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If a function is defined by a Lebegsue Stieltjes integral and turns out that it is of 

bounded variation, then we can define another Lebesgue Stieltjes integral with it 

as the integrator.  More precisely, suppose : I →  is an absolutely continuous 

function on the closed and bounded interval [ , ]I a b= , where a < b.   Suppose g 

is a Borel measurable function on I.  Define : I → , by ( )
x

a
x gd  =   where 

  is the Lebesgue Stieljes measure associated with the function  .  Since   is 

absolutely continuous on I, by Theorem 26 of “Lebesgue Stieltjes Measure, de 

La Vallée Poussin’s Decomposition, Change of Variable, Integration by Parts 

for Lebesgue Stieltjes Integrals”, ( ) ( ) ( )
x x

a a
x gd g y y dy  = =  .   It follows that 

 is absolutely continuous on I and therefore of bounded variation.   Suppose 

:f I → is a Borel measurable function. Then 

                ( ) ( ) ( ) ( ) ( ) ( ) ( )
x x x x

a a a a
fd f y y dy f y g y y dy f y g y d   

 =  = =    . 

Hence, we have proved: 

Theorem 1.  Suppose : I →  is an absolutely continuous function on the 

closed and bounded interval [ , ]I a b= , where a < b.   Suppose g is a Borel 

measurable function on I.  Define : I → , by ( )
x

a
x gd  =   where   is the 

Lebesgue Stieljes measure associated with the function  .  Suppose :f I → is 

a Borel measurable function. Then 

                             ( ) ( )
x x

a a
fd f y g y d   =  . 

 

If a sequence of functions of bounded variation, whose total variation is 

uniformly bounded and converges to a function, is the limiting function also of 

bounded variation and if so, does the sequence of Lebesgue Stieltjes integrals 

defined using the given sequence of functions as integrators converges to the 

Lebesgue Stieltjes integral with the limiting function as integrator? The answer 

is “yes”.  We state this answer as Theorem 2 below. 

 

Theorem 2.  Suppose ( )ng  is a sequence of functions defined on the closed and 

bounded interval [a, b] whose total variations are uniformly bounded by a 
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constant K, i.e., ( ,[ , ])nV g a b K , for all positive integer n and suppose the 

sequence ( )ng  converges to a finite function g at every point of [ , ].a b   Let f be a 

continuous function on [ , ].a b  Then g is of finite variation and  

lim
n

b b

g g
a an

fd fd 
→

=  . 

Proof. 

We note that since the function f is continuous on [a, b], the Riemann Stieltjes 

integrals of the function f with integrators g and kg  exist and are equal to their 

respective Lebesgue Stieltjes integrals.  Moreover, since f is continuous on [a, 

b], for any a d e f b    , the Rieman Stieltjes integrals,  

      
e f f

g g g
d e d

RS fd RS fd RS fd  + =    and  
k k k

e f f

g g g
d e d

RS fd RS fd RS fd  + =   . 

We shall show that the limiting function g is of finite variation. 

Let 0 1: nP a x x x b=    =  be a partition of the closed interval [a, b].  Given 

any 0  , since the sequence ( )mg  converges to g pointwise, for each 0 k n  , 

there exists an integer 0kN   such that for 0 k n  , 

                   ( ) ( )
2

k m k km N g x g x
n


  −    .      -------------------------- (1) 

Let  max :0kN N k n=     

Then it follows from (1) that for 0 k n   

                 ( ) ( )
2

m k km N g x g x
n


  −   .   ------------------ (2) 

Suppose 1 k n  .   Then for m N  

       
1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k m k m k m k m k kg x g x g x g x g x g x g x g x− − − −− = − + − + −  

                            
1 1 1( ) ( ) ( ) ( ) ( ) ( )k m k m k m k m k kg x g x g x g x g x g x− − − − + − + −  

                            1( ) ( )
2 2

m k m kg x g x
n n

 
− + − + = 1( ) ( )m k m kg x g x

n


−+ − . 

Therefore, 

                     1 1 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( )
n n n

k k m k m k m k m k

k k k

g x g x g x g x g x g x
n


− − −

= = =

 
−  + − = + − 

 
    

                                               ( ,[ , ])mV g a b K  +  + . 
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Since 0   is arbitrary, ( ,[ , ])V g a b K . Hence, g is of bounded variation. 

We shall now show that lim
n

b b

g g
a an

fd fd 
→

=  .   For the rest of the proof, all 

integrals are Riemann Stieltjes integrals. 

We shall take an appropriate partition of the interval [a, b] and split the integrals 

into integrals on each sub intervals of the partition.   

We note that since f is continuous on [a, b], f is uniformly continuous on [a, b].  

Therefore, given any 0   , there exists 0   such that 

                                  ( ) ( )
3

x y f x f y
K


−   −   .   --------------------- (3) 

Let 0 1: nP a x x x b=    = be a partition of [a, b] such that 

 1max :1k kP x x k n −= −    . 

Then   

  ( )
1 1 11 1 1

( ) ( ) ( ) ( )
k k k

k k k

n n nb x x x

g g k g k g
a x x x

k k k

f d f x d f x f x d f x d   
− − −= = =

= = − +      .      ---------(4)  

 And for each positive integer m, 

 ( )
1 1 11 1 1

( ) ( ) ( ) ( )
k k k

m m m m
k k k

n n nb x x x

g g k g k g
a x x x

k k k

f d f x d f x f x d f x d   
− − −= = =

= = − +      . --------- (5) 

(5) – (4) gives: 

( ) ( )
1 11 1

( ) ( ) ( ) ( )
k k

m m
k k

n nb b x x

g g k g k g
a a x x

k k

f d f d f x f x d f x f x d   
− −= =

− = − − −      

                             
1 11 1

( ) ( )
k k

m
k k

n nx x

k g k g
x x

k k

f x d f x d 
− −= =

+ −     

                            ( ) ( )
1 11 1

( ) ( ) ( ) ( )
k k

m
k k

n nx x

k g k g
x x

k k

f x f x d f x f x d 
− −= =

= − − −    

                              ( ) ( )1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k m k k k k

k k

f x g x g x f x g x g x− −

= =

+ − − −   

                            ( ) ( )
1 11 1

( ) ( ) ( ) ( )
k k

m
k k

n nx x

k g k g
x x

k k

f x f x d f x f x d 
− −= =

= − − −    

                              ( ) ( )1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k k k m k k

k k

f x g x g x f x g x g x− −

= =

+ − − −  . 
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Then, ( ) ( )
1 11 1

( ) ( ) ( ) ( )
k k

m m
k k

n nb b x x

g g k g k g
a a x x

k k

f d f d f x f x d f x f x d   
− −= =

−  − + −      

                                          1 1

1 1

( ) ( ) ( ) ( ) ( ) ( )
n n

k m k k k m k k

k k

f x g x g x f x g x g x− −

= =

+ − + −  . 

Let M be the maximum value of ( )f x  on [a, b].  Then on account of (3) and 

Theorem 3 below,  

1 1

1 1

[ , ] [ , ]
3 3m m

n nb b

g g g k k g k k
a a

k k

f d f d V x x V x x
K K

 
  − −

= =

−  +    

                                1 1

1 1

( ) ( ) ( ) ( )
n n

m k k m k k

k k

M g x g x M g x g x− −

= =

+ − + −    

                               [ , ] [ , ]
3 3mg gV a b V a b

K K

 
 +  

                                  1 1

1 1

( ) ( ) ( ) ( )
n n

m k k m k k

k k

M g x g x M g x g x− −

= =

+ − + −   

                             1 1

1 1

2
( ) ( ) ( ) ( )

3

n n

m k k m k k

k k

M g x g x M g x g x


− −

= =

 + + − + −  . ------ (6) 

For 0 k n  , ( ) ( )m k kg x g x→ .  Therefore, for 0 k n   there exists an integer 

0kN   such that  

                                    ( ) ( )
6

k m k km N g x g x
nM


  −  .   --------------------- (7) 

Let  max :0kN N k n=   .  It follows from (6) and (7) that 

              
1 1

2

3 6 6m

n nb b

g g
a a

k k

m N f d f d M M
nM nM

  
  

= =

  −  + + =   . 

It follows that lim
n

b b

g g
a an

fd fd 
→

=  . 

Remark.  Theorem 2 is known as Helly’s Second Theorem. 

 

Theorem 3.  Suppose :[ , ]g a b →  is a function of bounded variation defined on 

the closed and bounded interval [ , ]I a b= .   Suppose :f I →  is a continuous 

function defined on I or f is Riemann Stieltjes integrable or Lebesgue Stieltjes 
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integrable on [a, b].  Then ( ) ( , )
b

g
a

fd M f V g I  , where ( )M f is the maximum 

value of f  on I and ( , )V g I is the total variation of g on I. 

Proof.  
b b b

g P N
a a a

fd fd fd  = −   , where P and N are the positive and negative 

variation functions of g.  Then,   

 
b b b b b

g P N P N
a a a a a

fd fd fd f d f d     +  +      

             ( )( ) ( ) ( ) ([ , ]) (( , ]) ( ) ( , )
b b

P N
a a

M f d M f d M f P a b N la b M f V g I  + = + =  . 

 

We present another proof of Theorem 2 using the Helly Selection Theorem. 

 

Helly Theorem.  A uniformly bounded sequence of increasing functions 

defined on a closed and bounded interval [a, b] contains a subsequence which 

converges at every point of [a, b] to an increasing function. 

 

Another Proof of Theorem 2. 

Suppose ( )ng  is a sequence of functions defined on the closed and bounded 

interval [a, b] whose total variations are uniformly bounded by a constant K, 

i.e., ( ,[ , ])nV g a b K .  Suppose the sequence ( )ng  converges pointwise at every 

point of [a, b] to a function g on [a, b]. 

Let  and n nP N  be the positive and negative variation of functions ng .  Then 

( ) ( ) ( ) ( )n n n ng x g a P x N x= + −  and the total variation function of ng is given by 

( ) [ , ] ( ) ( )g g n nV x V a x P x N x= = + .  The function ( ) ( )n ng a P x+  is an increasing function, 

Note that ( ) ( ) ( ) ( ) ( ) ( ) ( [ , ]) ( )n n n n n n n ng a P x g a P x N x g a V g a b g a K+  + +  +  + .   

