we suppose f € L°(u) and f >0, i.e., f takes on only non-negative real values.
Then there exists a sequence of measurable (non-negative) simple function, (Sn X - R*) :

such that (s,) is an increasing sequence of functions and s, — f pointwise. Now as
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0<s,<f, [s,]| <||f], <ecandso s, €S forall integer n > 1. Moreover since
|f—s,|"=(f-s,)"< " and IX fPdu<oo, (f—s,)" is dominated by the integrable
function fP. Therefore, by the Lebesgue Dominated Convergence Theorem,

Iimfx|f —s,|"du=0. Hence Iim(IX|f —sn|pdy)'1’ =lim|f —s,| =0. This means that

n—o0

s, - in ().

It now follows that for f =u™—u™ +iv" —iv™, there exist sequences of measurable (non-
negative) simple functions, (u; ),(u, ),(v;) and (v, ) such that

u, —>u',u-—u,v. >v-andv, —> v in L°(u). Therefore,
Uy —u, +iv, —iv, > u"—u +iv —iv =f in L°(u).

Plainly, s, =u, —u, +iv, —i v, isameasurable simple complex functionandso s, €S and

s,—> fin L°(n).

Hence L°(u) is the closure of S in the equivalence classes of almost everywhere equal
measurable functions in the metric topology induced by the LP norm and so S is dense in
L (x). Now any Cauchy sequence (s,) in (S,||-||p) is also a Cauchy sequence in L?(x) and

so as L"(u)is complete, (s,) converges to a function in L° (). It follows that the

completion of Siis L (). (Here for simplicity we use the same symbol to denote

equivalence classes as well as its underlying space when considering the equivalence classes
as metric space. More precisely, if ~ P(u) denotes the equivalent classes of almost

everywhere equal measurable functions in L (), then </ P(u) is a normed linear space with
the ||||p norm and is a metric space with the metric induced by the norm. If s denotes the

equivalence classes of almost everywhere equal measurable functions in (S,||-||p) , then we

may embed S as a subset of ~ P() by simply assigning to each equivalence class in s, the
extended equivalence class in L”(z). Thus in this way S is a subset of the metric space

~ P(w) and its closure in ~/ P(u) is ~/ P(x) and so sis dense in / P(x).) Note that for a
complete metric space the completion of a dense subspace is the whole metric space itself.
The above is just a simple verification of this fact.

When X is a special metric space, for example, the familiar R" with the Euclidean metric,
what is a suitable useful dense subspace of L"(x) other than the subspace S defined above?

Note that R" with the Euclidean metric is a topological space with the usual topology, it is
locally compact and Hausdorff. So, we now assume that X is a locally compact Hausdorff
space.
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The set of continuous function on X, if endowed with the L (z)norm, for some suitable
measure space, (X, 4, ), where 4 is a suitable o algebra containing the Borel subsets of
X and u is some suitable positive measure on .# , is a normed linear space and the L” ()

norm gives rise to a metric on the equivalence classes of almost everywhere equal continuous
functions.

Definition 17. Suppose Y is a topological space. Let f:Y — C be a complex function.

Then the support of f , denoted by supp f, is the closure of the set {x eY: f(x) ¢0}, i.e.,

support f ={xeY: f(x)=0} . The collection of all continuous complex function on Y
with compact support is denoted by C_(Y). Thatistosay, f eC_(Y) if supportof f is
compact in Y. Then observe that C_(Y)is a vector space. We deduce this as follows. If f
and garein C_(Y), then

{xeY: (f+9)(x) =0} < {xeY:f(x)=0}u{xeY:g(x)=0}

sothat {xeY:(f+g)(x)#0} < {xeY:f(x)=0}u{xeY:g(x)=0}. This means

supp (f+g) < suppf U suppg.

Assupp f and supp g are compact, supp (f+ g) is a closed subspace of a compact space
and so is compact. Therefore, as f + g is also continuouson Y, f +geC_(Y). Forany a#0,

L#0,supp (af+5g)c suppf U supp g and so the same argument above shows that
af+p9geC.(Y). Thus C.(Y)is a vector pace over C .

Now we elaborate on the measure space (X, -.# , ). It should ideally satisfy the following 6
properties:

(1) 4 is a o algebra containing all the Borel subsets of X ;
(2) u is apositive measure on 4 satisfying:

(3) For all compact K c X, u(K)<oo.
(4) Forall E e A, p(E)=inf{u(V):V 2E andV isopen} (Outer Regularity).
(5) Forall E € . such that either E is open or u(E) < ,

1(E) =sup{u(K): K c E and K is compact} (Inner Regularity).

(6) is p-complete, i.e., forall N e 4 such that 4(N)=0, foralEc N ,E € ..
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Properties (1) to (6) is satisfied by the Lebesgue measure on R .

If (X, o4, 1) is a measure space that satisfies properties (4) and (5) for all Ec . without
any condition, then it is said to be regular . If (X, &), x) is a Borel measure space, i.e.,
B(X) is the oalgebra generated by the Borel subsets of X and x a positive measure on &(X),
and if it satisfies (3), (4) and (5), then it is called a Radon measure on X.

Every measure space (X, .# , 1) has a completion (X, .#* , 1/* ), where 4* is complete and
¥ ¥ — [0, o] is a positive measure whose restriction to 4 is x. Thus the completion
of a Radon measure (X, &(X), u) satisfies all six properties above.

For X =IR", the Lebesgue measure space (R", .4, 1), where .4 consists of the Lebesgue
measurable sets and y is the n-dimensional Lebesgue measure, satisfies all of the above six
properties.

The next result gives an approximation of measurable function on X by function in C_(X)

and is the key or technical result needed in proving the density of a subspace of the function
space to be introduced later.

Theorem 18. Lusin’s Theorem.

Suppose X is a locally compact Hausdorff topological space and (X, 4, ) is a measure
space satisfying properties (1) to (5) above.

Suppose f : X — C is a measurable function such that {x eX:f(x)# 0} cAandAe  #,
where u(A) <o . Then for any &> 0, there exists g € C,(X) such that

pu{xeX:g(x) = f(x)}<e.
Moreover, we may arrange it so that |g|| =sup|g(x)| <sup|f (x)|.
xeX xeX

Before we prove this theorem, we shall recall some topological facts.

