Limit of the Lebesgue Stieltjes Integral and Change of Variable
By Ng Tze Beng
If a function is defined by a Lebegsue Stieltjes integral and turns out that it is of

bounded variation, then we can define another Lebesgue Stieltjes integral with it
as the integrator. More precisely, suppose #:7 — R is an absolutely continuous

function on the closed and bounded interval 7 =[a,b], where a <b. Suppose g
is a Borel measurable function on /. Define ®:7 -R, by ®(x)= r gdA, where

4, 1s the Lebesgue Stieljes measure associated with the function ¢. Since ¢ is

absolutely continuous on /7, by Theorem 26 of “Lebesgue Stieltjes Measure, de
La Vallée Poussin’s Decomposition, Change of Variable, Integration by Parts

for Lebesgue Stieltjes Integrals”, ®(x)= J': gd, = Jj g(»d'(y)dy. It follows that

@ 1s absolutely continuous on / and therefore of bounded variation. Suppose
f:1—Ris a Borel measurable function. Then

[ fag =] SO0y = [ fI2F Wy = f()2()d2,

Hence, we have proved:

Theorem 1. Suppose ¢:7— R is an absolutely continuous function on the
closed and bounded interval 7 =[a,b], where a <b. Suppose g is a Borel

measurable function on /. Define ®:7 —»R, by ®(x)= _[ ' gdA, where 4, is the

Lebesgue Stieljes measure associated with the function ¢. Suppose f:7 —>Ris
a Borel measurable function. Then

I fdi, = If (1)g(»)da, .

If a sequence of functions of bounded variation, whose total variation is
uniformly bounded and converges to a function, is the limiting function also of
bounded variation and if so, does the sequence of Lebesgue Stieltjes integrals
defined using the given sequence of functions as integrators converges to the
Lebesgue Stieltjes integral with the limiting function as integrator? The answer
is “yes”. We state this answer as Theorem 2 below.

Theorem 2. Suppose (g,) is a sequence of functions defined on the closed and

bounded interval [a, b] whose total variations are uniformly bounded by a



constant K, i.e., V(g,,[a,b]) <K , for all positive integer n and suppose the
sequence (g,) converges to a finite function g at every point of [4,5]. Let fbe a

continuous function on [a,b]. Then g is of finite variation and

tim [ fdA, = fda, .

n—>x0

Proof.

We note that since the function f'is continuous on [a, b], the Riemann Stieltjes
integrals of the function f with integrators g and g, exist and are equal to their

respective Lebesgue Stieltjes integrals. Moreover, since fis continuous on [a,
b], for any a<d <e< f <b, the Rieman Stieltjes integrals,

RS|’ fdzg+RSLf fdA, =RS Lf fiz, and RS[' fdi, +RSLf fidr, =RS[ : A, .

We shall show that the limiting function g is of finite variation.

Let P:a=x,<x <---<x,=b be a partition of the closed interval [a, b]. Given
any ¢ >0, since the sequence (g, ) converges to g pointwise, for each 0<k<n,

there exists an integer N, >0 such that for 0<k<n,

m2 N, =g, (x) - g(q)| <o . s (1)

Let N=max{N, :0<k <n}
Then it follows from (1) that for 0<k<n

m=>N=>

R )

Suppose 1<k<n. Then for m>N

|g(xk)_g(xk—1)| = |g(xk) -g,(x)+g,(x)-g,(x_)+g,(x._) _g(xk—l)|

<|g(x) - g, ()| +|g, (x) — g, (D +]g, () —g(x)

&
<=4
2n

& &
gm(xk)_gm(‘xk—l)|+ =_+|gm(‘xk)_gm(‘xk—l)|’
2n n

Therefore,

Zn:|g(xk)_g(xk—1)| < Z(%+|gm (%)=&, (%, )|] = 5+i|gm (x,) _gm(xk—1)|

k=1

<e+V(g,.la,.b])<e+K.



Since ¢ >0 is arbitrary, V(g,[a,b]) < K . Hence, g is of bounded variation.

We shall now show that lim I fda, _.f fd4, . For the rest of the proof, all

n—0

integrals are Riemann Stieltjes integrals.

We shall take an appropriate partition of the interval [a, b] and split the integrals
into integrals on each sub intervals of the partition.

We note that since f'is continuous on [a, b], f1s uniformly continuous on [a, b].
Therefore, given any ¢ >0 , there exists & >0 such that

=y <82 @)~ f ) < 5 - oo 3)

Let P:a=x,<x <---<x, =bbe a partition of [a, b] such that
||P||:max{|xk—xk71|:1£kﬁn}<5.

Then

[rar =3[ a2 =3[ (-4 + D[ [(e)dz, . oo )
And for each positive integer

[ ran, =3[ redn, =3[ (100= 1))z, v 3 [ fe0d,, e 5)
(5) - (4) gives:

[(rdz, [ rda, —Zj (/@)= (x))dA, —Zj (@ f(5))dA

+Zf“f(xk)d/1 - jf(xk)d;t
=X (f@= @), - [ (£ £x))d2
+Zn:f(xk)(g’”(xk)_g’"(xk—l))_Zn:f(xk)(g(xk)_g(xk—l))

=2 [ (- @))dz, - Y] (100 F () d2

+Zf(xk) g,(x)—g(x,) ) Zf(xk)(gm(’xk D) —g(x,_ 1))



Then,

J)( j (S-/(x))

jfd/a‘

+i|f<xk)||gm<xk)—g(xk>|+i_|f(xk>

gm (xk—l) - g(xk—l )| .

Let M be the maximum value of | f(x)| on [a, b]. Then on account of (3) and

Theorem 3 below,

[lraz. =[]

= iK ; Vg,,, (x5 ]+ 3% ; Vg (x> x ]
MY g, (x) - g(x)|+ MY |g, (x ) - g(x.,)
k=1 k=1

£ £
<—V la,bl+—V [a,b
3K s 1:0] 3K sla.b]

+M Zn:
k=1

€0 =8GO+ MY g, (5 )~ 2 )

§2—g++MZ
3 P

g, (x) - g(x)|+ MY |g, (5 )~ g(x, )| === (6)

For 0<k<n, g, (x,)—> g(x,). Therefore, for 0<k<n there exists an integer
N, >0 such that

m2N, =g, (x)-g(x)|< Ve

Let N =max{N, :0<k<n}. It follows from (6) and (7) that

&
m>N:U fda, —j fd/l‘ MZ6nM M;MM—g.

It follows that lim j fdz, = j fda, .

n—0

Remark. Theorem 2 is known as Helly’s Second Theorem.

Theorem 3. Suppose g:[a,b] >R is a function of bounded variation defined on
the closed and bounded interval 7 =[a,b]. Suppose f:I— R is a continuous
function defined on 7 or fis Riemann Stieltjes integrable or Lebesgue Stieltjes



integrable on [a, b]. Then Ubfdﬂg‘ <M(f)V(g,I),where M(f)is the maximum

value of |f| on [ and V' (g,/)is the total variation of g on /.