Since the sequence ( )( )ng a is convergent, it is bounded, that is there exists a 

constant C > 0 such that  ( )ng a C  for all positive integer n.  Hence, 

( ) ( )n ng a P x C K+  + for all positive integer n.  Thus, the sequence ( )( ) ( )n ng a P x+

is uniformly bounded.  Therefore, by the Helly selection Theorem it has a 

subsequence ( )( ) ( )
k kn ng a P x+  which converges pointwise to an increasing 

function *( )P x .  By replacing the sequence ( )ng  with the subsequence ( )
kng we 



6 
 

may assume that ( ) ( ) ( ) ( )n n n ng x g a P x N x= + −  and the sequence ( )( ) ( )n ng a P x+

converges pointwise to *( )P x .  Similarly, since the sequence ( )( )nN x is 

uniformly bounded by K, it has a convergent subsequence ( )( )
knN x  converging 

pointwise to an increasing function *( )N x on [a, b].  By replacing the sequence 

( )ng  with the subsequence ( )
kng , we may assume that 

( ) ( ) ( ) ( )n n n ng x g a P x N x= + −  converges pointwise to g, the sequence ( )( ) ( )n ng a P x+

converges pointwise to an increasing function *( )P x  and the sequence ( )( )nN x  

converging pointwise to an increasing function *( )N x on [a, b].  It follows that 

the limiting function ( ) *( ) *( )g x P x N x= −  is a function of bounded variation 

whose total variation is bounded by C+2K.   

If :[ , ]f a b →  is a continuous function, then as in the proof of Theorem 1 but 

not using Theorem 3, we can show that ( ) *lim
n

b b

P g a P
a an

fd fd +
→

=  and that 

*lim
n

b b

N N
a an

fd fd 
→

=  . Therefore,  

( )( ) ( )lim lim lim
n n n n n n n

b b b b

g P g a N P g a N
a a a an n n

fd fd fd fd   + − +
→ → →

= = −     

                 ( ) * * * *lim lim
n n n

b b b b b b

P g a N P N P N g
a a a a a an n

fd fd fd fd fd fd     + −
→ →

= − = − = =      .    

 

Now we shall investigate the relaxation of the condition of Theorem 1.   

We shall do this in stages. 

Theorem 4. 

Suppose : I →  is an increasing function on the closed and bounded interval 

[ , ]I a b= , where a < b.   Suppose   is right continuous or left continuous.  

Suppose g is a Borel measurable non-negative function on I.  Define : I → , 

by ( )
x

a
x gd  =   where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b →  is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd   =   

Proof.  Suppose   is right continuous.  Then by Theorem 45 of “Lebesgue 

Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 

Integration by Parts for Lebesgue Stieltjes Integrals”, 
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( )

( )
( ) ( )

x x

a a
x gd g y dy






  = =  , 

where   is the generalised left continuous inverse of   defined in Definition 38 

of the above cited article.  Note that  is an increasing left continuous function 

on J, where [ ( ), ( )]J a b =  is the smallest interval containing the image of  .   

Let : J →  be defined by 
( )

( ) ( )
y

a
y g t dt


 =  .   Then   is absolutely 

continuous and increasing on J.  Then ( ) ( )x x =  .  

                                       
b b

a a
fd fd   =  . 

By Theorem 58 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”, 

                                    
( )

( )
( )

b b

a a
fd f y d






   =  ,  

where   is the generalised left continuous inverse of  . 

Since   is absolutely continuous,  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
f y d f y y dy f y g y dy f x g x d

  


  

     
=  =  =     . 

Suppose   is left continuous.  Then by Theorem 45 of “Lebesgue Stieltjes 

Measure, de La Vallée Poussin’s Decomposition, Change of Variable, 

Integration by Parts for Lebesgue Stieltjes Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy






  = =  , 

where   is the generalised right continuous inverse of   defined in Definition 

38 of the above cited article.  Note that   is an increasing right continuous 

function on J, where [ ( ), ( )]J a b =  is the smallest interval containing the image 

of  .   

Let : J →  be defined by 
( )

( ) ( )
y

a
y g t dt


 =  .   Then   is absolutely 

continuous and increasing on J.  Then ( ) ( )x x =  .  

                                       
b b

a a
fd fd   =  . 



8 
 

By Theorem 59 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”, 

                                    
( )

( )
( )

b b

a a
fd f y d






   =  ,  

where   is the generalised right continuous inverse of  . 

Since   is absolutely continuous,  
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
f y d f y y dy f y g y dy f x g x d

  


  

     
=  =  =     . 

 

Remark.  The requirement that the function g be non-negative can be lifted.  

This requirement implies that the function ( )y  is increasing and continuous so 

that we can apply Theorem 58 or Theorem 59 of “Lebesgue Stieltjes Measure, 

de La Vallée Poussin’s Decomposition, Change of Variable, Integration by 

Parts for Lebesgue Stieltjes Integrals”. 

 

Theorem 5. 

Suppose : I →  is an increasing function on the closed and bounded interval 

[ , ]I a b= , where a < b.   Suppose   is right continuous or left continuous.  

Suppose g is a Borel measurable function on I.  Define : I → , by 

( )
x

a
x gd  =   where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b →  is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd   =   

Proof.   

Suppose   is right continuous.   

Then by Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy






  = =  , 
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where   is the generalised left continuous inverse of   defined in Definition 38 

of the above cited article.  Note that  is an increasing left continuous function 

on J, where [ ( ), ( )]J a b =  is the smallest interval containing the image of  .   

Let : J →  be defined by 
( )

( ) ( )
y

a
y g t dt


 =  .   Then   is absolutely 

continuous on J and so is a function of bounded variation.  Then ( ) ( )x x =   

is a function of bounded variation.  

                                       
b b

a a
fd fd   =  . 

By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals”, as   is absolutely continuous, 

                                    
( )

( )
( ) ( )

b b

a a
fd f y y d






   
=   ,  

where   is the generalised left continuous inverse of  . 

Therefore, 
( )

( )
( ) ( ) ( ) ( )

b b b

a a a
fd f y g y dy f x g x d



 


    =  =    . 

Suppose   is left continuous.   

Then by Part (ii) of Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée 

Poussin’s Decomposition, Change of Variable, Integration by Parts for 

Lebesgue Stieltjes Integrals”, 

                           
( )

( )
( ) ( )

x x

a a
x gd g y dy






  = =  , 

where   is the generalised right continuous inverse of   defined in Definition 

38 of the above cited article.  Note that  is an increasing right continuous 

function on J, where [ ( ), ( )]J a b =  is the smallest interval containing the image 

of  .   

Let : J →  be defined by 
( )

( ) ( )
y

a
y g t dt


 =  .   Then   is absolutely 

continuous on J and so is a function of bounded variation.  Then ( ) ( )x x =   

is a function of bounded variation.  

                                       
b b

a a
fd fd   =  . 
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By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 

Integrals” and as   is absolutely continuous, 

      
( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

b b b b

a a a a
fd f y y d f y g y dy f x g x d

 

 
 

      
=  =  =     , 

We extend the result of Theorem 5, when the function : I → is a function of 

bounded variation. 

Corollary 6. 

Suppose : I →  is a function of bounded variation on the closed and bounded 

interval [ , ]I a b= , where a < b.   Suppose   is right continuous or left 

continuous.  Suppose g is a Borel measurable function on I.  Define : I → , 

by ( )
x

a
x gd  =   where   is the Lebesgue Stieljes measure associated with the 

function  .   Suppose :[ , ]f a b →  is a Borel measurable function.  Then 

                                               
b b

a a
fd fgd   =  . 

Proof.   Let V  be the total variation of  .   Then V  and V −  are both 

increasing functions.   

Suppose   is right continuous.  It follows that V  is right continuous.  Hence, 

1 V =  and 2 V = − are both right continuous.  Note that 1 2  = −  Then 

1 2
( )

x x x

a a a
x gd gd gd     = = −   is a difference of two functions of bounded 

variation and so is of bounded variation.  Let 
11( )

x

a
x gd  =  and 

22( )
x

a
x gd  =  . 

Hence,  

                             
1 2 1 2

b b b b

a a a a
fd fd fd fd     −  = = −    . ------------------ (1) 

By Theorem 5, 
1 1

b b

a a
fd fgd   =  and 

2 2

b b

a a
fd fgd   =  .    It follows from (1) 

that          

           
1 2 1 2 1 2

b b b b b b

a a a a a a
fd fd fgd fgd fgd fgd           − −= = − = =      . 

Suppose   is left continuous.  It follows 1 V =  and 2 V = − are both left 

continuous.  It follows similarly as above that 
b b

a a
fd fgd   =  . 
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More generally we have 

Corollary 7. 

Suppose : I →  is a function of bounded variation on the closed and bounded 

interval [ , ]I a b= , where a < b.   Suppose   is the difference or sum of two 

increasing functions 1 2 and   .  Suppose 1 2 and    are both right continuous or left 

continuous or  1  is right continuous and 2 is left continuous or 1  is left 

continuous and 2 is right continuous.  Suppose g is a Borel measurable function 

on I.  Define : I → , by ( )
x

a
x gd  =   where   is the Lebesgue Stieljes 

measure associated with the function  .   Suppose :[ , ]f a b →  is a Borel 

measurable function.  Then 

                                               
b b

a a
fd fgd   =  . 

 

The proof of Corollary 7 is similar to that of Corollary 6 and is omitted. 

 

We now only require the function : I → to be of bounded variation. 

Theorem 8.  Suppose : I →  is a function of bounded variation on the closed 

and bounded interval [ , ]I a b= , where a < b.   Suppose g is a Borel measurable 

function on I.  Define : I → , by ( )
x

a
x gd  =   where   is the Lebesgue 

Stieltjes measure associated with the function  .   Suppose :[ , ]f a b →  is a 

Borel measurable function.  Then 

                                               
b b

a a
fd fgd   =  . 