5. Topological Ideas

Recall a topological space is a set X with a collection ./ of subsets of X called open sets such
that (i) &, X e . 7and (ii) . /" is closed under arbitrary union and finite intersection, i.e., if .~/
is any sub-collection of ./, then U{U: Ue ./ }e ./ andif U1, U2, ...,Un €./, then
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ﬂUi € .. When we speak of a topological space, the topology or the collection . of open
i=1

sets is understood to be given. A setis open if it belongs to.~. We do not normally specify
the topology . /. A neighbourhood of a point x or a set E is a set N such that it contains an
open set U containing the point x or set E respectively. A setis closed if its complement is

open. A sequence {xn}::1 in a topological space is said to converge to a point x, written
X, — X, if for any open set U containing X, there exists an integer M such that
n>M = x, €U . A topological space is Hausdorff if for any x =y, there are open

neighbourhoods U and V of x and y respectively such that U nV =. If a topological space
X is Hausdorff, the limit of a sequence in X is unique. A point Xo is a limit point of a subset A
in a topological space if every open set containing Xo also contains a point of A distinct from

Xo . The closure S of a subset S in a topological space X is the smallest closed subset
containing S, more precisely,

S=N{F:F2S, Fisclosed} .

Let S’ be the set of limit points of S, then S=SUS’. Asa consequence of this, a point x e
S if and only if every neighbourhood N of x has N NS =& . Therefore, if there exists an
open set U containing x such that U NS =&, then x ¢ S. Itis to be noted that if A and B are
subsets of a topological space X and Ac B, then A< B and that if F is closed in X and
ScF,then ScF. AsubsetEofa topological space X is said to be dense in X if E = X .
A topological space X is said to be compact if for any open cover & of X, i.e., & consists of a
collection of open sets in X such that U { U € £} = X, there exists a finite subcover

{U,U,,---,U,} =& suchthat U, uU, U---uU, =X . Asubset A of a topological space (X,
./") inherits the topology from X called the subspace topology or relative topology . /1a= {
UnA:U €./} A subsetof atopological space is said to be compact if it is compact with

the relative topology. A subset Kin R" is compact if and only if it is closed and bounded
(Generalized Heine-Borel Theorem). Amap f: (X1,. 1) =>(X2, . 2 ) between two

topological spaces is said to be continuous if for any open set U in X2, i.e., U .72, f(U)
isopenin Xior f(U)e . 1. The continuous image of a compact set is compact. The

usual or metric topology on a metric space (M, d), is the induced topology Td on (M, d)
generated by the family of open balls, i.e., open balls and arbitrary union of open balls in (M,
d). Inametric space (M, d) the limit point of a subset S in M is precisely the limit of a

sequence of distinct points in S. Therefore, if(X,d) is a completion of (X, d) and i: X — X

is the isometric embedding of X, then the closure i(X)of i(X)in X is X or equivalently
i(X)isdensein X .
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(1) A topological space Y is said to be locally compact if each pointy in Y has a compact
neighbourhood. That is to say, there exists a compact subspace K of X and an open set such

that yeV < K. Asubset ECY is said to be relatively compact if its closure E is
compact.

(2) A compact subspace of a Hausdroff space Y is closed in'Y.
(3) A closed subset of a compact set is compact.

(4) Therefore, for a Hausdorff space Y, Y is locally compact if for each pointy in 'Y, there
exists an open set V such that y eV and the closure VV is compact.

(5) For a Hausdorff space Y, if {Ka} is a collection of compact sets in Y such that K, =&,

then some finite intersection also has empty intersection.

Proof.

Since Y is Hausdorff, each K is closed in Y. Therefore, the complement K: of K_ is open

in'Y. Choose a member in {K_}, say K;. Thensince K, nN K, =&,

a#l

Klg(ﬂ Ka) = UK . Therefore, {K:a =1} is an open cover for K,. As K, is

a#l a#l

compact, it has a finite subcover say {K%c, K, Kanc} and

]

Klg{KacuKacu...uKac}:( Ka‘j . This means K, "N K, =@.
1 2 " J ; i)

i

(6) For a Hausdorff space Y, we say Y is regular if for every closedset AinY and x ¢ A,
they have disjoint neighbourhoods, i.e., there exists open set N > A and opensetV, xeV
such that NV =. More precisely Y is regular Hausdorff or satisfies the Ts separation
axiom.

(7) For aregular Hausdorff space Y, for any y €Y and any neighbourhood N of y, there

exists an open neighbourhood V of y such that y eV cVcN.
Proof.

Lety Y and N be an open neighbourhood of y. Then the complement of N, N° is closed in
Yand y e N°. Since Y is regular Hausdorff, there exist open sets V and U in Y such that
yeV , N°cU and VU = . Therefore, V cU° , which is closed in Y. Hence

V cU°® c N. It follows that yeV cVc N,

(8) A Compact Hausdorff space is regular.
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Proof.
Suppose Y is a compact Hausdorff topological space.

Take any closed set AinY and x ¢ A. Then A is compact and it follows that there exists open
sets Nand Vsuchthat N2> A, xeV and NV =. Therefore, Y is regular.

(9) For a Hausdorff space Y, Y is locally compact if and only if for each pointy € Y and for
any neighbourhood N of y, there exists a neighbourhood V of y such that V is compact and
V2 cN.

Proof. («<=) This is obvious. Foranyy € Y, take any neighbourhood N of y. Just take
K=V .

(=) Take any y € Y and any neighbourhood N of y. Since Y is locally compact, there exists
a compact subspace K of X and an open set such that y eV < K. Since Y is Hausdorff , K is
closed. Therefore, V < K and K is compact and so by (3), V is compact. In particular, V is

Hausdorff. Therefore, by (8) V is a regular topological space with the relative topology. As
N is a neighbourhood of y, there exists an open set U in Y such that y eU = N . Now U ~V

is an open set in V. with the relative topology. This means U ~V is a neighbourhood of y in
V with the relative topology. Therefore, by (7), there exists a neighbourhood W of y open in
V with the relative topology, such that y eW < closure of W inV cU NV .

Since W is relatively open in V , there exists an open set D in Y such that W =DV . Let
E=DnNV. ThenEisopenand EcW and E <V and so EgV_VmV . As

closure of W inV is W ~V we have ye EcE cU NV < N . Moreover E is compact.

(10) Suppose Y is a locally compact Hausdorff topological space. Suppose U is open inY
and K is a compact subset such that K —U . Then there is a relatively compact open set, i.e.,

an open set V where V is compact, such that K <V cVcU.
Proof.

Suppose K is compact, K cU and U isopen in Y. For each point y € K, y has a relatively
compact open neighbourhood, V, . Then the collection {V, :y Y} is an open covering for

K. As K is compact a finite number of these open sets say, {vyl,vyz ,---,Vyn} , cover K. Let

G=V, UV, U---UV, .Then Gisopen, KcG and G is compact.

If Uisall of Y, thentake V=Gand K<V cV cU.