Proof. .[ ’ fda, = jb fdu, — .[ ’ fdu, , where P and N are the positive and negative

variation functions of g. Then,

I, raz, <['\1dsy [ fd

<[} saue

o|[! s,

<" M()dpy + | M), = M) (P([a.b])+ N((a.b)) = M(f WV (g.1)

We present another proof of Theorem 2 using the Helly Selection Theorem.

Helly Theorem. A uniformly bounded sequence of increasing functions
defined on a closed and bounded interval [a, b] contains a subsequence which
converges at every point of [a, b] to an increasing function.

Another Proof of Theorem 2.

Suppose (g,) is a sequence of functions defined on the closed and bounded

interval [a, b] whose total variations are uniformly bounded by a constant K,
i.e., V(g,.[a,b]) <K . Suppose the sequence (g,) converges pointwise at every

point of [a, b] to a function g on [a, b].
Let P and N, be the positive and negative variation of functions g,. Then

g (x)=g,(a)+P(x)- N, (x) and the total variation function of g, is given by
V,(x)=V,[a,x]=P,(x)+N,(x). The function g,(a)+ F,(x) 1s an increasing function,

Note that |g,(a)+P,(x)| <|g,(@)|+F,(x)+ N, (x) <|g,(@)|+V (g,[a,0]) <[g, (@) + K .
Since the sequence (g,(a))is convergent, it is bounded, that is there exists a

constant C > 0 such that

g,(a)|<C for all positive integer n. Hence,

g,(a)+P,(x)|< C+K for all positive integer n. Thus, the sequence (g, (a)+P,(x))
is uniformly bounded. Therefore, by the Helly selection Theorem it has a
subsequence ( g, (@)+P, (x)) which converges pointwise to an increasing

function P*(x). By replacing the sequence (g,) with the subsequence(g, )we

s
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may assume that g, (x)=g,(a)+P,(x)—N,(x) and the sequence (g,(a)+P,(x))

converges pointwise to P*(x). Similarly, since the sequence (N, (x))is
uniformly bounded by K, it has a convergent subsequence (Nnk (x)) converging

pointwise to an increasing function N *(x)on [a, b]. By replacing the sequence

(g,) with the subsequence( g, ) , We may assume that

g,(x)=g,(a)+ P, (x)—N,(x) converges pointwise to g, the sequence (g, (a)+P,(x))
converges pointwise to an increasing function P*(x) and the sequence (N, (x))

converging pointwise to an increasing function N*(x)on [a, b]. It follows that
the limiting function g(x)=P*(x)—N*(x) 1s a function of bounded variation
whose total variation is bounded by C+2K.

If f:[a,pb]— R is a continuous function, then as in the proof of Theorem 1 but

not using Theorem 3, we can show that limjb Sty o0 = Ib fd u,. and that

lim jb fdu, = I ’ fdu,. . Therefore,

a

n—0 n—o0

. b . b ) b b

=tim [} il py o~ [ Sy, =[] fdpsp = [ g = [} 2o = [ 2,

Nn—>0 a a a

Now we shall investigate the relaxation of the condition of Theorem 1.
We shall do this in stages.
Theorem 4.

Suppose ¢:7 — R 1is an increasing function on the closed and bounded interval
I=[a,b], where a <b. Suppose ¢ is right continuous or left continuous.
Suppose g is a Borel measurable non-negative function on /. Define ®:7 >R,

by ®(x)= r gdu, where u, is the Lebesgue Stieljes measure associated with the

function ¢. Suppose f:[a,b]— R is a Borel measurable function. Then

[ty = fedp,

Proof. Suppose ¢ is right continuous. Then by Theorem 45 of “Lebesgue

Stieltjes Measure, de La Vallée Poussin’s Decomposition, Change of Variable,
Integration by Parts for Lebesgue Stieltjes Integrals”,



x $(x)
O@)=| gdp,=| ~govndy,

where v is the generalised left continuous inverse of ¢ defined in Definition 38

of the above cited article. Note that vis an increasing left continuous function
on J, where J =[g(a),#(b)] 1s the smallest interval containing the image of ¢.

Let T':J — R be defined by I'(y) = j y( : gov(t)dt. Then T is absolutely
o(a

continuous and increasing on J. Then ®(x)=Tog(x).

J, s =, s

By Theorem 58 of “Lebesgue Stieltjies Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals”,

b $(b)
[ Ap, =" fovndu,
a p(a)

where v is the generalised left continuous inverse of ¢.

Since I' is absolutely continuous,

" povodu =" fov) Ty =" fov()-gevidy = [ f(0)-g(0dp,

Suppose ¢ is left continuous. Then by Theorem 45 of “Lebesgue Stieltjes

Measure, de La Vallée Poussin’s Decomposition, Change of Variable,
Integration by Parts for Lebesgue Stieltjes Integrals”,

x $(x)
D(x) = f gdu, = I{M gen(y)dy,

where 7 is the generalised right continuous inverse of ¢ defined in Definition
38 of the above cited article. Note that » is an increasing right continuous
function on J, where J =[¢(a),#(b)] 1s the smallest interval containing the image
of ¢.

Let T':J — R be defined by I'(y) = j:( )gon(t)dt . Then T is absolutely

continuous and increasing on J. Then ®(x)=Tog(x).

[ sy = fp,



By Theorem 59 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals”,

b #(b)
| fduy =] fondu;,

o(a
where 7 is the generalised right continuous inverse of ¢.

Since T is absolutely continuous,

" pondpe =" fon) Ty =["" fon(y)-gendy =[] f(x)-g(x)dp,

Remark. The requirement that the function g be non-negative can be lifted.
This requirement implies that the function I'(y) is increasing and continuous so

that we can apply Theorem 58 or Theorem 59 of “Lebesgue Stieltjes Measure,
de La Vallée Poussin’s Decomposition, Change of Variable, Integration by
Parts for Lebesgue Stieltjes Integrals”.

Theorem 5.

Suppose ¢:7 — R 1is an increasing function on the closed and bounded interval
I=[a,b], where a <b. Suppose ¢ is right continuous or left continuous.
Suppose g is a Borel measurable function on /. Define ®:7 >R, by

D(x) = J': gdu, where 4, is the Lebesgue Stieljes measure associated with the

function ¢. Suppose f:[a,b]— R is a Borel measurable function. Then

b b
[ fdz, =] fedu,
Proof.
Suppose ¢ is right continuous.

Then by Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals”,

x $(x)
O(x)= [ gdu, = IW) gov(y)dy,



where v is the generalised left continuous inverse of ¢ defined in Definition 38

of the above cited article. Note that vis an increasing left continuous function
on J, where J =[¢(a),#(b)] 1s the smallest interval containing the image of ¢.

Let I':J — R be defined by I'(y) = j y( : gov(t)dt. Then T is absolutely
o(a

continuous on J and so is a function of bounded variation. Then ®(x) =T ¢(x)
is a function of bounded variation.

[ far,=[ ..

By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals™, as T 1s absolutely continuous,

b 0 ,
J, fddy =] V)T (A,

where v is the generalised left continuous inverse of ¢.

Therefore, Lbfdﬂw = Jj((j;fov(y).gov(y)dy :Lbf(x)-g(x)dyq, .

Suppose ¢ is left continuous.