Proof.   As detailed in the proof of Corollary 62 of “Lebesgue Stieltjes Measure, 

de La Vallée Poussin’s Decomposition, Change of Variable, Integration by 

Parts for Lebesgue Stieltjes Integrals”, an increasing function on the interval [a, 

b] can be decomposed as a sum of increasing continuous function, increasing 

right continuous function and an increasing left continuous function.  More 

precisely, an increasing function   on [a, b] can be written as 

                              ac c ls rs = + + + ,  

where ac  is an absolutely continuous increasing function with ( ) ( )ac x x  =  

almost everywhere on [a, b], c  is a continuous increasing singular function, 
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i.e., ( ) 0c x =  almost everywhere, ls  is a right continuous increasing saltus 

type function and  rs  is a left continuous increasing function. Let a ac c = + . 

Then a  is an increasing continuous function.  Thus, a ls rs = + + .  

Suppose : I →  is a function of bounded variation. Then 1 2  = − , where 

1 2 and    are increasing functions. Then  
1 2

( )
x x x

a a a
x gd gd gd     = = −   .  Let 

11( )
x

a
x gd  =  and 

22( )
x

a
x gd  =  . Hence,  

                             
1 2 1 2

b b b b

a a a a
fd fd fd fd     −  = = −    . 

Now 1 ,1 ,1 ,1a ls rs =  + +  is a sum of continuous increasing function, left 

continuous increasing function and right continuous increasing function. 

Therefore, by Corollary 7, 
1 1

b b

a a
fd fgd   =  .   Similarly, we deduce that 

2 2

b b

a a
fd fgd   =  .   It follows that  

                         
1 2 1 2

b b b b

a a a a
fd fd fd fd     −  = = −     

                                     
1 2 1 2

b b b

a a a
fgd fgd fgd      −= − =    

                                     
b

a
fgd =  .  

Remark.   In the proof of Theorem 8, we have that 

              1 2  = − , 1 ,1 ,1 ,1a ls rs =  + +  and 2 ,2 ,2 ,2a ls rs =  + + . 

Thus,               

                   ( ),1 ,1 ,1 ,2 ,2 ,2a ls rs a ls rs =  + + −  + +  

                       ( ) ( ),1 ,2 ,1 ,2 ,1 ,2a a ls ls rs rs=  − + − +  −   

is a sum of right continuous function of bounded variation and left continuous 

function of bounded variation.  Let 3 ,1 ,2 ,1 ,2a a ls ls =  − + −  and 4 ,1 ,2rs rs =  − .  

Then 3 4  = + .  Let 
33( )

x

a
x gd  =  and 

44( )
x

a
x gd  =  . Then  

3 4 3 4( ) ( ) ( )
x x x

a a a
x gd gd gd x x     = = + = +   .  By Corollary 6,  

                     
3 3

b b

a a
fd fgd   =  and 

4 4

b b

a a
fd fgd   =  .   

Therefore, 
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3 4 3 4 3 4

b b b b b b

a a a a a a
fd fd fd fd fgd fgd        +  = = + = +       

                       
3 4

b b

a a
fgd fgd   += =  . 

This gives another proof of Theorem 8. 

 

We note that if a function f is Riemann Stieltjes integrable, then it is Lebesgue 

Stieltjes integrable and the integrals coincide.  In what follows, we shall adopt 

the notation for Riemann Stieltjes integral in the same way as the Lebesgue 

Stieltjes integral.  That is, if g the integrator is monotone, the Lebesgue Stieltjes 

integral of f is denoted by ( )
b

g
a

f x d  and if g is of bounded variation, the 

Lebesgue Stieltjes integral of f is denoted by ( )
b

g
a

f x d following the notation 

and convention in my article, “Lebesgue Stieltjes Measure, de La Vallée 

Poussin’s Decomposition, Change of Variable, Integration by Parts for 

Lebesgue Stieltjes Integrals”.  Whenever the function is Riemann Stieltjes 

integrable, it will be stated so that the notation ( )
b

g
a

f x d or ( )
b

g
a

f x d will mean 

the Riemann Stieltjes integrals as they are the same. 

 

Next, we have a variation of Theorem 2 due to L. C. Young. 

Theorem 9.  Suppose ( ):[ , ]ng a b J→ is a sequence of function converging 

uniformly to a continuous function :[ , ]g a b J→ , where J is a closed and 

bounded interval.  Suppose : J →  is a function of bounded variation such 

that the total variation of the composition functions :[ , ]ng a b → , 

( ,[ , ])nV g a b K   for some K >0 and for all positive integer n.  Suppose either 

nf g  is Riemann Stieltjes integrable with respect to ng  for all n or ng  is 

continuous for all n. 

Suppose the function   is continuous and :f J →  is a continuous function.  

Then g  is of bounded variation and 

                               ( ( )) ( ( ))
n

b b

n g g
a a

f g x d f g x d  →  . 

Proof.   

We note that since f is continuous on J, f is uniformly continuous on J.  

Therefore, given any 0   , there exists 0   such that for all x, y in J, 
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                                  ( ) ( )x y f x f y
K


−   −   .   --------------------- (1) 

Since ng  converges to g uniformly, there exists an integer N > 0 such that  

                            ( ) ( )nn N g x g x   −   for all x in [a, b].   

It follows from (1) that  

           ( ) ( ) ( ) ( )n nn N g x g x f g x f g x
K


  −   −   for all x in [a, b].   

Therefore, for all n > N, 

               ( )( ( )) ( ( )) ( ,[ , ]
n

b

n g n
a

f g x f g x d V g a b
K




  −   . 

It follows that  ( )lim ( ( )) ( ( )) 0
n

b

n g
an

f g x f g x d 
→

− =   -------------------  (2) 

Note that as   is continuous, ng  converges pointwise to g .  Therefore, by 

Theorem 2, g is of finite variation and lim ( ( )) ( ( ))
n

b b

g g
a an

f g x d f g x d  
→

=  .   In 

view of (2), 

             ( )lim ( ( )) ( ( ))
n

b b

n g g
a an

f g x d f g x d  
→

=  . 

 

We have next a change of variable theorem. 

Theorem 10. 

Suppose :g I →  is a continuous function on the closed and bounded interval 

[ , ]I a b= , where a < b.  Let the image of I under g be J =[c, d].  Let : J →  be 

a function of bounded variation.  Let : [ , ]f J c d= →  be a continuous function. 

If (i) g is an increasing function, or a decreasing function, or 

    (ii)   is continuous on J and g  is a function of bounded variation, then 

                                
( )

( )

b g b

g
a g a

f gd fd  =  . 

Proof. 

(i)  If :g I →  is an increasing continuous function, Theorem 9 (i) follows from 

Corollary 62 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s 

Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes 
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Integrals”.  If :g I →  is a decreasing continuous function, Theorem 9 (i) 

follows from an analogue result of Corollary 62 of the above cited article. 

(ii) Suppose   is continuous on J and g  is a function of bounded variation. 

Take a sequence of piecewise linear continuous functions ng  such that 

( ) ( )ng a g a= , ( ) ( )ng b g b= and converging uniformly to g.  Note that the total 

variation ( ,[ , ]) ( ,[ , ])nV g a b V g a b  .  

Corresponding to a ng , we have a partition of [a, b], 

 0 1: mP a x x x b=    =  such that g is linear on each subinterval 1[ , ]i ix x−  and so 

is monotone on each subinterval 1[ , ]i ix x−  . Therefore, by part (i), for each integer 

i, 1 i m  ,  

              
1 1 1

( ) ( )

( ) ( )
( ( ))

i n i n i

n
i n i n i

x g x g x

n g
x g x g x

f g x d fd fd    
− − −

= =    . 

It follows that                

                
11

( ( )) ( ( ))
i

n n
i

mb x

n g n g
a x

i

f g x d f g x d  
−=

=   

                                        
1

( ) ( ) ( )

( ) ( ) ( )
1

i n

i n

m g x g b g b

g x g a g a
i

fd fd fd    
−=

= = =      

Therefore, by Theorem 9,  
( )

( )
( ( ))

b g b

g
a g a

f g x d fd  =  . 

 

If the function g is the uniform limit of continuous polygonal functions or 

piecewise linear functions with some condition on the total variation of the 

function involved, we have the next change of variable theorem. 

Theorem 11.  Suppose ( ):[ , ]ng a b J→ is a sequence of continuous polygonal 

function converging uniformly to a continuous function :[ , ]g a b J→ , where J is 

a closed and bounded interval.  Suppose ( ) ( ) and ( ) ( )n ng a g a g b g b= = .  Suppose 

: J →  is a function of bounded variation such that the total variation of the 

composition functions :[ , ]ng a b → , ( ,[ , ])nV g a b K   for some K > 0 and for 

all positive integer n.  Suppose :f J →  is a continuous function.  Suppose 

ng  converges to g  pointwise on [a, b]. Then g  is of bounded variation,

( ( )) ( ( ))
n

b b

n g g
a a

f g x d f g x d  →   and
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 
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Proof. 

Since ng  is polygonal, there exists a partition 0 1: mP a x x x b=    =  such that 

g is monotone on each subinterval 1[ , ]i ix x− . 

         
1 1

( )

( )
1 1

( ( )) ( ( )) ( )
i n i

n n
i n i

m mb x g x

n g n g
a x g x

i i

f g x d f g x d f y d    
− −= =

= =    , by Theorem 10 (i), 

                                 
( ) ( )

( ) ( )

n

n

g b g b

g a g a
fd fd  = =   

We can show as in the proof of Theorem 9, using the fact that ng  converges 

to g  that g  is of bounded variation. 

We have shown in the proof of Theorem 9 that 

                       ( )lim ( ( )) ( ( )) 0
n

b

n g
an

f g x f g x d 
→

− = . 

By Theorem 2, as f g  is continuous and ( ,[ , ])nV g a b K  for all n,  

                       ( ( )) ( ( ))
n

b b

g g
a a

f g x d f g x d  →  . 

Hence, ( ( )) ( ( ))
n

b b

n g g
a a

f g x d f g x d  →  .  Therefore,  

                                
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 

 

The next theorem is due to L.C. Young.  It extends Theorem 2. 

Theorem 12.  Suppose [a, b] is a closed and bounded interval with a < b. 