Now assume U is not all of Y.
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Now for y #U and hence y ¢ K and as K is compact and Y is Hausdorff, there exists open
neighbourhood Vy of Ksuch that K <V, and open set E, suchthat y e E, and

EymVy:@. As EymVy:@, yeEVy )

Then the collection {U ¢ m@m\Ty: yeU °} is a collection of compact sets as each
U°NGANV, is compact for G is compactand U° AV, is closed (see (3)). Since
ﬂ{\7y: y eU°}mU° =@ we have that ﬂ{UC NGV, :y eU°} =@ . Therefore by (5) a
finite intersection of these compact sets is also empty. That is there exists

{¥1: Va0 Yo} €U° such that i(:11U°m6m\/_yi:@_

LetV =G mVy1 mVy2 m---mvyn .Then K<V and

\7=vayl AV, NNV, g@m\/_ylm\/_yzm---m\/_yn . Thus V isa closed subset of G, a

compact set and so it is compact.

As ﬂUCmémV—y_:(ém\?m\?m---m\?)mw =3, (_Bm\Zm\?m---m\?gU t
i=1 i 1 2 n 1 2 n

follows that K <V g\7 cU.
(12) A locally compact Hausdorff space Y is regular.

Proof. Take aclosedset AinY . Take any x notin A. Then xe A° . Now U = A°® is open
and so is a neighbourhood of x. Then by (9) there exists a neighbourhood V of x such that V

is compact and V cU. Then (\7)c is open and (\7)C >U=A. Thus (\7)C is an open

neighbourhood of A, V is a neighbourhood of x and V m(\7)c =. Hence Y is regular.

(12) Open subset of a locally compact Hausdorff space is locally compact and Hausdorff;
closed subset of a locally compact Hausdorff space is locally compact and Hausdorff.

Proof.

Suppose X is locally compact. Then any subset A with the subspace topology is Hausdorff.
For take any x and y in A with x #y. Then since X is Hausdorff, there are subsets U and V
open in X such that xeU , yeV and U "V =<. Suppose F is a closed subset of X. Take
X e F. Then there exists a compact subspace K of X and an open set V such that xeV c K.
Since X is Hausdorff, K is closed and as F is closed, F n K is closed in X and is a subset of
the Compact set K , it follows that F N K is compact. Moreover KNnF oV "Fand VN F
is relatively open in F. Hence F N K is a compact neighbourhood of x e F in the relative
topology. This means that F with the subspace topology is locally compact. It is of course
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Hausdorff. Suppose H is an open subset of X. Take xe H. Then H is an open
neighbourhood of x in X. Then by (9), there exists a relatively compact open set V such that

xeV andV <V cH. As Viscompactand V < H, V isacompact neighbourhood of x

in the subspace topology of H.  Hence H is locally compact. As shown before, H is
Hausdorff since X is.

We can approximate a measurable function by using characteristic functions of measurable
sets. Characteristic function is not usually continuous but is nearly continuous, a fact that is
very useful. It is semi-continuous. Characteristic functions are, in some sense, building
blocks of measurable functions. We now discuss some properties of semi-continuity and its
relation with continuity.

Lower and Upper Semi Continuous Functions
Definition 19.

Suppose X is a topological space.

Then a function f: X — R or R is said to be lower semi-continuous (abbreviated I.s.c.) if
{x: f(xX)>a} isopenforall e R. The function f is said to be upper semi-continuous

(abbreviated u.s.c.) if {x: f(x) <«} is openforall « eR.

Wesay f:X — IR is continuous at xo € X if for all £> 0, there exist an open set U,

containing xo such that for all xeU, , —e < f(x)-f(x)<e¢ .

f : X — R is lower semi-continuous at xo € X if for all £> 0, there exist an open set U,

containing xo such that for all xeU, , —& < f(x)—f(X,).

f : X — R is upper semi-continuous at xo € X if for all £> 0, there exist an open set U,

containing xo such that for all xeU, , f(x)-f(x))<e.

It is clear that a real valued function f is continuous at xo € X if and only if f is lower
semi-continuous at Xo and upper semi-continuous at Xo.

Proposition 20.

(1) f:X >R isus.c.ifandonlyif f is us.c.atxforallx e X.
(2) f:X—>Risls.c.ifandonlyif f is l.s.c.atxforallx € X.
Proof. Itisclearthat f: X — R isu.s.c. (l.s.c.) implies f is u.s.c. (I.s.c) atxforallx € X.

Suppose f is u.s.c.atxforallx e X.
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Takeany o eR. Let E= {x: f(x)< a} . For each x in E, there exist an open set U,

a—f(x)

containing x such that forall yeU,, f(y)—f(x)<e. Take €= >0 . Then for all

a+ (%)

yeU,, f(y)<e+f(x)= <a . Therefore, U, is an open neighbourhood of x

and U, < E. Hence E is a neighbourhood of each of its points and so E is open. Hence f is
u.s.c.

Suppose f is l.s.c.atx forall x € X.

Takeany aeR. Let E= {x: f(x) > a}. For each x in E, there exist an open set U,

f(x)-a >0 . Then for

containing x such that forall yeU,, f(y)—f(x)>—-&. Take ¢ =

f(X)+a

all yeU,, f(y)>f(x)-e= > a . Therefore, U, is an open neighbourhood of x

and U, < E. Hence E is a neighbourhood of each of its points and so E is open. Therefore,
fis lsc.

Remark.

f : X > R is continuous if and only if f is both l.s.c. and u.s.c.

The characteristic function y, isu.s.cif Aisaclosed set and is |.s.c. if A is an open set.
Proposition 21.

@ If {fﬂ X > ]Ri} is a collection of lower semi-continuous functions, then sup f, is
B

lower semi-continuous.
2 If {fa ' X —>R} is a collection of upper semi-continuous functions, then inf f_ is

upper semi-continuous.
Proof.

(1) Take any e €R. Since each f,: X — R is lower semi-continuous, the set

U, ={x:f,(x)>a} isopeninX.
Observe that E =< x:sup f,(x =U{x: f (X =Uu, .
fxisup 1,00> af=U[x: 1,0 > af=Yu,

Plainly, f;(x)>a=sup f,(x)>a andso U, c E foreachg. Hence JU, cE.
B B
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Now if xeE ,then sup f,(x) >« and so there exists y such that sup f,(x) > f (x) >« .
p B
Thus xeU, . Therefore, EcUU, andso E=UU . Since U, is open for each f, Eis
B B

open in X. This means sup f, is lower semi-continuous.
B

(2) Suppose each f,: X — R is upper semi-continuous Take any a € R. Since each

f,: X =R is upper semi-continuous, the set V, = {x: f,(x)< a} is open in X.
Observe that Dz{x:ir}f fﬂ(x)<a}=U{x: fﬁ(x)<a}=UVﬂ :
B B
Plainly, fﬂ(x)<a:ir}f f,(x)<a andso V, c D foreach g. Hence UV, c D.
B

Now if xeD , then ir}f f,(x) <o and so there exists y such that ir}f f,<f(X)<a.
Thus xeV, . Therefore, D c UV, and it follows that D =UV,. Since V, is open for each
B B
B, DisopeninX. Thismeans inf f, is upper semi-continuous.
B
We shall use the properties of some special complex function on a locally compact Hausdorff
topological space to approximate a given function.