Then by Part (i1) of Theorem 45 of “Lebesgue Stieltjes Measure, de La Vallée
Poussin’s Decomposition, Change of Variable, Integration by Parts for
Lebesgue Stieltjes Integrals”,

x #(x)
O)=[ edu, =] gon(dy,

where 7 is the generalised right continuous inverse of ¢ defined in Definition
38 of the above cited article. Note that ;is an increasing right continuous
function on J, where J =[d(a),#(b)] 1s the smallest interval containing the image
of ¢.

Let T':J — R be defined by I'(y) = J:( )gon(t)dt . Then T is absolutely

continuous on J and so is a function of bounded variation. Then ®(x)=Tog¢(x)
is a function of bounded variation.

[ fdz =[ i,



By Theorem 64 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
Integrals” and as T' is absolutely continuous,

[[faze,=[" fon) D0z =" fon)-gonmdy=[ f()-gxdu,

p(a)

We extend the result of Theorem 5, when the function ¢:7 — R 1s a function of
bounded variation.

Corollary 6.

Suppose ¢:7 — R is a function of bounded variation on the closed and bounded
interval I =[a,b], where a <b. Suppose ¢ is right continuous or left
continuous. Suppose g is a Borel measurable function on /. Define ®:7 »>R,

by ®(x)= Ix gd/, where 4, is the Lebesgue Stieljes measure associated with the

function ¢. Suppose f:[a,b]— R is a Borel measurable function. Then

[z, = feds,.

Proof. Let V, be the total variation of ¢. Then ¥, and ¥, -¢ are both

increasing functions.

Suppose ¢ is right continuous. It follows that 7 is right continuous. Hence,
¢, =V, and ¢, =V, — ¢ are both right continuous. Note that ¢=¢ —¢, Then

D(x) = J'x gdl, = Ix gdu, — J‘Y gdp, 1s a difference of two functions of bounded

variation and so is of bounded variation. Let ®,(x)= J'x gdy, and @,(x)= J-x gdy, .

Hence,
e R I R R (1)

By Theorem S, [ fd2, = fedu, and [ fdi, =| fedu, . It follows from (1)
that

b b b b b b
[, k=], 2o o, =, fodu, |, fedu, =|, feddy ;=] fed3,.
Suppose ¢ is left continuous. It follows 4 =V, and ¢, =V, — ¢ are both left

continuous. It follows similarly as above that I ’ fdA, = Ib feda,.

10



More generally we have
Corollary 7.

Suppose ¢:7 — R is a function of bounded variation on the closed and bounded
interval 7 =[a,b], where a <b. Suppose ¢ is the difference or sum of two
increasing functions ¢ and ¢,. Suppose ¢ and ¢, are both right continuous or left
continuous or ¢, is right continuous and ¢, is left continuous or ¢, is left
continuous and ¢, is right continuous. Suppose g is a Borel measurable function

on /. Define ®:7 >R, by CD(x):J‘x gd2, where 1, is the Lebesgue Stieljes

measure associated with the function ¢. Suppose f:[a,p]—> R is a Borel
measurable function. Then

b b
[ fda, = fedi,.
The proof of Corollary 7 is similar to that of Corollary 6 and is omitted.

We now only require the function ¢:7 — R to be of bounded variation.
Theorem 8. Suppose ¢:7— R is a function of bounded variation on the closed
and bounded interval 7 =[a,b], where a <b. Suppose g is a Borel measurable
function on /. Define ®:7 >R, by ®(x)= _[ ’ gdA, where 2, is the Lebesgue

Stieltjes measure associated with the function ¢. Suppose f:[a,p] >R isa
Borel measurable function. Then

[\ sz, = feds,.

Proof. As detailed in the proof of Corollary 62 of “Lebesgue Stieltjes Measure,
de La Vallée Poussin’s Decomposition, Change of Variable, Integration by
Parts for Lebesgue Stieltjes Integrals”, an increasing function on the interval [a,
b] can be decomposed as a sum of increasing continuous function, increasing
right continuous function and an increasing left continuous function. More
precisely, an increasing function ¢ on [a, b] can be written as

¢:q)uc+q)c+q)ls +q)rs’

where @ is an absolutely continuous increasing function with @ _'(x) = ¢'(x)

almost everywhere on [a, b], @, is a continuous increasing singular function,

11



i.e., ®,/(x)=0 almost everywhere, @, is a right continuous increasing saltus
type function and @, is a left continuous increasing function. Let ®, =@+, .
Then @, is an increasing continuous function. Thus, ¢=®_ +®, +O, .

Suppose ¢:7 — R is a function of bounded variation. Then ¢ =¢ —¢,, where
¢, and ¢, are increasing functions. Then ®(x)= I ’ gdA, =J'x gdu, —J'x gdu, . Let

D, (x)= Jj gdu, and @,(x)= Jj gdy, . Hence,

[ g =[] it o, = [ fddo, [ 20,

Now ¢ =@, +@, +®_, is a sum of continuous increasing function, left
continuous increasing function and right continuous increasing function.
Therefore, by Corollary 7, f fdA, = _[b fgdy, . Similarly, we deduce that

Ib Jd2y, = Ib fedu, . It follows that
fb Jd2y, = Ib Jd g, o, = jffd&bl —jb fdJ,
N .[:fgd”m —ijgdy% = ffgdﬂ%_%

= [ fed,
Remark. In the proof of Theorem 8, we have that
b=¢-¢, $=0,,+0,,+®,  and ¢, =D ,+D, ,+D_,.
Thus,
=0, +@, +D (D, +D, ,+D, )
=(®,,~D,,+D,, ~D,,)+(P,,-D,,,)

is a sum of right continuous function of bounded variation and left continuous
function of bounded variation. Let ¢,=®,, -®,,+®, -®,, and ¢, =D, , - D

rs,2 *

Then ¢=¢,+¢,. Let (DS(x)zj-xgd,u% and CD4(x):ngdlu¢4 . Then

O(x) = j: gdA, = _[: gdA, + I: gd2, =®,(x)+®,(x). By Corollary 6,

_[: Jd2,, = _[j fgd 4, and Ib fd2,, = J'b fed, .
Therefore,

12



[tz =[ fddg o, =[ fdi, +[ iy, =] fedi, +[ fedA,

=fﬁy%%=fﬁy@.

This gives another proof of Theorem 8.

We note that if a function f'is Riemann Stieltjes integrable, then it is Lebesgue
Stieltjes integrable and the integrals coincide. In what follows, we shall adopt
the notation for Riemann Stieltjes integral in the same way as the Lebesgue
Stieltjes integral. That is, if g the integrator is monotone, the Lebesgue Stieltjes

integral of f'is denoted by _[ ’ f(x)du, and if g is of bounded variation, the

Lebesgue Stieltjes integral of f'is denoted by J'b f(x)dA, following the notation

and convention in my article, “Lebesgue Stieltjes Measure, de La Vallée
Poussin’s Decomposition, Change of Variable, Integration by Parts for
Lebesgue Stieltjes Integrals”. Whenever the function is Riemann Stieltjes

integrable, it will be stated so that the notation I ’ f(x)du, or Ib f(x)dA, will mean

the Riemann Stieltjes integrals as they are the same.

Next, we have a variation of Theorem 2 due to L. C. Young.