Suppose ( ):[ , ]nf a b →  is a sequence of functions converging uniformly to a 

continuous function :[ , ]f a b → .  Suppose ( ):[ , ]ng a b →  is a sequence of 

functions and ng  converges on a dense set E in [a, b] with { , }a b E  to a 

function g on E.  That is to say, ( ) ( )ng x g x→  for every x in E.  Suppose the 

Riemann Stieltjes integral 
n

b

n g
a

f d exists for each positive integer n.  Suppose 

each ng  is of bounded variation such that the total variation ( ,[ , ])nV g a b K  for 

all positive integer n for some K > 0.  Then there exists a subsequence 

( ):[ , ]
kng a b →  such that ( )

kng x tends pointwise to a function h of bounded 

variation on [a, b]. Moreover, ( ) ( )h x g x=  for every x in E.  We extend g to all of 

[a, b] by ( ) ( )g x h x= for x E .   Then 
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                                             ( ) ( )
n

b b

n g g
a a

f x d f x d →  . 

Proof.   We show that we can find a subsequence ( ):[ , ]
kng a b →  which 

converges to an extension of g to [a, b]. 

Let  and n nP N  be the positive and negative variation of ng  with ( ) ( ) 0n nP a N a= = .  

Then  ( ) ( ) ( ) ( )n n n ng x g a P x N x= + −  for x in [a, b]. Therefore, 

         ( ) ( ) ( ) ( ) ( ) ( ,[ , ]) ( ) ( ,[ , ])n n n n n n n ng x g a P x N x g a V g a x g a V g a b + + = +  + . 

Since ( )ng a is convergent,  ( )ng a  is bounded, say by B.  Therefore, 

       ( )ng x B K C + =  for all x in [a, b] and for all positive integer n. 

Thus, ( )ng x C  for all x in [a, b] and ( ,[ , ])nV g a b C for all positive integer n.  

Therefore, by Helly’s First Theorem, there exists a subsequence ( ):[ , ]
kng a b →  

such that 
kng converges at every point of [a, b] to a function h of bounded 

variation on [a, b].  Plainly, ( ) ( )h x g x=  for x in E.  Thus, h is an extension of g 

to a function of bounded variation on [a, b].   Note that the total variation of h is 

also less than K.  (See the proof of Theorem 2.) 

We now rename h as g. 

Since f is continuous on [a, b] and [a, b] is compact, f is uniformly continuous. 

Therefore, given 0  , there exists 0   such that for all , [ , ]x y a b , 

                  ( ) ( )
6

x y f x f y
K


−   −  .   --------------------------------  (1). 

We now consider subdivide the interval [a, b] into subintervals so that the 

oscillation of f on each subinterval is less than  .   We further want the partition 

points of the subinterval to be points in the dense subset E.  Because E is dense 

in [a, b], we can choose the partition 0 1: NP a x x x b=    =  such that ix E  

for 0 i N  , 1i ix x −−  for  1 i N   so that  

                       ( ) ( )1
6

i if x f x
K


−−   for 1 i N  .   ---------------------- (2) 

In view of (1) for each integer i with 1 i N  , we select a point 1([ , ])i i ia f x x−  

such that        

                        ( )
6

if x a
K


−   for all 1( , )i ix x x−  .    -------------------- (3) 
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Since f is continuous, we shall assume all Stieltjes integrals are Riemann 

Stieltjes integrals. 

 
11

( ) ( )
i

n n
i

Nb x

g g g g
a x

i

f x d f x d 
−

− −

=

=    

                   ( )
1 11 1

( )
i i

n n
i i

N Nx x

i g g i g g
x x

i i

f x a d a d 
− −

− −

= =

= − +   . -------------------- (4) 

( )
1

1

1 1

( )( ) ( )( )
i

n
i

N Nx

i g g i n i n i
x

i i

a d a g g x g g x
−

− −

= =

= − − −     

                     ( ) ( )1

1 1

( )( ) ( )( )
N N

i n i i n i

i i

a g g x a g g x −

= =

= − − −    

                    ( ) ( ) ( )
1 1

1

1 0

( )( ) ( )( ) ( )( )
N N

i n i N n N i n i

i i

a g g x a g g x a g g x
− −

+

= =

= − + − − −   

            ( ) ( ) ( ) ( )
1 1

1 1 0

1 1

( )( ) ( )( ) ( )( ) ( )( )
N N

i n i N n N i n i n

i i

a g g x a g g x a g g x a g g x
− −

+

= =

= − + − − − − −   

             ( ) ( ) ( )
1

1 1 0

1

( ) ( )( ) ( )( ) ( )( )
N

i i n i N n N n

i

a a g g x a g g x a g g x
−

+

=

= − − + − − −  

             ( )
0

( )( )
N

i n i

i

b g g x
=

= − ,         ------------------------------------- (5) 

                          where 1( )i i ib a a += − , 1 1i N  −  , 0 1b a= −  and  N Nb a= . 

Let 
0

N

i

i

B b
=

= . 

For each integer i, 0 i N  , since ( )n ig x  converges to ( )ig x , there exists positive 

integer iM  such that     

                               ( )( )
3

i n in M g g x
B


  −  .  --------------------- (6) 

Let   0 1max , , , NM M M M= .   Then 

 ( )
11 0

( )( )
i

n
i

N Nx

i g g i n i
x

i i

n M a d b g g x
−

−

= =

  = −   

                                    ( )
0 0

( )( )
3 3

N N

i n i i

i i

b g g x b
B

 

= =

 −  =  .   ------- (7) 

For each i, with 0 i N  ,  
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( )
1

1( ) ( ,[ , ])
6

i

n
i

x

i g g n i i
x

f x a d Var g g x x
K




−
− −−  −  by Theorem 3, 

                               ( )1 1( ,[ , ]) ( ,[ , ])
6

n i i i iVar g x x Var g x x
K


− − + . 

It follows that 

( ) ( ) ( )
1 11 1

( ) ( ) ( )
i i

n n n
i i

N Nb x x

i g g i g g i g g
a x x

i i

f x a d f x a d f x a d  
− −

− − −

= =

− = −  −                          

( ) ( )1 1

1

( ,[ , ]) ( ,[ , ]) ( ,[ , ]) ( ,[ , ])
6 6

N

n i i i i n

i

Var g x x Var g x x Var g a b Var g a b
K K

 
− −

=

 + = +  

3


 . -------------------------  (8) 

Therefore, it follows from (7) and (8) that for n > M, 

( )
1 11 1

2
( ) ( )

3 3 3

i i

n n n
i i

N Nb x x

g g i g g i g g
a x x

i i

f x d f x a d a d
  

  
− −

− − −

= =

 − +  + =    . ------ (9)    

Since nf   converges to a continuous f uniformly on [a, b], there exists a positive 

integer 0N  such that  

         0 ( ) ( )
3

nn N f x f x
K


  −    for all x in [a, b].   -------------------  (10). 

Now we show that the original sequence ( )( )
n

b

n g
a

f x d  is a Cauchy sequence. 

( ) ( )
n m

b b

n g m g
a a

f x d f x d −   

( ) ( ) ( ) ( ) ( ) ( )
n n m m n m

b b b b b b

n g g m g g g g
a a a a a a

f x d f x d f x d f x d f x d f x d     = − − + + −        

( ) ( ) ( ) ( ) ( ) ( )
n n m m n m

b b b b b b

n g g g m g g g
a a a a a a

f x d f x d f x d f x d f x d f x d      − + − + −       

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
n m n m

b b b b

n g m g g g g g
a a a a

f x f x d f x f x d f x d f x d   − − − + − + −     

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
n m n m

b b b b

n g m g g g g g
a a a a

f x f x d f x f x d f x d f x d   − − − + − + +     

2 2
( ,[ , ]) ( ,[ , ])

3 3 3 3
n mV g a b V g a b

K K

   
 + + +   if 0, max{ , }n m M N , 

                 by (10) and Theorem 3 and (9) 
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4
2

3 3 3

  
 + + =  if, 0, max{ , }n m M N . 

Since   is arbitrarily chosen, this shows that ( )( )
n

b

n g
a

f x d  is a Cauchy 

sequence.  It follows that it is convergent. 

 

Next, we show that ( ) ( )
k nk

b b

n g g
a a

f x d f x d →   

Now there exists a positive integer L such that 0max{ , }kk L n M N   .   

Thus, for  k L   

( )( ) ( ) ( ) ( ) ( ) ( )
k n k n nk k k

b b b b b

n g g n g g g
a a a a a

f x d f x d f x f x d f x d f x d    − = − + −      

( )( ) ( ) ( )
k n nk k

b b

n g g g
a a

f x f x d f x d  −= − +   

( )( ) ( ) ( )
k n nk k

b b

n g g g
a a

f x f x d f x d  − − +   

( ,[ , ]) ( )
3 k nk

b

n g g
a

V g a b f x d
K


 − +   by Theorem 3 

2

3 3
K

K

 
 + =  by (9). 

Hence, ( ) ( )
k nk

b b

n g g
a a

f x d f x d →  .  Thus, ( )( )
n

b

n g
a

f x d  is a Cauchy sequence that 

has a convergent subsequence that converges to ( )
b

g
a

f x d and so

( ) ( )
n

b b

n g g
a a

f x d f x d →  . 

Alternatively, we may use Theorem 2 to show that ( ) ( )
k nk

b b

n g g
a a

f x d f x d →   

( ) ( ) ( ) ( ) ( ) ( )
k n k n n nk k k k

b b b b b b

n g g n g g g g
a a a a a a

f x d f x d f x d f x d f x d f x d     − = − + −       

( ) ( ) ( ) ( )
k n n nk k k

b b b b

n g g g g
a a a a

f x d f x d f x d f x d    − + −     

( )( ) ( ) ( ) ( )
k n nk k

b b b

n g g g
a a a

f x f x d f x d f x d   − + −   . 

Since 
knf  converges uniformly to f, there exists integer L1 such that  
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                    1 ( ) ( )
2knk L f x f x

K


  −   for all x in [a, b] 

Therefore, by Theorem 3, ( )( ) ( ) ( ,[ , ])
2 2k n kk

b

n g n
a

f x f x d V g a b
K

 
−   . 

By Theorem 2, ( ) ( )
nk

b b

g g
a a

f x d f x d →  . Therefore, there exists integer L2 such 

that 1 ( ) ( )
2nk

b b

g g
a a

k L f x d f x d


   −   . 