To describe these properties, we introduce the ideas in the definitions that follow.

Suppose X is a topological space and C_(X) is the vector space of all continuous complex
functions with compact support.

We write K < f andsay f dominates K if

Q) K is compact,

(i) f eC.(X),

(i) 0<f<1 and

(iv) f(x)=1forallxinK.

We write f <U and say U dominates f if

Q) U c X isopen,
(i) f eC.(X),

(i) 0<f<1 and
(iv)  Supportf cU.

We write K< f <U if K< f and f <U
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Lemma 22. Urysohn’s Lemma

Suppose X is a locally compact Hausdorff space, U < X is open, K is compact with K cU .
Then there exists f e C_(X) suchthat K< f <U .

Remark. This means the characteristic functions y, and y, satisfy y, < f < y,.

Proof.

We shall make use of the rational number in [0, 1] to construct the Urysohn function f. Take
an enumeration r: N — [0,1] of the rational numbers, i.e., a bijective function of N onto [0,

1] suchthat ,=r(1)=0 and r, =r(2)=1. We denote the image r(k) by r,.
Suppose K is compact, K U and U is open.

Let U, =U, be the relatively open compact set as given by (10) in the section on topological

ideas, as X is locally compact and Hausdorff, such that
KcUycUy QU -mmmmmmmemmeeeeees (1).

Let U, =U, be the relatively open compact set as given by (10) of topological ideas such
that

We shall inductively define the relatively compact set U, .

Suppose U, ,U, ,---,Uhave been chosen so that if r, <r; , j<n ,thenU, U, cU,.
Then arrange 1,,r,,---, I, inincreasing order. Suppose in this sequence r, <r,, <r;. Then

using U_r] cU, , by (10) choose relatively compact open U, such that

U cu

r j T

cU, cU . e 3)

T i

In this way we obtain a collection of relatively compact open sets {Ur -1 rational €[0,1] }

satisfying U_SgUr whenevers>r, K cU, and U_OgU .

Define a collection of functions { f, : r rational [0,1]} by defining f :X —[0,1] by

r, if xeu,
f.(x)= .
0 , otherwise
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and a collection {g, :s rational €[0,1]} by defining g, : X —[0,1] by

1, if xeU,
g,(x) = o
s , otherwise

Note that f, =ry, . Since U, is open for each rational r €[0,1] , f, is lower semi-
continuous for each rational r <[0,1]. Observe that {x: g,(X)<a}=X ifo>1,
{x:9,(x) <a} :(LTS)C if s<a<land {x:g,(x)<a}=0 if a<s. Thus g, is upper semi-

continuous for each rational s <[0,1].

Therefore, by Proposition 21, f :sup{ f, :r rational € [0,1]} is lower semi-continuous and

g =inf{g, :r rational e[O,l]} IS upper semi-continuous.

r

We shall next show that f = g and so f is both lower and upper semi-continuous and so f is
continuous.

Firstly, we show that f <g .

Suppose on the contrary, there exists x in X such that f (x) > g(x). Then by the definition of
supremum, there exists r in Q n[0,1] such that f, (x)> g(x). Next by the definition of

infimum, there exists s in QN[0,1] such that f.(x)>g.(x). This can only happen if X 9£U_S,

xeU, andr>s. Butr>simpliesthat U, gU_rgUS gU_s and so XELTS and we have a
contradiction. This proves that f <g.

Next, we show that f >g.

Suppose on the contrary, there exists x in X such that f (x) < g(x) . Then by the density of the
rational numbers we can find rational numbers r and s such that f(x) <s<r<g(x).

Since f(x)<s, xeU, andsince g(x)>r, XGLTr . Ass<r, UrgU_rgUng_S and so

x eU, and we arrived at a contradiction and so we have f >g. Hence f =g.

Plainly 0< f <1. Now observe that U, gU_O forall rin Qn[0,1]. Therefore,
f(x);«r&O:>XGU_0 and it follows that supp f = {x: f(x);to}gu_ogu and U_0 is compact

and so the support of f is compact. Hence f <U .As KcU,, f(x)=1 forall x in K.
Therefore, K< f . Itfollowsthat K< f <U .
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5. Proof of Lusin’s Theorem.
For convenience, we state the theorem here.

Suppose X is a locally compact Hausdorff topological space and (X, .4, 1) is a measure
space satisfying the following five properties:

(1) 4 is a oalgebra containing all the Borel subsets of X.

(2) u is a positive measure on 4 satisfying:

(3) For all compact K < X, u(K) <.

(4) ForallE e 4, p(E)=inf{u(V):V 2E andV isopen} (Outer Regularity).
(5) Forall E € . such that either E is open or u(E) < ,

H(E) =sup{u(K):K c E and K is compact} (Inner Regularity).

Suppose f : X — C is a measurable function such that {x eX:f(x)=# 0} cAandA e,
where u(A) <. Then for any ¢> 0, there exists g € C_(X) such that

pu{xeX:g(x) = f(x)}<e.

Moreover, we may arrange it so that |g|| = sup|g(x)| <sup|f (x)|.
xeX xeX

We prove first for the special case:

(1) Aliscompactand 0< f <1.

Since f is non-negative and measurable, there exists an increasing sequence of measurable
simple functions (s,) converging pointwise to f .

We can construct the sequence (s,) as follows, in a similar way for any non-negative

measurable function. Then we shall specialize to a non-negative function whose values are
strictly less than 1.

. .. ) . . 1
For each integer n > 1, divide the interval [0, n] into nx2" sub-intervals of length o

Let E,, = f‘lqlz_nl,%j]e.//, i=12,-,n2",
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F = ft ([n,oo))

n2n -

and snzzl2n Ze +N

. n,i
i=1l

Xk, -

Since f is measurable, the sets E_; and F, are measurable.

j-1 i-1 . .
Note that E , =E ,; VE ., , where sz =I2_n or j=2i—-1. Ontheset E ;, s,,(X)
-1 i-1 . j -1 .
takes on the value ——= when xisin E_,,; and the value > when x is in
2n+ 2n n+l, | 2n+l 2n

E Observe also that

n+l, j+1°

F,=f*([nw)=f([n+Loo))u f*([n,n+1))=F,_, U f*([n,n+1))

n+l

and f*([n,n+1))=U{E,.,; :i=n2""+1to (n+1)2""}.

n+1,i

Thus on the set F

1 and on the set
f*([n.n+1)), s

S, (X) takes on the value n +1 when xis in E

n+l, j

(x)takes on values >n. Therefore, s, >S5, .

n+1 n+l

Since f(x) < , take an integer N such that N > f (x), then foralln>N, s ,(x) <N and so
the sequence is pointwise convergence. Moreover, for each integer n > f (x), f (x) lies in

['2_“1,;—J for some i such that 1<i<n2" andso s,(x) < f(x). Furthermore,

S, (X) > f(x)—z—ln. Hence Liﬂlsn(x) =f(x) .