Theorem 9. Suppose (g, :[a,b] >J)is a sequence of function converging
uniformly to a continuous function g:[a,b]— J, where J is a closed and
bounded interval. Suppose ¢:J — R is a function of bounded variation such
that the total variation of the composition functions ¢og, :[a,b] >R,
V(gog,,[a,b]) <K for some K >0 and for all positive integer n. Suppose either
fog, 1s Riemann Stieltjes integrable with respect to ¢og, forall nor g, is

continuous for all n.

Suppose the function ¢ is continuous and f:J — R is a continuous function.
Then ¢o g is of bounded variation and

[ £(g,00dA,, —[ fg)da,,.
Proof.

We note that since f'is continuous on J, f'is uniformly continuous on J.
Therefore, given any & >0 , there exists >0 such that for all x, y in J,

13



R U G R (1)

Since g, converges to g uniformly, there exists an integer N > 0 such that

n>N= <& forall x in [a, b].

It follows from (1) that

<o=

n>N=

<< forall x in [a, b].
K

Therefore, for all n > N,

(@0 - F(@N)ddy | < £V (pog, fabl<e.

It follows that lim R (2)

o[ (/(g,(0) -/ (g(x))dA,.,

Note that as ¢ is continuous, ¢og, converges pointwise to ¢og. Therefore, by
Theorem 2, ¢o g is of finite variation and limjb f(gx)da,, = Ib f(gxpda,, . In
view of (2),

tim ["(f(2,())dA,.,, = f(g()dA,,

We have next a change of variable theorem.
Theorem 10.

Suppose g:7 — R is a continuous function on the closed and bounded interval
I =[a,b], where a <b. Let the image of / under g be J=[c, d]. Let ¢:J - R be
a function of bounded variation. Let f:J =[c,d]— R be a continuous function.

If (1) g 1s an increasing function, or a decreasing function, or

(i1) ¢ 1s continuous on J and ¢- g is a function of bounded variation, then
b g(b)
[ fogd,, = L(a) fdk,.

Proof.

(i) If g:7 —> R is an increasing continuous function, Theorem 9 (i) follows from

Corollary 62 of “Lebesgue Stieltjes Measure, de La Vallée Poussin’s
Decomposition, Change of Variable, Integration by Parts for Lebesgue Stieltjes
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Integrals”. If ¢:1 — R is a decreasing continuous function, Theorem 9 (1)
follows from an analogue result of Corollary 62 of the above cited article.

(i) Suppose ¢ is continuous on J and ¢o g is a function of bounded variation.

Take a sequence of piecewise linear continuous functions g, such that
g (a)=g(a), g, (b)=g(b)and converging uniformly to g. Note that the total
variation V(go g, ,[a,b]) <V(¢°g,[a,b]).

Corresponding to a g, , we have a partition of [a, D],

P:a=x,<x <---<x,=b such that g is linear on each subinterval [x, ,x,] and so
is monotone on each subinterval [x, ,x,] . Therefore, by part (i), for each integer

I, 1<i<m,

J; renda,, = [0 gaa = [T g,

& (i) &n(xi1)

It follows that

J £ e A, =2 [ F(e 0z,

g(xiy) g, (a) g(a)

_ ijg(xi) fdﬂvﬁ =J‘g,,(b)fdﬂ¢ :J‘g(h)fdﬂ@
i=1

Therefore, by Theorem 9, jb f(gx)da,,, = I g((b)) fda, .

g

If the function g is the uniform limit of continuous polygonal functions or
piecewise linear functions with some condition on the total variation of the
function involved, we have the next change of variable theorem.

Theorem 11. Suppose (g, :[a,b] > J)is a sequence of continuous polygonal
function converging uniformly to a continuous function g:[a,b]— J, where J is
a closed and bounded interval. Suppose g,(a)=g(a) and g,(b) = g(b). Suppose
¢:J — R 1s a function of bounded variation such that the total variation of the
composition functions ¢e g, :[a,b] >R, V(gog,,[a,b]) <K for some K > 0 and for
all positive integer n. Suppose f:J — R is a continuous function. Suppose
¢og, converges to ¢og pointwise on [a, b]. Then g0 g is of bounded variation,

[ £(e,0ddy, — [ fl(NdA,, and]] feCNdAy, = [ F(1)dA,.
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Proof.

Since g, is polygonal, there exists a partition P:a=x,<x <---<x, =b such that

g is monotone on each subinterval [x,_,,x.].

[ f@ondz,, =3[ r(g,(nda,, =D [ ()44, , by Theorem 10 (i),
=1 " i=1 ~ &t

g, (b)

fda . Jg()fdi

g, (a)

We can show as in the proof of Theorem 9, using the fact that 4o g, converges
to ¢og that ¢og 1s of bounded variation.

We have shown in the proof of Theorem 9 that

=0.

n|[(/(2, ()= £(g(x))d A,

lim
n—>

By Theorem 2, as fog is continuous andV(¢- g, ,[a,b]) < K for all n,
[ r(eenda,,, | r(gtnda,,

Hence, | f(g,())d4,, —[ f(gx)d4,, . Therefore,

[ feenda,, =["" f(dz,.

The next theorem is due to L.C. Young. It extends Theorem 2.
Theorem 12. Suppose [a, b] is a closed and bounded interval with a < b.

Suppose ( f, :[a,b]—>R) is a sequence of functions converging uniformly to a
continuous function f:[a,b] > R. Suppose (g, :[a,b] > R) is a sequence of
functions and g, converges on a dense set £ in [a, b] with {a,b} c E to a
function g on E. That is to say, g,(x) - g(x) for every x in E. Suppose the
Riemann Stieltjes integral _[ f,d4, exists for each positive integer n. Suppose

each g, is of bounded variation such that the total variation V(g,.[a,b]) <K for

all positive integer n for some K > (0. Then there exists a subsequence
( g, :la,b]—> R) such that g, (x)tends pointwise to a function / of bounded

variation on [a, b]. Moreover, i(x)=g(x) for every x in E. We extend g to all of
[a, b] by g(x) =h(x) for xg E. Then

16



[, £0oda, [ reda, .

Proof. We show that we can find a subsequence ( g, [a,b] > R) which

converges to an extension of g to [a, b].

Let P, and N, be the positive and negative variation of g, with P (a)=N,(a)=0.
Then g (x)=g,(a)+P(x)—N, (x) forx in [a, b]. Therefore,

g,(@)|+ B (x)+N,(x) =

g,(0)|< g, (@|+V(g,.[a.x]) <|g,(@)|+V(g,.[a,b]) -

Since g, (a)is convergent, {

g,(a)|} is bounded, say by B. Therefore,

g,(x)|<B+K =C for all x in [a, b] and for all positive integer .

Thus,

g,(x)|<C for all x in [a, b] and V' (g,.[a,b]) < C for all positive integer 7.

Therefore, by Helly’s First Theorem, there exists a subsequence (g,,k [a,b] > ]R)

such that g, converges at every point of [a, b] to a function / of bounded

variation on [a, b]. Plainly, h(x)=g(x) for x in E. Thus, / is an extension of g

to a function of bounded variation on [a, b]. Note that the total variation of % is
also less than K. (See the proof of Theorem 2.)