Let L be an integer such that max{ 1, 2}L L L .  Then   

           ( ) ( )
k nk

b b

n g g
a a

k L f x d f x d   −   

                         ( )( ) ( ) ( ) ( )
2 2k n nk k

b b b

n g g g
a a a

f x f x d f x d f x d
 

    − + −  + =     

 Hence,  ( ) ( )
k nk

b b

n g g
a a

f x d f x d →  . 

 

Theorem 13.  Suppose [a, b] is a closed and bounded interval with a < b. 

Suppose ( ):[ , ]nf a b →  is a sequence of functions converging uniformly to a 

bounded function :[ , ]f a b → .  Suppose ( ):[ , ]ng a b →  is a sequence of 

increasing functions and  ng  converges on a dense set E in [a, b] with { , }a b E  

to a bounded function g on E.  That is to say, ( ) ( )ng x g x→  for every x in E.  

Suppose the Riemann Stieltjes integral 
n

b

n g
a

f d exists for each positive integer 

n.  Then there exists a subsequence ( ):[ , ]
kng a b →  such that ( )

kng x tends 

pointwise to an increasing function h on [a, b]. Moreover, ( ) ( )h x g x=  for every x 

in E.  We extend g to all of [a, b] by ( ) ( )g x h x= for x E .  Suppose f is Riemann 

Stieltjes integrable with respect to g. Then 

                                      ( ) ( )
n

b b

n g g
a a

f x d f x d →  . 

 

To prove Theorem 13, we shall need the following technical lemmas. 

 

Suppose 0 1: NP a x x x b=    =  is a partition.  Suppose g is an increasing 

function on [a, b].  A function H defined on [a, b] by 
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                               ( ) iH x c=  if 1( , )i ix x x−  

is called a step function. 

Suppose g is an increasing function defined on [a, b].   

We say H is an admissible step function with respect to the increasing function 

g if g is continuous at ix  for 1 1i N  −  and H is continuous at a (i.e., 1( )H a c= ) 

if g is discontinuous at a, and H is continuous at b ( ( ) NH b c= ) if g is 

discontinuous at b.  Note that H is Riemann Stieltjes integrable with respect to g 

on [a, b].  

Lemma 14.  Suppose :[ , ]H a b →  is an admissible step function with respect to 

an increasing function g.  Then given any 0  , there exists a continuous 

function :[ , ]a b →  and a continuous function :[ , ]a b → such that 0H −  ,  

0H −  ,  that is, H   ,and such that   

                    ( )( ) ( )
b

g
a

H x x d  −   and ( )( ) ( )
b

g
a

x H x d  −  , 

i.e.,             ( ) ( ) ( )
b b b

g g g
a a a

x d H x d x d      −   +   , 

where the integrals are Riemann Stieltjes integrals with integrator g. 

Proof.  Let 0 1: NP a x x x b=    =  be the admissible partition associated with 

the admissible step function H.  We assume that H is continuous at a and at b.  

We define the function   on 0 2[ , ]x x  and extend it to [a, b]. Without loss of 

generality, we may assume that H is right continuous at ix  for 1 1i N  − .  If 

2 1c c , let 1 1 0x p =   and 1 2 10 p x x  − , join 1 1( , )x c  to 1 1 2( , )x x c+  by a line and 

thus defined a continuous map on 0 2[ , )x x  joining 0 1( , )x c  to 1 1( , )x c  by a line 

segment and 1 1( , )x c  to 1 1 2( , )x x c+ and with values 2c  on the interval 1 1 2( , ]x x x+ . 

Note that the line segment is below the graph of H and so H is greater or equal 

to this continuous segment on 0 2[ , ]x x .  

If 2 1c c , let 1 1 0x p = −   and 1 10 p x  , join 1 1 1( , )x x c+  to 1 2( , )x c  by a line and 

thus defined a continuous map on the interval 0 2[ , )x x  joining 0 1( , )x c  to 

1 1 1( , )x x c+  by a line segment and 1 1 1( , )x x c+  to 1 2( , )x c  by a line segment.  Note 

that the line segment is below the graph of H and so H is greater or equal to this 

continuous segment on 0 2[ , ]x x .  

We proceed in this manner to extend the definition of the continuous function to 

0 3[ , ]x x  and progressively to [a, b].  Note that  
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                 ( )
1

1

1

( ) ( ) ( ) ( )
Nb

g i i i i i
a

i

H x x d c c g x x g x 
−

+

=

−  − +  − . 

Let 
1

1

1

N

i i

i

C c c
−

+

=

= − .   Since g is continuous at ix , 1 1i N  −  choose ix  so that 

( ) ( )
1

i i ig x x g x
C


+  − 

+
 and so 

                  ( )( ) ( )
b

g
a

H x x d  −  . 

We can define the continuous function :[ , ]a b →  similarly to obtain the 

desired property ( )( ) ( )
b

g
a

x H x d  −  .  We note that in the definition of  , the 

line segment in the construction is always above the graph of H. 

 

Suppose the function :[ , ]f a b →   is Riemann Stieltjes integrable with respect 

to an increasing function :[ , ]g a b → .  We shall show that f can be 

approximated from above and below by continuous major function and minor 

function.  

 

Lemma 15.  Suppose [a, b] is a closed and bounded interval with a < b.  Let 

:[ , ]g a b → be an increasing function and :[ , ]f a b → ,  a bounded function, 

which is a Riemann Stieltjes integrable function with respect to g as the 

integrator.  Then given 0  , there exists continuous functions L and M such 

that for all x in [a, b],  ( ) ( ) ( )M x f x L x  , ( ) ( )
2

b b

g g
a a

f x d M x d


  +  , 

( ) ( )
2

b b

g g
a a

f x d L x d


  −  and  ( )( ) ( )
b

g
a

L x M x d −  . 

Proof.  Since the function f is bounded and Riemann Stieltjes integrable, it is 

Darboux Stieltjes integrable.   That is to say, the upper and lower Darboux 

Stieltjes integals are the same.  Thus, given 0  , there exists a partition    

0 1: NP a x x x b=    =  of [a, b] such that the lower Darboux Stieltjes sum,                          

( )1

1

( , ) ( , ) ( ) ( )
N

i i i

i

L f P m f P g x g x −

=

= −  and the upper Darboux Stieltjes sum 

( )1

1

( , ) ( , ) ( ) ( )
N

i i i

i

U f P M f P g x g x −

=

= − , where 1( , ) inf{ ( ) : [ , ]}i i im f P f x x x x−=  and 

1( , ) sup{ ( ) : [ , ]}i i iM f P f x x x x−=  , satisfy  
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          0 ( ) ( , )
8

b

a
f x dg L f P


 −   and 0 ( , ) ( )

8

b

a
U f P f x dg


 −  . 

That is,   

                       ( ) ( , ) ( )
8

b b

a a
f x dg L f P f x dg


−    ,  ---------------  (1) 

                       ( ) ( , ) ( )
8

b b

a a
f x dg U f P f x dg


  +   ----------------  (2) 

and                            0 ( , ) ( , )
4

U f P L f P


 −  ,  -------------------(3) 

Now, since f is Riemann Stieltjes integrable with respect to g, f and g cannot 

have the same point of discontinuity.   Suppose P K for some K > 0. 

Therefore, by Lemma 16 below, there exists admissible partition 

0 1 11: NP a y y y b=    = with respect to the function g such that 1P K  and 

                                      ( , ) ( , 1)
8

L f P L f P


 +   ------------------- (4) 

and                                 ( , ) ( , 1)
8

U f P U f P


 − .  ----------------- (5) 

We shall define an admissible step function H corresponding to the Lower 

Darboux sum 
1

1

1

( , 1) ( , 1)( ( ) ( ))
N

i i i

i

L f P m f P g y g y −

=

= − , where  

1( , 1) inf{ ( ) : [ , ]}i i im f P f x x y y−=  for 1 1i N  .   

Define 1( ) ( , ) for [ , )i i iH x m f P x y y−=   for 1 1i N   and 1( ) ( , )NH b m f P= .  Note that 

H is right continuous at iy  0 1 1i N  − and continuous at 1Ny .  Then 

( ) ( , 1)
b

g
a

H x d L f P = .  

By Lemma 14, there exists a continuous function :[ , ]a b → and continuous 

function :[ , ]a b → such that H     and 

( ) ( ) ( )
4 4

b b b

g g g
a a a

x d H x d x d
 

    −   +    

                               0 ( ) ( )
4

b b

g g
a a

H x d x d


   −    .  ------------------ (6) 

                               0 ( ) ( )
4

b b

g g
a a

x d H x d


   −    

Thus, 0f H −  −   and so f  . 
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Define 11( ) ( , ) for [ , )i i iH x M f P x y y−=   for 1 1i N   and 11( ) ( , )NH b M f P= .  

1( ) ( , )NH b m f P= .  Note that H1 is right continuous at iy  0 1 1i N  − and 

continuous at 1Ny . Then 1( ) ( , 1)
b

g
a

H x d U f P = .  H1 is an admissible step 

function with respect to g. 

By Lemma 14, there exists a continuous function 1:[ , ]a b → and continuous 

function 1:[ , ]a b → such that 1 1 1H     and 

1( ) 1( ) 1( )
4 4

b b b

g g g
a a a

x d H x d x d
 

    −   +    

By Lemma 14, there exists a continuous function 1:[ , ]a b →  such that 1 1H    

and  

                                0 1( ) 1( )
4

b b

g g
a a

x d H x d


   −    . -------------------- (7)   

1( ) 1( ) ( , 1)
4 4

b b

g g
a a

x d H x d U f P
 

   + = +   

               
3

( , ) ( ) ( )
8 4 8 8 2

b b

g g
a a

U f P f x d f x d
    

  + +  + + = +  , ---------- (8) 

                                by (5) and (2). 

( ) ( ) ( , 1)
4 4

b b

g g
a a

x d H x d L f P
 

   − = −   

                
3

( , ) ( ) ( )
8 4 8 8 2

b b

g g
a a

L f P f x d f x d
    

  − −  − − = −  , -----------(9) 

                              by (4) and (1). 

Thus, 1 1 1 0f H −  −   and so 1f  .  It follows that 1f   . 

( ) ( )
2

b b

g g
a a

f x d x d


   +     and ( ) 1( )
2

b b

g g
a a

f x d x d


   −  .   