Let t,=s,,t =s,—s,, forn>2.

'n n

n 0

Then f=lims =lim>t, =>t, .
n—o0 n—o0 =1 =1

Now we specialize to the function f suchthat 0< f <1.

For 0< f <1, we investigate t, and approximate it by a continuous function h, so that

Z h, converges uniformly.
k=1
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First of all, note that F, =< for all integer n> 1. For any integer n > 1,

E,. = f_lqlz_nl,%jj=® if 2"+1<i<n2".

This means for 0 < f <1, we partition the interval [0,1] into 2" sub-intervals each of length
1

2_n .
_ 2. -1 1 .
Forn=1,t=s = ZTXEU =3 Ze, since F=0.
i=1

n2" | -1 (n-1)2"* | -1
Forn>2, t =s —s , = Z?ZEM - > ot e, since F, = for all integer n> 1.

i=1 i=1

j-1 i-1 .
Note that E _,; =E ; UE, ;,, where TR or j=2i-1.
(n-1)2™* i—1 (n-1)2"* i—1
Therefore, forn>2, s, = > ot A, = > F(ZE““ e,)-
i=1 i=1
Hence, forn > 2,
n2" i—1 (n-1)2"t i—1

1:n =S, ~Sia = Z on ZEM - z F(ZEH,ZFl +ZEn'2i)

i=1 i=1

2 2i—2 27 2i—1 US| D2
= Z on lEn,zu + Z on ZEn,Zi - Z F}(En,zm - Z FZEn,zi
i=1 i=1 i=1 i=1

(n-1)2™* 1 n2"t 2i -1 n2"t 2i—2
= z ;(En,zi + z I—ZEn,zi + z I—ZEn,ZH

_n n n
= 2 02 2 =2t 2

n-1 n -
(n-1)2 1 n2 i—1

= Z ?ZEn,Zi_F z
i=1

n
i=(n-1)2"+1 2

Xe

n,i

But E,; = flql_l Lj]z@ if 2"+1<i<n2" andas (n-1)2"+1>2"+1, we have that

2" on
2n71
] :Z 1n;(En2i forn>2
i=1 '
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2n—1

Therefore, forn>2, 2"t => 7. . Notethat 2t, = . .
Y ,2i 1,2

2n71

Ifwelet T,=UE,, forintegern>1,then T is measurableand 2"t , =y .
i=1 n

n,2i
Note that if E,,, # @, then 0¢ f(E,,) for 1<i<2"" andso forall xinTn, f(x)#0 .

Therefore, T, < A . Since X is Hausdorff, A is closed. Then by Property 10 (Topological
Spaces), since X is locally compact and Hausdorff, there exists a relatively compact open set
Vsuchthat AcV cV < X and V is compact. Hence, T. V.

Since u(A) <o, u(T,)<o. Thus, by the outer regularity of u (Property (4)),
u(T ) =Inf {,u(U) UoT, and U is open}. Hence given any ¢ > 0, there is a measurable

openset V. suchthatV, oT, and u(V,) < u(T, )+ . Furthermore, we may choose

V,cV. If V, isnot contained in V, we may replace V, by V, "V and rename itas V, .

By the inner regularity of 4 (Property (5)), (T,) =sup{x(K):K T, and K is compact} .
Hence, there is a compact set K. suchthat K < T and u(K,)> u(T, )—— Thus, we

have K. cT. <V, V. Now u(V,)=uV,-K,)+u(K,) and so

uV, =K) = nuV,) - u(K)<ﬂ(F)+2M [u( e ij:—. --------- 1)

By Urysohn’s Lemma, there exists h, € C_ (X) suchthat K, <h, <V, .

1 Since 0< L h, < i and Zz—ln < oo, by the Weierstrass M-Test,
n=1

Let —h, .
9= = 2" n 2" 2"

<

— is unifonnly convergent. As each h_ is continuous, g is continuous. Since supp hn
2n n n
n=1

cVancVand h,>0,suppg <V <V . Since V is compact, supp g is compact and so
g eC.(X).

. 1 .
Note that if xeV,-K, , ?h”(x) =t,(x). This is because 2"t, = X, and for xeV. —-K_,

2 () =1=h (x),if xeK and 5 (x)=0=h (x) if xe(V,)". Therefore,
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itn(x) =g(x) except possibly for x in Loj(vn -K,)e . 7.

n=1 n=1

o0 o0

Now y[g(vn—Kn)]s y ﬂ(Vn—Kn)<ZZ—1n5=5 and so g(x)=itn(x): f(x) except

n=1 n=1

possibly for x in U (V,-K,) of measure < ¢. l.e., u{xeX:g(x)= f(x)}<e.
n=1

This proves the case for A compact and 0 < f < 1.

(2) Suppose A is compact and f takes on non-negative real values and is bounded, say by

M. Thatis,0< f <M. Then applying (1) to ﬁ f , we have that, for any &> 0, there exists

h e C,(X)such that ,u{Xe X :h(x) ;t%f(x)}«;. Thenletg =M h.

(3) Suppose A is not compact and 0 < f <M.

Since u(A) < oo, by the inner regularity of x4, givenany &> 0, there exists compact K such

that K < A, u(K) >,u(A)—§ so that z(A—K) <§.

Consider g, f . Then g f is measurable, 0< y, f <M and {xeX:y f(x)=0}cK,
where u(K) <. Then by part (2) for any &> 0, there exists g € C_(X) such that

u{xEX:g(x)¢;(Kf(x)}<§.

Let U={xeX:g(x)# xf(x)}. Observethat g(x) =z, f(x) forxin U° and
f(X) =y f(x) forxin KUA". Therefore, g(x)= f(x) forxin U°m(KuA°). Now

(UsA(KUA)) =UU(KUA) =UU(ANK®)=U U(A-K).
Therefore, {xe X :g(x)# f(x)} cU U(A-K) and so
p{xe X :g(x)= f(x)}Sy(U)+y(A—K)<%+§:g .