We now rename 4 as g.
Since f'1s continuous on [a, b] and [a, b] 1s compact, f'is uniformly continuous.

Therefore, given & >0, there exists § >0 such that for all x,y e[a,b],

=y <82 ()= f() < oo (1).

We now consider subdivide the interval [a, 5] into subintervals so that the
oscillation of f on each subinterval is less than &. We further want the partition
points of the subinterval to be points in the dense subset £. Because E is dense
in [a, b], we can choose the partition P:a=x,<x <---<x, =b such that x, e £

for 0<i<N, |x,—x_|<&for 1<i<N so that
|f(xi)—f(x,~,1)|<§ for 1Si<N. —mmmmommmeeemmemeeeee (2)

In view of (1) for each integer i with 1<i< N, we select a point a, € f([x,_,,x,])
such that

|f(x)—ai|<6iK forall xe(x_,x) . =----mmmmmmmmmeeeeee (3)
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Since f'is continuous, we shall assume all Stieltjes integrals are Riemann
Stieltjes integrals.

.[;f(x)d/lg,,—g - ij':l f(x)da, _,
ij (f@=a)dd, ,+3a[ di . -weeeeceeeeeees 4)

2, 42 =2a (8- ~(g,~8)x)

i=1

=

=>a,((g,-9)x))- D a (g, —)x.))

i=1 i=1

2

4, ((2, - 2)(%)) +a, (2, - 2)(6)) ~ 2 (2, - 2))

i

2

-1

a,((g,—g)x))+ay((g, —g)(xN))—Za,-H ((g,—)x))—a,((g, —g)(xy))

Il
—_

=

(a,—a,,)((g, ~2)x)) +ay ((g, - 2)x)) -4 ((g, - )(%,))

Il
—_

i

N
=X b((g,—8)®), e (5)
i=0
where b, =(a,~a,,), 1Si<N-1, by=-a and b, =a,.
N
Let B=) |p|.
i=0

For each integer i, 0<i< N, since g, (x,) converges to g(x,), there exists positive
integer M, such that

n> M, =|(g, = g)x)| < . oo (6)

Let M =max{M,,M,,--,M,}. Then

o [ da
- iJ.xH 8,—8

=|2/(C, —g)(x,))‘

SZN(;WH((& ~9)(x)) < Z|b|—=— ——————— (7)

3B 3

For each i, with 0<i< N,

18



U (f(x)~a,)dA, , S%VW(&, - g,[x,,,x,]) by Theorem 3,

< iK (Var(gn [x,x. ) +Var(g,[x,_,, xi])) .

It follows that

U f(x)-a)d2, _

< ZU (f(x)-a)dA, _,

siKZ(Vmg,, 5 ) HVar(g.lx, 5 ) = (Var(g, [a.b]) + Var(g.[a.b))

< T (8)

Therefore, it follows from (7) and (8) that for n > M,

U" S@)dA, j dA, <5+ 2—2‘9 - (9)

_?,

Since f, converges to a continuous f uniformly on [a, b], there exists a positive
integer N, such that

n>N;=\f,

& .
3K for all x in [a, b]. ----------------—-- (10).

Now we show that the original sequence ( _[ ’ fn(x)d/lgn) is a Cauchy sequence.

I raz, -[ 1,

=" fwda, - rda, [ f0da, + ] f@da, + [ fda, -]

<|[" sz, -[
(7,
<\,

& P 2¢ 2¢ .
<—V(g,la,b)+—V (g .[a,b)+—+=— 1if n,m>max{M,N,},

m
a

IN

A - jb f@dA,

+‘ jb fxdA,

by (10) and Theorem 3 and (9)
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§+§+%—25 if, n,m>max{M,N_} .

Since ¢ 1s arbitrarily chosen, this shows that (_[b /i (x)dﬂgn) is a Cauchy

sequence. It follows that it is convergent.

Next, we show that [/, (da, — [ f@)da,
Now there exists a positive integer L such that £ > L = n, > max{M,N,} .

Thus, for £ >L

U: o (x)d/lgnk _ij

B U: (= r@)da, +[ 1z, ~[ 1

[ (5, 0= @)dz, + [ rdz,

8 =8

< b
< V(g labh+ U f)dA, _g‘ by Theorem 3

& 2¢e
<§K+?—g by (9).

Hence, j ’ 1o, ()2, — j ’ f(x)dA, . Thus, (Ib f (x)dlg”) 1s a Cauchy sequence that
has a convergent subsequence that converges to j ’ f(x)dA, and so
[[r.dr, - feoda, .

Alternatively, we may use Theorem 2 to show that [/, (d4, — [ f()dA,

I, A, -

=\l oz, [ oz, + [ ez, -

5 ‘ Lb £ i, - [ fda, \ H|[! ez, -

Since f, converges uniformly to f, there exists integer L/ such that
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k>L1=

£, (0= f)|< % for all x in [a, b]

Therefore, by Theorem 3, Ib( L= f (x))d A,

£ &
<—V Ja,b]) < —.
Y (g,,.a,b]) 2

By Theorem 2, .[ ’ fxda, — .[ ’ f(x)dA, . Therefore, there exists integer L2 such

that k> L1 = ‘ jb Sz, - jb f(x)dA,

I
<—.
2
Let L be an integer such that L >max{L1,L2}. Then

b b
k>L= ‘ [ 1. ()2, - | f(x)dlg‘

<[ - s@)az, |+ rwan, -] reaz,

& ¢
<—+—=¢
2 2

Hence, [ f, (0d4, - f(d4, .

Theorem 13. Suppose [a, b] is a closed and bounded interval with a < b.

Suppose ( f, :[a,b]—>R) is a sequence of functions converging uniformly to a
bounded function f:[a,b] >R. Suppose (g, :[a,b] >R) is a sequence of
increasing functions and g, converges on a dense set £ in [a, b] with {a,b} c E

to a bounded function g on E. That is to say, g, (x) — g(x) for every x in E.
Suppose the Riemann Stieltjes integral I ’ f,du, exists for each positive integer
n. Then there exists a subsequence (g, :[a,b] > R) such that g, (x) tends

pointwise to an increasing function / on [a, b]. Moreover, A(x)=g(x) for every x
in £. We extend g to all of [a, ] by g(x) =h(x) for x¢ E. Suppose fis Riemann
Stieltjes integrable with respect to g. Then

b b
[ n@du, - fdu, .
To prove Theorem 13, we shall need the following technical lemmas.
Suppose P:a=x,<x <---<x, =b 1s a partition. Suppose g is an increasing

function on [a, b]. A function H defined on [a, b] by
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H(x)=c, if xe(x_,x)
is called a step function.
Suppose g 1s an increasing function defined on [a, b].
We say H is an admissible step function with respect to the increasing function
g if g 1s continuous at x, for 1<i<N-1 and H is continuous at a (i.e., H(a)=c¢,)
if g 1s discontinuous at a, and H is continuous at b (H(b)=c, ) if g is
discontinuous at b. Note that H is Riemann Stieltjes integrable with respect to g
on [a, b].
Lemma 14. Suppose H :[a,b]— R 1s an admissible step function with respect to

an increasing function g. Then given any ¢ >0, there exists a continuous
function «:[a,b]— R and a continuous function f:[a,b]— Rsuch that H—a>0,

H- <0, thatis, a < H < ,and such that
[[(H@-a)p, <¢ and [ (p@)-H®Mu, <e.