Therefore, 

               0 1( ) ( ) ( ) ( )
2 2

b b b b

g g g g
a a a a

x d x d f x d f x d
 

      
 

 −  + − − = 
 

    , 

                                                                                   by (8) and (9). 

Let M(x) be the continuous function   and L(x) be the continuous function 1 .  

Then we have ( ) ( ) ( )M x f x L x   and  
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                                    ( )( ) ( )
b

g
a

L x M x d −  . 

( ) ( )
2

b b

g g
a a

f x d M x d


  +     and ( ) ( )
2

b b

g g
a a

f x d L x d


  −  .    

Note that we start with a partition P such that  0 ( ) ( , )
8

b

g
a

f x d L f P


 −   and 

0 ( , ) ( )
8

b

g
a

U f P f x d


 −  .  Then we refine P to P1 such that 

( , ) ( , 1)
8

L f P L f P


 + and ( , ) ( , 1)
8

U f P U f P


 − .  Therefore, 

( , 1) ( )
4

b

g
a

U f P f x d


 +  and ( , 1) ( , ) ( )
8 4

b

g
a

L f P L f P f x d
 

 −  − . 

 

Lemma 16. Suppose [a, b] is a closed and bounded interval with a < b.  Let 

:[ , ]g a b → be an increasing function and :[ , ]f a b → a bounded function, 

which is a Riemann Stieltjes integrable function with respect to g as the 

integrator.  Suppose  0 1: NP a x x x b=    =  is a partition of the interval [a, b] , 

with P  for some 0  .  Then given any 0  , there exist an admissible 

partition Q of [a, b], which is a refinement of P such that 

                        ( , , ) ( , , ) ( ( ) ( ))L f g P L f g Q g b g a + −  and 

                        ( , , ) ( , , ) ( ( ) ( ))U f g P U f g Q g b g a − − ,  

where ( , , ) and ( , , )L f g P L f g Q  are the lower Darboux Stieltjes sums of f with 

respect to the partitions P and Q and integrator g and ( , , ) and ( , , )U f g P U f g Q  are 

the upper Darboux Stieltjes sums of f with respect to the partitions P and Q and 

integrator g. 

Proof.    

Take the partition 0 1: NP a x x x b=    = . 

Since f is bounded and Riemann Stieltjes integrable with respect to g, if g is 

right discontinuous at ix or left discontinuous at ix for 0,i N  , then f must be 

continuous at ix .  This is because if g is right discontinuous at ix  and f is right 

discontinuous at ix or g is left discontinuous at ix  and f is left discontinuous at 

ix , then f cannot be Riemann Stieltjes integrable on [a, b].  Moreover, if g is 

right discontinuous at ix  and f is right continuous at ix and left discontinuous at 

ix , then f cannot be Riemann Stieltjes integrable on [a, b] and that if g is left 
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discontinuous at ix  and f is left continuous at ix and right discontinuous at ix , 

then f cannot be Riemann Stieltjes integrable on [a, b]. 

Therefore, when g is discontinuous at ix , there exists 0i   such that  

                    ( ) ( )
3

if x f x


−     for 
i ix x −   .    ---------------------------  (1). 

Let   :  is discontinuous at ,0i iS g x i N=    and  1min :1P i iM x x i N−= −   .  Since 

g is an increasing function on [a, b], the set of points of discontinuity of g is at 

most countable.  We can add points near points of discontinuity of g in the 

partition P so that g is continuous at these points and so that the norm of the 

resulting partition is less than i  for each point of discontinuity of g in the 

partition P and also less than  1min :1i ix x i N−−    of P.  Let    

0 12 : sP a y y y b=    =  be this refinement.  Then  2 min pP S M=    

 Note that 2P P and 2 iP  =   for each i S  . 

The partition point jy  is either a point of continuity of g when it does belong to 

P or a point of discontinuity of g in P. 

Suppose g is discontinuous at jy  .  Note that 0,j s .  Consider the intervals 

1 1( , )j jy y − − +  and 1( , )j jy y + . Plainly, 1 1 1( , ) ( , )j j j jy y y y− − ++   .  Choose a point 

1 1 1( , ) ( , )j j j j jz y y y y− − + +    so that 1( , )j j jz y y + and is near to jy  and g is 

continuous at jz . That is, we shall replace the point jy  by jz  If g is continuous at 

jy , let j jz y= .  Since f is Riemann Stieltjes integrable on [a, b], if g is not 

continuous at a, then f is continuous at a and if g is not continuous at b, then f is 

continuous at b.  Let 0 0z y a= =  and s sz y b= = . 

In this way, we define a partition 0 1: sQ a z z z b=    = and Q is admissible 

with respect to g.  That is, g is continuous at iz  for 1 1i s  − . 

Then we have  0 1 0 1[ , ] [ , ]z z y y= and 1 1[ , ] [ , ]s s s sz z y y− −= . 

Let  ,2 1inf ( ) : [ , ]j j jm f x x y y−=   and  1inf ( ) : [ , ]j j jm f x x z z−=  for 1 j s  . 

Then 1,2 1m m=  and ,2s sm m=  

Let ,2( ), ( )j j j jg g z g g y= =  and ,2 ( ) ( )j j j j jg g g g z g y = − = − . 

Since j jz y  and g is increasing, 0jg   for 2 1j s  − , 1 0sg g =  = . 
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Suppose now 2 2j s  − . 

Note that by construction, g must be continuous at 1y  and at 1sy −  and so 

1 1 0sg g − =  = . 

Suppose 0jg  , then j jz y . 

As j jz y , g is discontinuous at jy  and so f is continuous at jy .   This means 

                1 1[ , ] ( ) ( )
3

j j jx y y f x f y


− +  −   or 

                          ( ) ( ) ( )
3 3

j jf y f x f y
 

−   +  .        --------------------------  (2)  

Note that if 0jg   and 1 1j s  − , then g is discontinuous at jy  for 1 1j s  −

and g is continuous at 1 1 and j jy y− + .  It follows that 

               1 1 1 1, , ,j j j j j jz z y z y y− − − +
     =        and 1 1 1, , ,j j j j j jz z y z y y− − −

     =       . 

Since 1 1 1, ,j j j jz z y y− − +
        , it follows from (2) that for all 1[ , ]j jx z z− ,  

              1( ) inf ( ) : [ , ] ( ) ( )
3 3

j j j j j jf y m f x x z z f y f y
 

−−  =    + , ------------ (3) 

and for all 1[ , ]j jx y y− , 

                1,2 1( ) inf ( ) : [ , ] ( ) ( )
3 3

j j j j j jf y m f x x y y f y f y
 

+ +−  =    + . ------- (4) 

   ,2 1,2 1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j j j jm m f x x y y f x x y y+ − +− =  −    

                    1 1inf ( ) : [ , ] sup ( ) : [ , ]j j j jf x x y y f x x y y− +=  + −   

                 
2

( ) ( )
3 3 3

j jf y f y
  

 + − + =  . 

   1,2 1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j j j jm m f x x z z f x x y y+ − +− =  −    

                 1 1inf ( ) : [ , ] sup ( ) : [ , ]j j j jf x x z z f x x y y− +=  + −   

                ( ) ( )
3 3

j jf y f y
 

 − + =  . 

Similarly, 

         1,2 ,2 1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j j j jm m f x x y y f x x y y+ + −− =  −   



29 
 

                       1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j jf x x y y f x x y y+ −=  + −   

                       
2

( ) ( )
3 3 3

j jf y f y
  

 + − + = . 

         1,2 1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j j j jm m f x x y y f x x z z+ + −− =  −   

                       1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j jf x x y y f x x z z+ −=  + −   

                       ( ) ( )
3 3

j jf y f y
 

 − + = . 

Hence, if 0jg   and 2 2j s  − , 1,2 ,2

2

3
j jm m


+ −  .  -------------------------   (5) 

If 0jg   and  2 2j s  − , then 1 1 1, , ,j j j j j jz z y z y y− − −
     =        and so ,2j jm m . 

If 0jg   and  2 2j s  − we have that 1 1 1, ,j j j jz z y y− − +
       ,  

                          ,2 ( ) ( )
3

j jm f y f x


  +  for all 1[ , ]j jx z z−  by (2). 

It follows that ,2
3

j jm m


 +  and ,2
3

j j jm m m


  + . 

                          ,2
3

j jm m


 + .    ---------------------  (6). 

Hence, if 0jg   and 2 2j s  − , ,2
3

j jm m


 + . 

If 0jg =  and 2 1j s  − , then j jz y= ,  1 1 1, , [ , ]j j j j j jz z z y y y− − −
   =      and so 

,2
3

j j jm m m


  + .   

Note that 1 1 0sg g− =  = . Since 1,2 1m m=  and ,2s sm m= , 1,2 1
3

m m


 + ,2
3

s sm m


 +  

Hence, ,2
3

j jm m


 +  for 1 j s  . 

Now,  

,2 1,2 1 1 1 1,2 ,2( ) ( ) ( ) ( )j j j j j j j j j jg g g y g y g g g g g g− − − − −− = − = − + − − −  

                1 1( ) ( )j j j jg g g g− −= − +  − .    ------------------------------ (7) 

,2 ,2 1,2

1

( , , ) ( , , 1) ( )
s

j j j

j

L f g P L f g P m g g −

=

 = −   
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,2 1 ,2 1

1 1

( ) ( ( ) ( ))
s s

j j j j j j

j j

m g g m g g− −

= =

= − +  −   

                          
1 ,2 1

1 1

( ) ( ( ) ( ))
3

s s

j j j j j j

j j

m g g m g g


− −

= =

 
 + − +  − 

 
   

                            
,2 1

1

( , , ) ( ( ) ( )) ( ( ) ( ))
3

s

j j j

j

L f g Q g b g a m g g


−

=

 + − +  −  

                          ( )
1

1,2 ,2

1

( , , ) ( ( ) ( )) ( )
3

s

j j j

j

L f g Q g b g a m m g
 −

+

=

 + − + −   

                          
1

1,2 ,2

1

( , , ) ( ( ) ( )) ( )
3

s

j j j

j

L f g Q g b g a m m g
 −

+

=

 + − + −  .   