(4) Suppose f is not bounded and f > 0.
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Let B,={x: f(x)>n} . Then N B, =@. Notethat B, = Aand since u(A)<oo,
n=1
u(B,) <oo. Therefore, u(B,) — 0. Hence, given ¢ > 0, there exists an integer N such that

n>N :>,u(Bn)<§.

Take a fixed nsuch that n > N. Consider (1-y; )f . Then 0<(1—y, )f <n . Apply part
(3)to 1-xg ). Note that

Q=2 JOOF()#0= f(x)#0 and (1— g )(X) =0
)’ = xeAn(B,)".

:>XEAandXE(B

Hence {x:(1— g )(X)f(x)#0}<= A and u(A) <o .

This gives by part (3) for any ¢> 0, a function g € C_(X) such that
&
uixeX :g(x);t(l—;(Bn)f(x)}<E.

Let U ={xe X :g(x) # (- 7, ) f (). Then g(x)=(L-z, ) f (x) forxin U .

f(X)=@— s )f(x) forxin (B,)" . Hence f(x)=g(x) forxin (B )" nU°.

Therefore, {xe X :g(x) = f(x)} = ((Bn )’ NU C)C =B, uU . It then follows that

u({xeX:g(x)= f(x)})s,u(Bn)Jr,u(U)<§+§:g,

(5) Suppose f isreal valued. Since f is measurable, f, :sup{f,O} and

f =sup{-f,0} are measurableand f=f —f . Suppose {xeX:f(x)=0}cAandA e
M, where p(A)<oo. Note that

f,(X)20=f (x)>0=f (x)>0andf (x)=0 = f(x)#0 andso {xe X: f, (x) =0} c A
. Similarly, we can show that {xe X : f_(x) =0} = A. Now we apply part (4) to f, and f._.
Given ¢ >0, there exists h,k € C_(X) such that

p{xe X :h(x)= f+(x)}<§ and
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p{xe X k(x) f?(x)}<§.

Let U, ={xe X :h(x) = f, (x)} and U_={xe X :k(x) = f_(x)}. Therefore,

h(X)—k(x) = f,()— f_(x) = F(x) forxin (U,)° ~(U_).

c

Hence {x:h(x)—k(x) = f(x)}g((U+)°m(U7)c) =U, UU_ and so

p{Xh()—k() = (0} < p(U,)+uU ) <&

Let g=h—k.Then geC, (X), since support of g=h-—k lies in the union of support of h
and the support of k and the union of two compact sets is compact.

(6) Suppose f is a complex function. Suppose {x eX:f(X)= O} c Aand A € ., where
1(A) <oo. Since f is measurable, Re( f) and Im(f) are measurable. Note that

{xeX:f(x)=0}={xe X :Re f(x)+ilm f(x) =0}
={xeX:Ref(x)#0}U{xe X :Imf(x)=0}.

Therefore, {xe X :Re f(x)#0},{xe X :Im f(x) =0} = A. Thus applying part (5) to Re( f)
and Im(f) we get h,k € C_(X)such that

u{xeX :h(x)¢Ref(x)}<§ and u{xe X :k(x)=Im f(x)}<%.

Let U={xe X :h(x)=Re f(x)} and V ={xe X :k(x) = Im f ()}. Therefore,
h(x)+ik(x) =Re f (x)+iIm f (x) = £ (x) forxin (U) (V).

Hence {x:h(x)+ik(x) % T (x)} =((U)" N (V )“)c —U UV andso

2% h(X) —ik(X) % f (%)} < (U + (V) < &
So, if we letg =h+ik, then u({x:g(x)= f(x)})<e.

Note that g =h+ik € C_(X) as the support of g, being a closed subset of the union of the
support of h and k, is compact.
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Now we come to the last conclusion.

If sup|f (x)|=o0, then we have nothing to prove.

xeX

Suppose now sup| f (x)| =M < oo
xeX
z if |zKM,

Define a complex function ¢ by ¢(z) = . Then ¢is a continuous

M2 if [z[>M
|z]

function on C mapping C onto the closed disk of radius M. Consider the composition
@od . Then @og(x)= f(x) if g(x)= f(x)and so @og(x)= f(x) implies g(x) = f(x).

Hence, {x:@>g(x) = f (x)} = {x:g(x)# f(x)}and so

p({x:0o9() = f(0}) < p({x:900 = f()})<e.

Therefore, we may replace g by g, =@og since ¢o g is continuous and support of gog is
contained in the support of g. Moreover,

@og |:su>[<) goog(x)|£su)[()|f(x)|.

Theorem 23.

Suppose X is a locally compact Hausdorff topological space and (X, .4, 1) is a measure
space satisfying properties (1) to (5) in Lusin’s Theorem.

Give the space of all continuous functions on X with compact support C_(X) the (unusual)

norm ||f|p , 1<p<oo,for fin C(X). Then C (X) < L?(x) and the completion of the

metric space (CC(X),||-||p) is LP(u).

Proof.

Suppose f eC, (X). Let K be the support of f. Since f is continuous, | f|is continuous.
Therefore, {| f (X)| X e X} = {| f (X)| X e K} is a compact subset of [0, c0). Hence
{|f(x)|:x e X } is bounded since a compact subset of R is bounded. Suppose {| f (x)|:x e X }

is bounded by M. Plainly, any continuous function on X is z#-measurable since .# contains
the Borel subsets of X. Hence, f is measurable. Then for any 1 <p <oo,

Ix|f|pdy=IK|f|pdyS_[KMpdy=M",u(K)<oo
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since by property (3) of the measure space (X, 4, 1), u(K) <o as K is compact.
Therefore, || f|| :(IX|1‘|p d/,z)B <. Hence f eL”(x)and it follows that C_(X) < L” (k).
By Proposition 16, the set

S= {s : X — C;s is asimple measurable function with z({x:s(x) #0}) < oo}

is dense in L°(u).
Each simple measurable function in S satisfies the condition of Lusin’s Theorem.

Note that if seS, then s is bounded on X. Hence || =sup|s(x)| <. By Lusin’s Theorem,
xeX

given £> 0, if se€ S, then there exists g € C.(X) such that g(x) = s(x) except on a set of

gl . gl
measure < ——— i, u({x:9(X)=s(X)})<———— and ||g| <]s| -
(2[sf+12)° (2[5 +2)°
Now
p
(”g_S”P) :J-><|g_s|pd'uS {x:g(x):s(x)}|g_s|pd'u+ {x:g(x)¢s(x)}|g_s|pd'u and S0

(lg-sl,)" <o+ (2lsl)” daa<(2]6])" sebx: 9 () = 500}

{xg(x)#s(x)}

2 P &' P
) Gy

Hence, |g —s||p <eg.