. b b b
1.€., L B u, —5<L H(x)d u, <L a(xydu, +¢,
where the integrals are Riemann Stieltjes integrals with integrator g.

Proof. Let P:a=x,<x <---<x, =b be the admissible partition associated with

the admissible step function 4. We assume that H is continuous at @ and at b.
We define the function « on [x,,x,] and extend it to [a, b]. Without loss of

generality, we may assume that H is right continuous at x, for 1<i<nN-1. If
c,>c, let Ax,=p >0 and 0< p, <x,—x,, join (x,¢) to (x, +Ax,,c,) by a line and
thus defined a continuous map on [x,,x,) joining (x,,c,) to (x,,¢,) by a line
segment and (x,,¢,) to (x, +Ax,,c,)and with values ¢, on the interval (x, +Ax,,x,].
Note that the line segment is below the graph of H and so H is greater or equal
to this continuous segment on [x,,x,].

If ¢, <¢,let Ax, =—p, >0 and 0< p, <x,, join (x, +Ax,,c) to (x,,¢,) by a line and
thus defined a continuous map on the interval [x,,x,) joining (x,,c,) to

(x, +Ax,,c,) by aline segment and (x, + Ax,,¢,) to (x,,¢,) by a line segment. Note

that the line segment is below the graph of H and so H is greater or equal to this
continuous segment on [x,,x,].

We proceed in this manner to extend the definition of the continuous function to
[x,,x,] and progressively to [a, b]. Note that
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J, (HG) - @), <3 e, —c gl + Ax) - g(x).

N-1
Let C=)|c.,—¢|. Since g is continuous at x,, 1<i<N-1 choose Ax, so that
i=1

|g(xi +Axi)_g(x,-)| <L and so
C+1

[[(H@-a))p, <e.

We can define the continuous function B:[a,b]— R similarly to obtain the
desired property jb( PB(x)—H(x))du, <&. We note that in the definition of 4, the

line segment in the construction is always above the graph of H.

Suppose the function f:[q,b]—> R 1is Riemann Stieltjes integrable with respect
to an increasing function g:[a,b]— R. We shall show that f'can be

approximated from above and below by continuous major function and minor
function.

Lemma 15. Suppose [a, b] is a closed and bounded interval with a <b. Let
g:[a,b] > Rbe an increasing function and f:[a,b]— R, a bounded function,
which i1s a Riemann Stieltjes integrable function with respect to g as the
integrator. Then given &> 0, there exists continuous functions L and M such

that for all x in [a, b], M()</()<L(), [ fWdu, <[ Mxdy, +§,
['reydp, > [ Leoap, —%and [[(L@-M)Mp, <é.

Proof. Since the function fis bounded and Riemann Stieltjes integrable, it is
Darboux Stieltjes integrable. That is to say, the upper and lower Darboux
Stieltjes integals are the same. Thus, given ¢ >0, there exists a partition
P:a=x,<x <---<x,=b of [a, b] such that the lower Darboux Stieltjes sum,

L(f,P)= im,. (f.P)(g(x,)—g(x_,)) and the upper Darboux Stieltjes sum

i=1

Uu(f,p)= ZM,-(f,P)(g(X,-)—g(X,-fl)), where m,(f,P)=inf{f(x):x €[x_,,x]}and

M.(f,P)=sup{f(x):xe[x_,,x]}, satisfy
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Osj.:f(x)dg—L(f,P)<§ and OSU(f,P)—J'jf(x)dg<§.

That is,
I T R O (1)
J, 70 UG PY< [ S + % wommmmmmmoeeee 2)
and OSU(f,P)—L(f,P)<§, ------------------- (3)

Now, since f'1s Riemann Stieltjes integrable with respect to g, fand g cannot
have the same point of discontinuity. Suppose ||P| < K for some K > 0.

Therefore, by Lemma 16 below, there exists admissible partition
Pl:a=y, <y <<y, =bwith respect to the function g such that |Pl| < K and

L(f.P)<L(f.Pl) +§ ------------------- 4)

and U(f,P)2U(f,Pl) ‘%- ................. (5)

We shall define an admissible step function H corresponding to the Lower

Darboux sum L(/.P1) = > m,(/,PIX(g(3)~g(y,.) , where

m,(f,Pl)=inf{f(x):x e[y, ,,y,]} for 1<i<MNI.

Define H(x)=m,(f,P) forxe[y,,,y,) for 1<i< N1 and H(b)=m,,(f,P). Note that
H 1is right continuous at y, 0<i<Nl1-1and continuous at y,,. Then

jb Hx)du, = L(f,PY).

By Lemma 14, there exists a continuous function « :[a,b]— R and continuous
function fB:[a,b]—> Rsuchthat a<H <p and

Ijﬂ(x)d“g _z < I:H(x)d,ug < Jja(x)d,ug +§
0< .[jH(x)dﬂg _Ija(x)dﬂg < Z R (6)

0< jb B)du, —jb H(x)dp, < %

Thus, f-a>H-a>0 andso f>a.
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Define Hi(x)=M,(f,P) forxe[y,,,y,) for 1<i< N1 and HI(b)=M,,(f,P).
H(b)=m,,(f,P). Note that H1 is right continuous at y, 0<i<Nl-1and

continuous at y,,. Then I "H 1(x)dp, =U(f,P1). HI is an admissible step

function with respect to g.

By Lemma 14, there exists a continuous function al:[a,b] — R and continuous
function A1:[a,b]— Rsuch that a1<H1< A1 and

jb B, —% < j” HI(x)dy, < j" al(x)d 1, + Z

By Lemma 14, there exists a continuous function f1:[a,b] — R such that H1< g1
and

b b &

0% [} I, = [ HU)dp, <% . wrmmmermmmeeeeee 7)
b b & P
L Bl(x)dp, < J.a HI(x)d u, +Z =U(f,Pl) +Z

E & b
UG P+ ELE <[ f@du, £+ = [ 0, + 2, wemmeee 8)
by (5) and (2).
[(atydu, > [ Hxdp, ~Z-rrpn-2

& 3¢

> L P2 [ @, o= [t = e )

by (4) and (1).
Thus, f-p1<H1-B1<0 and so f<p1. It follows that a < f < 1.

fb f)du, < Lba(x)dyg +§ and jb f)du, > Lbﬂl(x)dﬂg —%-

Therefore,

0< Ijﬂl(x)dug —Ija(x)dug < Lbf(x)dyg +§—U:f(x)dﬂg _gj —s,

by (8) and (9).

Let M(x) be the continuous function « and L(x) be the continuous function A1.
Then we have M(x) < f(x) < L(x) and
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IS(L(X)—M(x))dug <e.
I;f(x)al#g < I;M(x)dﬂg +§ and I:f(x)dug >J.:L(x)dug —g.