Now if ( ) 0jg   , then by (5) 1,2 ,2

2

3
j jm m


+ −   .  Therefore, 

                           
1 1

1,2 ,2

1 1

2 2
( ) ( ) ( ( ) ( ))

3 3

s s

j j j j

j j

m m g g g b g a
 − −

+

= =

−     −  . 

Hence, ( , , ) ( , , ) ( ( ) ( ))L f g P L f g Q g b g a + − . 

Now, we consider the upper Darboux sum. 

Note that 0 1 1 0s sg g g g− =  =  =  =  

Let  ,2 1sup ( ) : [ , ]j j jM f x x y y−=   and  1sup ( ) : [ , ]j j jM f x x z z−=  . 

Since 0 1 0 1[ , ] [ , ]z z y y= and 1 1[ , ] [ , ]s s s sz z y y− −= , 1,2 1M M=  and ,2s sM M= . 

If 0jg   and 2 2j s  −  , then j jz y , and g is discontinuous at jy  and so f is 

continuous at jy .   Recall (2) says  1 1[ , ] ( ) ( )
3

j j jx y y f x f y


− +  −   or 

                          ( ) ( ) ( )
3 3

j jf y f x f y
 

−   +  .         

If 0jg   and 2 2j s  − ,  then g is continuous at 1jy −  so that  1 1 10,  j j jg z y− − − = =  

, 1 1 1 1, , ,j j j j j jz z y z y y− − − +
     =       ,  

for all 1[ , ]j jx z z− ,  

              1( ) sup ( ) : [ , ] ( ) ( )
3 3

j j j j jf y M f x x z z f x f y
 

−+  =    − , ------------ (8) 

and for all 1[ , ]j jx y y− , 
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                1,2 1( ) sup ( ) : [ , ] ( ) ( )
3 3

j j j j jf y M f x x y y f x f y
 

+ ++  =    − . ------- (9) 

Thus,  

           ,2 1,2 1 1sup ( ) : [ , ] sup ( ) : [ , ]j j j j j jM M f x x y y f x x y y+ − +− =  −    

                            1 1sup ( ) : [ , ] inf ( ) : [ , ]j j j jf x x y y f x x y y− +=  + −   

                         
2

( ) ( )
3 3 3

j jf y f y
  

 − − − = −  . 

Similarly, 

         1,2 ,2 1 1sup ( ) : [ , ] sup ( ) : [ , ]j j j j j jM M f x x y y f x x y y+ + −− =  −   

                          1 1inf ( ) : [ , ] inf ( ) : [ , ]j j j jf x x y y f x x y y+ −=  + −   

                       
2

( ) ( )
3 3 3

j jf y f y
  

 − − − = − . 

Hence, for 0jg   and 2 2j s  − ,   

                                1,2 ,2

2

3
j jM M


+ −  .  -----------------------------------------   (10) 

If 0jg   and 2 2j s  − , then 1 1 1 1, , ,j j j j j jz z y z y y− − − +
     =       , 

,2 ( ) ( )
3

j jM f y f x


  −  for all 1[ , ]j jx z z−  by (3) and so ,2
3

j jM M


 −  

If 0jg   and 2 2j s  − , then 1 1 1, , ,j j j j j jz z y z y y− − −
     =        and so ,2j jM M . 

Hence, ,2
3

j j jM M M


  − ,  if 0jg   and 2 2j s  − . 

If 0jg =  and 1 1j s  −  so that j jz y= , then 1 1 1, , ,j j j j j jz z z y y y− − −
     =         and 

so ,2
3

j j jM M M


  − .  

Since  ,2s sM M= , we conclude that if 0jg = , then ,2
3

j j jM M M


  − . 

It follows that for 1 j s   

                          ,2
3

j jM M


 − .    ---------------------  (11) 

Recall from (7), for 1 j s  , ,2 1,2 1 1( ) ( )j j j j j jg g g g g g− − −− == − + − . 
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,2 ,2 1,2

1

( , , ) ( , , 1) ( )
s

j j j

j

U f g P U f g P M g g −

=

 = −   

                               
,2 1 ,2 1

1 1

( ) ( ( ) ( ))
s s

j j j j j j

j j

M g g M g g− −

= =

= − +  −   

                               
1 ,2 1

1 1

( ) ( ( ) ( ))
3

s s

j j j j j j

j j

M g g M g g


− −

= =

 
 − − +  − 

 
   

                               
,2 1

1

( , , ) ( ( ) ( )) ( ( ) ( ))
3

s

j j j

j

U f g Q g b g a M g g


−

=

 − − +  −  

                              ( )
1

1,2 ,2

1

( , , ) ( ( ) ( )) ( )
3

s

j j j

j

U f g Q g b g a M M g
 −

+

=

 − − + −   

                              
1

1,2 ,2

1

( , , ) ( ( ) ( )) ( )
3

s

j j j

j

U f g Q g b g a M M g
 −

+

=

 − − − −  .   

Mow if ( ) 0jg   , then by (5), we have 1,2 ,2

2

3
j jM M


+ −   .   

Therefore, 
1 1

1,2 ,2

1 1

2 2
( ) ( ) ( ( ) ( ))

3 3

s s

j j j j

j j

M M g g g b g a
 − −

+

= =

−     −  . 

Hence, ( , , ) ( , , ) ( ( ) ( ))U f g P U f g Q g b g a − − . 

Remark.  Replacing   by 
( ) ( )g b g a



−
 , if g is an increasing function and for a 

partition P, we can find a refinement to an admissible partition Q such that 

( , , ) ( , , )L f g P L f g Q  +  and   ( , , ) ( , , )U f g P U f g Q  − ,  

 

Proof of Theorem 13. 

Note that each ng  is an increasing function.  As b E  and the sequence ( )( )ng b  

is convergent and so the sequence is bounded above by K for some K > 0.  It 

follows that for all [ , ]x a b  and for all positive integer n, ( )ng x K .  As the 

sequence ( )( )ng a  is convergent it is bounded below by a constant L.  It follows 

that for all positive integer n, ( )ng x L .  Therefore,  ( ) max ,ng x L K .  Hence, 

by Helly Selection Theorem (see page 221 of  Natanson, Theory of function of 

a real variable, Vol 1,  Lemma 2), there exists a subsequence ( ):[ , ]
kng a b →  
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such that ( )
kng x tends pointwise to an increasing function h on [a, b].  Plainly 

( ) ( )h x g x=  for all x in E.  We extend g to all of [a, b] by ( ) ( )g x h x= for x E .    

Note that ( ) ( )n ng b g a K L−  +  and so the total variation of ng  is uniformly 

bounded.   

By Lemma 15, since f is Riemann Stieltjes integrable with respect to g, given 

0  , there exists continuous functions L and M such that for all x in [a, b],  

( ) ( ) ( )M x f x L x   and  

                                    ( )( ) ( )
b

g
a

L x M x d −  . 

 ( ) ( )
2

b b

g g
a a

f x d M x d


  +     and ( ) ( )
2

b b

g g
a a

f x d L x d


  −  .   

Let  
3

1( ) ( )
4(1 ( ) ( ))

G x L x
g b g a


= +

+ −
 and 

3
2( ) ( )

4(1 ( ) ( ))
G x M x

g b g a


= −

+ −
 and 

                           
3 3

2( ) ( ) 1( )
4(1 ( ) ( )) 4(1 ( ) ( ))

G x f x G x
g b g a g b g a

 
+   −

+ − + −
. 

Since nf  converges uniformly to a bounded function f, there exists an integer 

N2> 0 such that 
3

( ) ( )
4(1 ( ) ( ))

nf x f x
g b g a


− 

+ −
 for 2n N  and for all [ , ]x a b , 

i.e.,  

                               
3 3

( ) ( ) ( )
4(1 ( ) ( )) 4(1 ( ) ( ))

nf x f x f x
g b g a g b g a

 
−   +

+ − + −
. 

That is,  2( ) ( ) 1( )nG x f x G x  . 

Hence,  

                       2( ) ( ) 1( )
n n n

b b b

g n g g
a a a

G x d f x d G x d        -----------------------  (1) 

Since G1 and G2 are continuous, by Theorem 12 (with ( )nf  a constant 

sequence), 

                   lim 1( ) 1( )  and lim 2( ) 2( )
n n

b b b b

g g g g
a a a an n

G x d G x d G x d G x d   
→ →

= =    . 

Therefore, given 0  , there exists N1 > 0 such that  

                       1 1 1 1
n

b b b

g g g
a a a

n N G d G d G d      −   +     

and there exists N2 > 0 such that  
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                       2 2 2 2
n

b b b

g g g
a a a

n N G d G d G d      −   +    . 

Thus, it follows from (1) that for max{ 1, 2}n N N ,   

                           2( ) ( ) 1( )
n

b b b

g n g g
a a a

G x d f x d G x d    −   +    ------------ (2) 

    Now,  
3 3

1( ) ( ) ( )
4(1 ( ) ( )) 4

b b b b

g g g g
a a a a

G x d L x d d L x d
g b g a

 
   = +  +

+ −     

                               
3 5

( ) ( )
2 4 4

b b

g g
a a

f x d f x d
  

  + + = +  ,  ------------------ (3) 

  and    
3 3

2( ) ( ) ( )
4(1 ( ) ( )) 4

b b b b

g g g g
a a a a

G x d M x d d M x d
g b g a

 
   = −  −

+ −     

                              
3 5

( ) ( )
2 4 4

b b

g g
a a

f x d f x d
  

  − − = −  .   --------------------- (4) 

Therefore, for max{ 1, 2}n N N , it follows from (2), (3) and (4) that 

             
5 9

( ) ( ) ( )
4 4n

b b b

n g g g
a a a

f x d f x d f x d
 

    + + = +    and 

            
5 9

( ) 2( ) ( ) ( )
4 4n

b b b b

n g g g g
a a a a

f x d G x d f x d f x d
 

      −  − − = −    . 

Thus, for max{ 1, 2}n N N , 

                               
9 9

( ) ( ) ( )
4 4n

b b b

g n gga a a
f x d f x d f x d

 
  −   +   . 

Hence, lim ( ) ( )
n

b b

n g g
a an

f x d f x d 
→

=  . 

                         

The next Theorem is a variation of Theorem 9. 