Since (S||||p) is dense in L (), for any f in L"(x)and for any & > 0, there exists s € S
such that [|s— f|| < g By what we have just proved above using % instead of ¢, there

exists g eC_(X) such that ||g —s||p <§. Therefore,

E &
4=

lo—fll, =lg—s+s—fll, <lg=s|, +[s—fl, < +3

=&.

It follows that (CC(X),||-||p) is dense in L"(u). Hence the completion of (CC(X),||-||p) is
L”(12).
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Remark.

The unit interval [0, 1] is compact and Hausdorff and so is locally compact. Hence the space
of all continuous function on [0, 1], C[0,1], is the same as the space of all continuous function
with compact support, C.[0,1]. By Theorem 23, the completion of C([0,1]) with respect to

the metric, d(f,Q) :.[:|f —g| , for fand g in C([0,1]), where the integral is the Lebesgue

integral, is L*([0,1]) and the measure is the Lebesgue measure on R . Note that every
continuous function on [0, 1] is Riemann integrable and is also Lebesgue integrable and both
integrals are the same. (C[O,l], ||||1) is a normed linear space and (C[0,1],d ) is a metric space

because forany f eC[0,1],||f, =0« J':| fldz=0< f =0 since a continuous non-negative

function, whose integral over the interval [0, 1] is 0, must be the zero constant function. But
the completion L*([0,1]) is the equivalence classes of almost everywhere equal Lebesgue

integrable functions on [0,1]. The norm on (C[O,l],||-||1) is of course given by the Riemann

1
integral || f|| = | |f (x)|dx since it is the same as the Lebesgue integral but the norm on the
1 Jo

completion is given by the Lebesgue integral. In some sense, we may regard the Lebesgue
integral as a natural generalization of the Riemann integral.

For locally compact Hausdorff space X and for (X, -#, u) satisfying properties (1) to (5) of
Lusin’s Theorem, although the underlying linear space C_(X) s the same, for different LP

norm, the completion of the space of all continuous function with compact support is in
general different LP space.

6. Space of Continuous function.

Suppose X is a locally compact Hausdorff topological space. Let C(X) be the space of all
continuous complex functions on X. A function f in C(X) is said to vanish at infinity if for

any £ > 0, there exists a compact set K in X such that | f (x)| <¢g forall xgK. Let C,(X)be
the collection of continuous functions on X that vanish at infinity.

If f vanishes at infinity, we may say f is zero at infinity if we attach a point called ‘infinity’
to X. More precisely, if we take the one-point compactification X = X Lw{o} of X. The open

setsin X are given by {open sets in X, K¢ U{oo}, K compact} and all those sets generated

by this class. Then C,(X) is the ideal of functions in C(X) consisting of functions that are
zero at infinity.

Let BC(X) be the set of all bounded continuous complex functions on X. Then the sup
norm, || f]|=sup{| f (x)|:x e X} is anorm on BC(X)and moreover | f||<c forall f in
BC(X).
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Then we have:
Proposition 24.

(1) C.(X) = Cp(X) = BC(X) = C(X) ;

(2) If X is compact, then C,(X)=C,(X)=BC(X)=C(X).

Proof.

Plainly C (X) <= C,(X). If f eC,(X), forany &> 0, there exists a compact set K in X
such that |f(x)|<g forall x¢ K. Since f is continuous, f(K) iscompactandso f is

bounded say by M on K. Hence f is bounded by max{e, M }. Therefore, f e BC(X). This
proves (1)

Suppose X is compact. Take any f € C(X). Then the support of f is closed in X. Since X is
compact, the support of f is compact. Hence f € C_(X). Thus C (X)=C(X) and (2)
follows.

Proposition 25. Suppose X is a locally compact Hausdorff topological space.

(1) C,(X) and BC(X) with the sup norm, || f| =sup|f (x)|, are Banach spaces.
xeX

(2) (C.(X),]{), with the sup norm |}, is a normed space, not usually complete.
(3) (Co(X).|) is the completion of (C,(X),[).

Proof:

(1) Itis obvious that (C,(X),||) is a normed space. Let (f,) bea Cauchy sequence in
(Co(X),|{) - Then given any &> 0, there exists an integer N such that

nm>N=|f —f, |=sup|f,(x)- fm(x)|<§ and so
xeX

nm>N =|f (x)- f,(¥)|<sup|f,(x)- f,(¥)|=]f, - fm||<§for all x in X.
xeX

This means ( f,(x)) is uniformly Cauchy. Since C is complete, (f (X)) converges
uniformly. We claim that the pointwise limit, f , of (f,) isa continuous function.
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Note that for any n > N and for all x in X,
| £,(0) = £ (9| = lim [, (x) - £, (x)] < lim |f, - fm||g§ ......... )

Take xo in X.

For all x in X,
[T 00— f (%) =] F ()= f () + Fy (X) = Fyy (%) + Fyy (%) — T (%))

<[ ) — i O] +] Fiy (%) = T 06| +] i 00 — £, (%))

E & 2¢
S5"‘5"’|f|\1(x)_fN(Xo)|_?"i_“N(X)_fN(xo)|- """"""""" (2)

Since f, is continuous at Xo , there exists an open neighbourhood U of xo such that

xeU =|f, (x) - fN(x0)|<% . It then follows from (2) that

xelU=|f(x)-f(x)<e.
This means f is continuous at xo . Hence, f is continuous on X.

Now we show that f vanishes at infinity. By (1), given &> 0, we can find an integer N such

that n> N = |f,(x) - f (¥)| s%<% forall xin X. This means

n=N=|f,—f|<Z.
2
Since f, vanishes at infinity, there exists a compact set K such that
X K:>|fN(x)|<§ .
Therefore, for x¢ K,
[0 =[f () — i () + f (O <[ F () — f, 0|+ | F ()| < | - fN||+|fN(x)|<§+§=g :

Hence, f vanishes at infinity and so f € C,(X). Thus, any Cauchy sequence in(C,(X),[)

converges to a function in (C,(X),||) and so (C,(X).||) is complete and hence is a Banach

space.
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Next (BC(X),||) is a Banach space. Plainly it is a normed linear space.

Let (f,) be a Cauchy sequence in(BC(X),|[]). We have already shown that (f,(x))is

uniformly Cauchy and that (f (x)) converges uniformly to a continuous function f. We
claim that f is bounded.

As (f,(x)) converges uniformly to f given £> 0, we can find in integer N such that
n>N=|f —f|<e¢.

Taken=N. Since f isbounded,]|fy (x)|<M for some M >0 and for all x in X.