Note that we start with a partition P such that 0< J' ’ fdu, —L(f,P) <§ and
0< U(f,P)—Ibf(x)dyg < g Then we refine P to P1 such that
L(f,P)<L(f, Pl +§ and U(f,P)>U(f,Pl) —g . Therefore,

U PO dp + % and L/ PY2 LGP =22 [ (0dp,

Lemma 16. Suppose [a, b] is a closed and bounded interval with a <b. Let
g:[a,b] > Rbe an increasing function and f:[a,b] — R a bounded function,

which is a Riemann Stieltjes integrable function with respect to g as the
integrator. Suppose P:a=x,<x <---<x,=>b 1s apartition of the interval [a, b],

with ||P| < & for some §>0. Then given any ¢ >0, there exist an admissible

partition Q of [a, b], which is a refinement of P such that
L(f.g,P)<L(f,g,0)+e(g(b)-g(a)) and
U(f.g,P)2U(f,g,0)-s(g(b)-g(a)),

where L(f,g,P)and L(f,g,0Q) are the lower Darboux Stieltjes sums of f with
respect to the partitions P and Q and integrator g and U(f,g,P) and U(f,g,Q) are
the upper Darboux Stieltjes sums of f with respect to the partitions P and Q and
integrator g.

Proof.

Take the partition P:a=x,<x <---<x, =b.

Since f'is bounded and Riemann Stieltjes integrable with respect to g, if g is
right discontinuous at x, or left discontinuous at x, for i =0, N , then f must be

continuous at x,. This is because if g is right discontinuous at x, and f'is right
discontinuous at x, or g is left discontinuous at x, and fis left discontinuous at
x,, then f'cannot be Riemann Stieltjes integrable on [a, b]. Moreover, if g is
right discontinuous at x, and f'is right continuous at x, and left discontinuous at
x,, then f'cannot be Riemann Stieltjes integrable on [a, b] and that if g is left
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discontinuous at x, and f'is left continuous at x, and right discontinuous at x.,

then f cannot be Riemann Stieltjes integrable on [a, b].

Therefore, when g is discontinuous at x,, there exists &, >0 such that

L O e R (1).

Let S={5 :g is discontinuous at x,,0<i <N} and M, =min{x, —x_ :1<i<N}. Since
g is an increasing function on [a, b], the set of points of discontinuity of g is at
most countable. We can add points near points of discontinuity of g in the
partition P so that g is continuous at these points and so that the norm of the
resulting partition is less than 6, for each point of discontinuity of g in the

partition P and also less than min{x, —x,_ :1<i<N} of P. Let
P2:a=y,<y ,<--<y, =b be this refinement. Then |[P2|=5<min{SuUM,}

Note that Pc P2and |P2|=6<¢, for each 6,€S.

The partition point y, is either a point of continuity of g when it does belong to

P or a point of discontinuity of g in P.

Suppose g 1s discontinuous at y, . Note that j#0,s. Consider the intervals

(¥, >y, +06) and (y,,y,,). Plainly, (v,,y,,+8)n(y,,»,,)#D. Choose a point
2, €y, Y4 +0)N(y;, ;) =D so that z, €(y,,y,,)and isnear to y;, and g is
continuous at z,. That is, we shall replace the point y, byz, If g is continuous at
y;,let z,=y.. Since fis Riemann Stieltjes integrable on [a, b], if g is not

continuous at a, then fis continuous at a and if g is not continuous at b, then f'is
continuous at b. Let z,=y,=a and z, =y, =b.

In this way, we define a partition Q:a=z,<z <---<z =band Q is admissible

with respect to g. That is, g is continuous at z, for 1<i<s—1.

Then we have [z,,z]=[y,,y,]and [z, ,,z,]1=[y, > V,]-

Let m,, =inf{f(x):x e[yj_l,yj]} and m, =inf{f(x) ‘xe [zj_],zj]} for1<j<s.
Then m,, =m, and m _, =m,

Let g,=g(z,).g,,=2(y)) and Ag, =g, ~g,,=2(z,)-2(»)).

Since z, >y, and g is increasing, Ag, >0 for 2< j<s-1, Ag, =Ag, =0.
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Suppose now 2< j<s-2.

Note that by construction, g must be continuous at y, and at y_, and so
Agl = Agsfl = O *

Suppose Ag, >0, then z, > y,.

As z, >y, gis discontinuous at y, and so fis continuous at y,. This means
&
xelyyul= /(0= 1)) <5 or

FOD=5<S@ <) . e )

Note that ifAg, >0 and 1< j<s-1, then g is discontinuous at y, for 1< j<s-1

and g is continuous at y,, andy,,, . It follows that

[ jZ ] [y] 12 ] [y_,_,,y_,-+,:| and [zj_l,zj]=[yj_1,zj]Q[yj_l,yj].

Since |z, .z, | <[y, 1.3, ] » it follows from (2) that for all xe[z, ,,z],

FO=5<m =inf {f()xelz, 2]} < F() < ()45, s 3)

and for all xe[y,,y,1,
f(y,)—— ,m—inf{f(x):xe[y,,yﬁl]}Sf(yj)<f(yj)+§. ------- (4)

M =M :inf{f(x) ‘X € [yj,pyj]} —inf{f(x):x € [yj.,yjﬂ]}

=inf {f(x) xe [y_]-_l,y_,]} +Sup{—f(x) xe [yj’yj+l]}

& 2¢

<f, )+——f(y]) 373

m,—m,,,=inf{f(x):xelz,,,z,]|~inf{ f(x):x €[y,.y,,]}

=inf{f(x):xelz, .2, ]} +sup{~f(¥):x ey, v, ])

Sf(yj>—f<y,>+§=§ .
Similarly,

my,,—m,=inf{f(x):xely,y )} -inf{f(x):xely_.y]}

28



=inf{f(x):x e[y, y, ]} +inf (@) xely, 0]

& e 2¢
<SSO+ E=T
m.,,—m :inf{f(x):xe[yj,yj+1]}—inf{f(x):xe[zH,zj]}

= inf{f(x) (X € [yj,yjﬂ]} +inf{—f(x) 'X € [zj_,,zj]}
E &
Sf(yj)_f(yj)_i_g_g'

Hence, if Ag, >0 and 2< j<s5-2,

mj+l,2_mj,2‘g?‘ """"""""""""" (5)

If Ag;>0 and 2<j<s-2,then [z .z, |=[y, .2, ]2[¥,..»,| andso m,<m,,.

If Ag;>0 and 2<j<s-2we have that [zj_l,zj]g[yj_l,ym],
m,, Sf(yj)<f(x)+§ for all xe[z,,,z,] by (2).

It follows that m Smj+§ and m, <m,, Smj+§.

&
m;, < m; + E B (6)

- . &
Hence, if Ag, >0 and 2<j<s-2, m, Smj+§.