Theorem 17.  Suppose ( ):[ , ]ng a b J→ is a sequence of bounded function 

converging uniformly to a continuous function :[ , ]g a b J→ , where J is a closed 

and bounded interval.  Suppose : J →  is a function such that the total 

variation of the composition functions :[ , ]ng a b → , ( ,[ , ])nV g a b K   for 

some K > 0 and for all positive integer n.  Suppose ( ) ( )ng x g x=  for nx E  

1n nE E +  and
1

n

n

E E


=

=  is an everywhere dense set in [a, b] with { , }a b E .  

Suppose either ng  is continuous for all n or nf g  is Riemann Stieltjes 
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integrable with respect to ng , that is, ( ( ))
n

b

n g
a

f g x d  exists for all n.   

Suppose :f J →  is a continuous function and g  is of bounded variation.  

Then  

                               ( ( )) ( ( ))
n

b b

n g g
a a

f g x d f g x d  →  . 

Proof.  Since f is continuous and ng  converges uniformly to g,  nf g  converges 

uniformly to f g . 

We note that since f is continuous on J, f is uniformly continuous on J.  

Therefore, given any 0   , there exists 0   such that for all x, y in J, 

                                  ( ) ( )x y f x f y
K


−   −   .   --------------------- (3) 

Since ng  converges to g uniformly, there exists an integer N > 0 such that  

                            ( ) ( )nn N g x g x   −   for all x in [a, b].   

It follows from (3) that  

           ( ) ( ) ( ) ( )n nn N g x g x f g x f g x
K


  −   −   for all x in [a, b].   

Therefore, for all n > N, 

               ( )( ( )) ( ( )) ( ,[ , ]
n

b

n g n
a

f g x f g x d V g a b
K




  −   . 

It follows that  ( )lim ( ( )) ( ( )) 0
n

b

n g
an

f g x f g x d 
→

− =    

Therefore, lim ( ( )) lim ( ( ))
n n

b b

n g g
a an n

f g x d f g x d  
→ →

=   

Now, :[ , ]ng a b →  is a sequence of function of bounded variation such that 

( ,[ , ])nV g a b K   for all integer n >1.  Since f g  is continuous, by Theorem 12 

, there exists a subsequence :[ , ]
kng a b →  such that 

kng converges to a 

function   of bounded variation such that ( ) ( ( ))x g x =  for every x in E and  

lim ( ( )) ( ( ))
n

b b

g
a an

f g x d f g x d 
→

=  .   
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Since ( ( ))
b

a
f g x d exists, given 0  , there exists a 1 0   such that for any 

partition 0 1: NP a x x x b=    =  with 
1P  , any Riemann Stieltjes sum 

( )1

1

( ( )) ( ) ( )
N

i i i

i

f g u x x −

=

 −  satisfies 

                 ( )1

1

( ( )) ( ( )) ( ) ( )
Nb

i i i
a

i

f g x d f g u x x  −

=

−  −  . 

Similarly, there exists a 2 0   such that for any partition 

0 1: NP a x x x b=    =  with 
2P  , any Riemann Stieltjes sum 

( )1

1

( ( )) ( ) ( )
N

i i i

i

f g u g x g x  −

=

−  satisfies 

                ( )1

1

( ( )) ( ( )) ( ) ( )
Nb

g i i i
a

i

f g x d f g u g x g x   −

=

− −  . 

Take any subdivision 0 1: NP a x x x b=    =  of [a, b] with norm sufficiently 

small so that 
1 2min( , )P   .  

Since E is dense in [a, b], we can choose a subdivision 0 1: NP a x x x b=    =  

such that 
1 2min( , )P    and ix E for 0 i N  .  Then we have   

              ( )1

1

( ( )) ( ( )) ( ) ( )
Nb

i i i
a

i

f g x d f g u x x −

=

−  −  

               ( )1

1

( ( )) ( ( )) ( ( )) ( ( ))
Nb

i i i
a

i

f g x d f g u f g x f g x  −

=

= − −    

and ( )1

1

( ( )) ( ( )) ( ) ( )
Nb

g i i i
a

i

f g x d f g u g x g x   −

=

− −  .  Therefore, 

                ( ( )) ( ( )) 2
b b

g
a a

f g x d f g x d    −   . 

As   is arbitrarily small, we conclude that ( ( )) ( ( ))
b b

g
a a

f g x d f g x d   =  . 

Thus, lim ( ( )) lim ( ( )) ( ( )) ( ( ))
n n

b b b b

n g g g
a a a an n

f g x d f g x d f g x d f g x d     
→ →

= = =    . 

 

We can relax the condition of convergence of the sequence of function 

:[ , ]ng a b →  in Theorem 11.  We require only this sequence be convergent on 

a dense subset of [a, b] in the next theorem. 
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Theorem 18.  Suppose ( ):[ , ]ng a b J→ is a sequence of continuous polygonal 

function converging uniformly to a continuous function :[ , ]g a b J→ , where J is 

a closed and bounded interval.  Suppose ( ) ( ) and ( ) ( )n ng a g a g b g b= = .  Suppose 

: J →  is a function of bounded variation such that the total variation of the 

composition functions :[ , ]ng a b → , ( ,[ , ])nV g a b K   for some K > 0 and for 

all positive integer n.  Suppose :f J →  is a continuous function and g  is of 

bounded variation.  Suppose ng  converges to g  at every point in a dense 

subset E in [a, b].  Then 
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =   

Proof. 

Note that { , }a b E .  

As in the proof of Theorem 17, we have  lim ( ( )) lim ( ( ))
n n

b b

n g g
a an n

f g x d f g x d  
→ →

=  . 

Since ng  is polygonal, we have shown in the proof of Theorem11, that 
( )

( )
( ( )) ( )

n

b g b

n g
a g a

f g x d f x d  =  .  We have shown in the proof of Theorem 17 that 

lim ( ( )) ( ( ))
n

b b

g g
a an

f g x d f g x d  
→

=  .  Therefore, 

                                
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f x d  =  . 

 

When the function : J →  is monotone, we have the following change of 

variable theorem. 

Theorem 19.  Suppose :[ , ]g a b J→  and :f J →  are continuous functions.  

Suppose : J →  is monotone and :[ , ]g a b → is a function of bounded 

variation.  Then we have 
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 

Proof. 

Let 0 1: NP a x x x b=    =  be a sub division of [a, b]. 

( )

( )
( )

g b

g a
f y d  − 1

1

( )( ( )( ) ( )( )
N

i i i

i

f g u g x g x  −

=

−  , 1[ , ]i i iu x x−   

               
1 1

( ) ( )

( ) ( )
1 1

( ) ( ( )
i i

i i

N Ng x g x

i
g x g x

i i

f y d f g u d  
− −= =

= −       
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               ( )
1

( )

( )
1

( ) ( ( )
i

i

N g x

i
g x

i

f y f g u d 
−=

= −  

Since f g  is continuous on [a, b] and so given 0  , there exists 0   such 

that  ( ) ( )f g x f g y −   whenever x y −  .   Let P  .   

Note that 1[ , ]i i iu x x−  and for 1([ , ])i iy g x x− , ( ) ( ( )if y f g u −  .  

( ) ( )
1 1

( ) ( )

( ) ( )
1 1

( ) ( ( ) ( ) ( ( )
i i

i i

N Ng x g x

i i
g x g x

i i

f y f g u d f y f g u d  
− −= =

−  −    

            
1

( )

1
( )

1 1

( ,[ ( ), ( )])
i

i

N Ng x

i i
g x

i i

d V g x g x   
−

−

= =

   ,  

                    where 1[ ( ), ( )]i ig x g x−  denotes the closed interval determined  

                     by the end points  1( ), ( )i ig x g x−
, 

            1

1

( ( )) ( ( )) ( ,[ , ])
N

i i

i

g x g x V g a b    −

=

 −  ,  

                     since   is monotone. 

Therefore, 
( )

1
( )

1

( ) ( )( ( )( ) ( )( ) ( ,[ , ])
Ng b

i i i
g a

i

f y d f g u g x g x V g a b    −

=

− −  . 

Since   is arbitrarily small, it follows that 
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 

This concludes the proof of Theorem 19. 

 

Remark. 

The function : J →  in Theorem 19 need not be monotone.  Using Theorem 

18, we can extend Theorem 19 to the case when   is of bounded variation. 

 

Suppose :[ , ]g a b J→   is a continuous function.  Then g is uniformly continuous 

and we can define a sequence of piecewise linear functions ng   by joining points 

on the graph of g by lines.  By uniform continuity of g, we can construct the 

sequence of piecewise linear functions ng such that it converges uniformly to g. 

Let nE  be the set of points in [a, b] that defines the piecewise linear functions 

ng .  That is, 0 1{ : , ,  for 1 1}
nn i s i i nE x x a x b x x i s+= = =    − , ( ) ( )n i ig x g x=  for 0 ni s   
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, ng  is linear on 1[ , ]i ix x− ,  joining the points 1 1( , ( ))i ix g x− −  to ( , ( ))i ix g x  by a straight 

line for  1 ni s  . Then ( ) ( )ng x g x=  for all x in nE . Moreover, we may assume 

that 1n nE E +  and 
1

n

n

E E


=

=  is everywhere dense in [a, b].  Therefore, ng  

converges pointwise to g in E. 

Suppose g  is of bounded variation. 

If ng  is linear on the interval 1[ , ]i ix x− , where 1 1( ) ( ) and ( ) ( )n i i n i ig x g x g x g x− −= = , then 

the variation 1 1

1

1 1

( ,[ ( ), ( )]),  if ( ) ( )
( ,[ , ])

( ,[ ( ), ( )]),  if ( ) ( )

n i n i n i n i

n i i

n i n i n i n i

V g x g x g x g x
V g x x

V g x g x g x g x






− −

−

− −


= 


   

                         1( ,[ , ])i iV g x x − . 

Therefore, ( ,[ , ]) ( ,[ , ])n i iV g a b V g a b  . 

   

Therefore, by Theorem 18, 
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 

Thus, we have proved the following theorem. 

Theorem 20.  Suppose :[ , ]g a b J→  and :f J →  are continuous functions.  

Suppose : J →  is a function of bounded variation and :[ , ]g a b → is also a 

function of bounded variation.  Then we have 
( )

( )
( ( )) ( )

b g b

g
a g a

f g x d f y d  =  . 
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