Therefore, for all x € X,

£ = ()= f 00+ F, (9] <| F (00— F | +| F 0| <[ = F.[+M <M +& .
Hence f is bounded by M + ¢ and so f e BC(X). Thus (BC(X),|{) is a Banach space.

(2) Plainly (C,(X),||{)) is @ normed linear space. (C,(X),||) is usually not complete.

More precisely, if X is locally compact and Hausdorff but not compact and can be written as a
strictly increasing sequence of relatively compact open sets, then (C,(X),|||]) is not complete.

Suppose U, cU, cU,cU,c---U gU_gm

is a strictly increasing sequence of relatively compact sets such that UUn =X.
n=1

By Urysohn’s Lemma (Lemma 22), since U_n cU_, and U_n is compact, there exists

n+l

f eC.(X)suchthat U_ < f <U_, and so we have a sequence of functions (f,) such that
(a) fn |LTn =1

(b) Support fn cU_, and

n+l
(c) 0<f<1.

n

Let g, = Zk—lz f, . Then by the Weierstrass M Test, (g, ) converges uniformly to a

k=1

continuous function g on X. Obviously (g,) is a Cauchy sequence in (C,(X),||). But
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g(x) = Zk—lz f (x) =0 forall x. This is because for any x in X, xeU,_ for some n and
k=1

f.(x) =1 so that g(x) = ziz —f.(X)= n_12 > 0. Thus, support of g is X, which is not

compact. Hence, g ¢C,(X) and so (C_(X),|{|)is not complete.
For instance, (C,(R),||) is not complete. Take U, =(—n,n). We can define

1if —n<x<n,

2(n+£—x) if n3xsn+1,
2 2

f (x)= . . .
2(x+n+—j if —-n—=<x<-n,
2 2
0 otherwise.
Then g(x) :Z% f. (x) is continuous but not in C_(R).
k=1

(3) C,(X) is the completion of C_(X).

Take any g € C,(X). Then given any ¢ > 0, there exists compact set K < X such that
l9(x)| <§ for all x not in K. Then by Property (10) (topological spaces), since X is locally

compact and Hausdorff, there is a relatively compact open set, i.e., an open set VV, where V is
compact, such that K =V <V < X .

By Urysohn’s Lemma, there exists f eC (X),suchthat K< f <V ,ie, 0<f <1 andf

(x) =1 for all x in K and the support of f cV . Since V is compact, the support of f is also
compact. Therefore, g f is continuous and the support of g f is also compact, being a

closed subset of the compact support of f. Thismeans g f eC_(X).
Now g(x)—g(x)f(x)=0 if xisin K. Thussince |f(x)|<1,
|9(x)—g(x) f (X)|<2|g(x)|< ¢ forall x e X.

Therefore, ||gf —g||=sup|g(x)—g(x) f (x)|<&. This means C,(X)is dense inC,(X) and so
xeX

the completion of (C,(X),[]) is (C,(X).[H]) -

Remark:
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Suppose X is a locally compact Hausdorff topological space and (X, .4, x) is a measure
space.
Then L (u)={f :X — C: f is measurable and esssup|f|<oo}. le., L”(u) is the space of

essentially bounded measurable functions and the norm on L* () is given by

|||, =esssup|f| forf in L*(u). Theorem 15 asserts that (L" (), |||, ) or more precisely,

the equivalence classes of almost everywhere equal measurable functions in L™ (x) isa

Banach space and so L” () is complete.

Suppose X is locally compact and Hausdorff and (X, .4, 1) is a measure space where .«
contains all the Borel subsets of X. Suppose further that every non-empty open set in X has
positive 1 measure. Then every continuous function f : X — C is measurable and for f in

Co(X), |||, =esssup|f|=sup|f|=|f|<oo. Hence (C,(X),]) is a subspace of

(L (u).]..) - More precisely, (Co(X).[H])=(Co(X).J,,)- We know (C,(X).[,) is
complete by Proposition 25 part (1). Similarly, (C,(X),|])=(C.(X).[], ). We have just
shown that the completion of (C,(X),|]) is (C,(X).||{) = (CO(X),||-||m)and so the completion
of (C,(X),|HI, )is (Co(X).|,,)- Even though (C,(X),|,.) is a subspace of L” () and
(L”(1).]..) is complete, the completion of (C,(X),||,,) in the metric induced by the

essential supremum norm generally is not L”(z). More precisely, L (z) may have
measurable function f that is essentially bounded but not bounded or not continuous, i.e.,
|f], <o but | f|=sup|f|=cc or f isnotcontinuous on X. An example is the Lebesgue

measure space (R", .4, u), where . is the o algebra of Lebesgue measurable subsets of
R", and u: 4 — [0, o] is the Lebesgue measure on R". The completion of (CC (R”),||~||w)

is (C0 (R”),||'||m)and not L*(R"). Forn =1, the function f :R — R defined by

L is measurable, essentially bounded by 1 since || f|| =1but plainly
1, xis irrational ®

X, X Is rational,
f(x) :{
unbounded and also not continuous. If there is a sequence (g,) in(CC (]R),||-||w) that tends to f

in L”(R) then (g,) is a Cauchy sequence inL*(R) and so is a Cauchy sequence in

(C.(R),|{..). which is identically the same as (C_(RR),|{|) and hence a Cauchy sequence in
(Co(R):”'”w)- Thus its pointwise limit must be continuous and bounded. This contradicts that
f is not bounded. Thus there does not exist a sequence in (C,(R),||, ) that tends to f in

L*(R) .

Remark.
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We may replace all the results stated involving a locally compact Hausdorff topological space
X by an open or closed non-empty subspace of X or non-empty intersection of a closed set
and an open set, since such sets are also locally compact and Hausdorff and if measure is also
involved, the measure space (X, ., u) is required to satisfy conditions (1) to (5) in Lusin’s
Theorem. For instance if X is R", the measure space (R", .# , 1) may be taken to be the
Lebesgue measure on R", which satisfies all the conditions (1) to (5) in Lusin’s Theorem.
Furthermore, the Lebesgue measure on R" is complete.

Suppose X is a locally compact Hausdorff topological space and &(X) is the c-algebra
generated by the open sets of X. A Borel measure, i.e., a positive measure u : &(X) — [0, «]
on &(X), satisfying conditions (3), (4) and (5) in Lusin’s Theorem but not necessary -
complete is a Radon measure. We extend this Radon measure to a complete measure ., that
iS, A is the collection of subsets B of X of the form B=E U Awhere E € &X) and AcC
for some subset C e &(X) with #(C)=0. For such a set B define u(B) = u(E). Then (X, 4,

u)isa complete measure space satisfying all 5 conditions in Lusin’s Theorem. For such
measure, Theorem 23 holds true. Such a measure space, generalizes the Lebesgue measure
on R" .
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