If Ag,=0and 2<j<s-1,then z,=y,, [z, .z, |=[z, ., |<[y,,.»,] and s0

)

g
m,<m.<m, +—.
Js J J 3

. & &
Note that Ag, , =Ag,=0. Since m,,=m, and m_,=m_, m, <m +=m_, <m_ +—
’ ’ ’ 3 3

Hence, m

& .
L,<m += for1<j<s.
J> J 3

Now,
8.,-8.,=80)-g, )=g,-g.+t(g.-8g.,)-(g,-g,,)

=88, +A(g_j—l)_A(gj)' """""""""""""""""" (7)

L(f,gP)<SL(f,g:P)=Ym (g, &;.1,)
Jj=1
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- zm (8,-2,.)+ Zm (Mg, )-A(g))
< (mj +§j<gj g, +Zm (Mg, )-Ag,)
sL(f,g,Q)+§(g(b)—g<a>)+§mj,z(A<gj_l)—A(g,.»
<L(f.2.0)+3(2(b)~g(@) + Z(m —m,,)A(g,)
< L(/,8.0)+ 2 (50) - gla)+ Z\m . |AGg))-

Now if A(g,)#0 , then by (5) |m,,,, —m,,| sz?g . Therefore,

2

SZ‘mjﬂ,z _mj,z‘A(g,) < —ZA(g]) < —(g(b) g(a)).

Hence, L(f.,g,P)<L(f.g.0)+&(g(b)—g(a)) .

Now, we consider the upper Darboux sum.

Note that Ag, =Ag, =Ag, ,=Ag, =0
Let Mj.,z:sup{f(x):xe[yjfl,yj]} and M, —sup{f(x) xelz, .z ]}.
Since [zy,z]1=[y,, »,]and [z, .z 1=[y,,»,], M,, =M, and M, =M.

If Ag;>0 and 2<j<s-2 ,then z, > y,, and g is discontinuous at y, and so f'is

continuous at y,. Recall (2) says xe[yjfl,yjﬂ]:‘f(x)—f(yj)‘<§ or

FO)=5< @<+

If Ag;>0 and 2< j<s-2, then g is continuous at y, , sothat Ag, =0,z =y, ,
’ ': = l’ i‘ I:y] 19 ] |:yj—l’y_j+l:|9

forall xe[z,,z ],
& &
S+ =My =supl f(0):xelz, 20> f(x) > [(9)) =5 5 wmemememmees (®)
and for all xe[y,_,y,1,
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f(y‘,)+§2M,«+1,2 =sup{/(x):x €[y, .1} = /(%) >f(yj)—§. ------- 9)
Thus,
M,,-M,,,=sup{f(x):xely, .y, —sup{f(x):xely,y,.]}

=sup{/(x):x e[y, v, ]} +inf {~f(0):x e[y, .}

> f)-2-fp-S=-2

Similarly,
M, —M,,=sup{f(x):xely,.y, ]} -sup{f(x):x e[y, . »,]}
=inf{f(x):x€[y,.y,, ]} +inf {-/(¥):x e[y, ,.,]}

& 2&

>f(y,)———f(y])——=—?.
Hence, for Ag, >0 and 2< j<s-2,

L (10)

3

J+L,2

If Ag;>0and 2<j<s-2 then[“, ] [y,l, ] [y,py/ﬂ]

M, > f(y, )>f(x)—— forall xe[z,,z,] by (3) and so M, >Mj—§
If Ag;>0 and 2<j<s-2,then |z, .z, |=|y, .2, |2|»,.»,| andso M ;> M ,
Hence, M, >M ZMj—g, if Ag;>0and 2<j<s-2.
If Ag;=0 and 1< j<s-1 sothatz, =y, then[ 102 ] [Zj_l,yj]g[yj_l,yj] and
50 Mj’ZZMJ.ZMj—E.
Since M, =M, we conclude that ifAg, =0, then M ,>M >M, —g.
It follows that for 1< j<s

M, ,2M, —5 ————————————————————— (11)
Recall from (7), for 1< j<s, g,,-g,,, =g, -g,, +A(g,)-A(g;) .
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U(f,2.P)2U(/.g.P) = ZM (€2-212)
= ZM (g,-2,.)+ ZM (A2, )-Ag,)
> Z[M ~2ig,-g, 0+ S8, )-8,
2U(f.8.0)-£(s)-gla)+ ZM (g, )-Ag,)
2U(f,2.0~ 2 (¢(0) - g(a) + Z(M —M,,)Ag))

2U(f.8.0)~% (20) - (@)~ 2 M.~ M. |AGe)

Mow if A(g,)#0 , then by (5), we have |, -M ,|< 23—8 .

s—1 2 s—1 2
Therefore, 3 |, ~M ;| Alg) <3 Alg)) < T (2(b) - g(@).
J=1 =l

Hence, U(f,g.P)2U(f.g,0)—&(g(b)-g(a)).

Remark. Replacing ¢ by , 1f g 1s an increasing function and for a

&
g(b)—g(a)
partition P, we can find a refinement to an admissible partition Q such that

L(f,g.P)<L(f.g.Q)+¢ and U(f.g,P)2U(f.g.0)-¢,

Proof of Theorem 13.

Note that each g, is an increasing function. As b E and the sequence (g, (b))

is convergent and so the sequence is bounded above by K for some K > 0. It
follows that for all x e[a,b] and for all positive integer n, g, (x)<K . As the

sequence (g,(a)) is convergent it is bounded below by a constant L. It follows

that for all positive integer n, g,(x)> L. Therefore, L|,K}. Hence,

g, (x)| < max {
by Helly Selection Theorem (see page 221 of Natanson, Theory of function of
a real variable, Vol 1, Lemma 2), there exists a subsequence ( g, :la,b] > R)
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such that g, (x) tends pointwise to an increasing function / on [a, b]. Plainly

h(x)=g(x) for all x in E. We extend g to all of [a, b] by g(x) = h(x) for xe E.

Note that g,(b)—g,(a) <K +|L| and so the total variation of g, is uniformly
bounded.

By Lemma 15, since f'is Riemann Stieltjes integrable with respect to g, given
& >0, there exists continuous functions L and M such that for all x in [a, b],
M(x)< f(x)<L(x) and

[[(L@-MMp, <é.

[ fedu, <[ M@)du, +§ and [ f()dp, > [ Lx)da, —g.
3¢ and
4(1+g(b)—g(a))

3¢ 3¢
< <Gl(x)- )
Yatred-g@y O e @)

Since f, converges uniformly to a bounded function f, there exists an integer
3¢

Let Gl(x)=L(x)+ and G2(x)=M(x)-

3e
4(1+g(b)-g(a)

G2(x)

N2> 0 such that |f,(x)- f(x)| < W20 —2@) for n> N2 and for all x e[a,b],
1.e.,
3¢ 3¢
T go—g@) I b —g@)

That is, G2(x)< f,(x) <Gl(x).
Hence,
[ G2xdu, <[ 1,dp,, <[ GUdp,, —mremremmemmemmemene (1)

Since G1 and G2 are continuous, by Theorem 12 (with (£,) a constant

sequence),
. b b . b b
lim [ Gl(x)du, =[ Gi(x)du, andlim [ G2(x)dp, = [ G2x)dp, .
Therefore, given ¢ >0, there exists N/ > 0 such that
b b b
n>N1= [ Gldu,—z <[ Gldu, <[ Gldu,+&
and there exists N2 > 0 such that
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b b b
n>N2= [ Gadp,—e<[ Gadu, <[ G2du,+z .
Thus, it follows from (1) that for » > max{N1, N2},

[ G2du, e <[ f,(du, <[ Gl +6 —wemrememms 2)

3¢
4(1+g(b)—g(a))

b b b b 3¢
Now, [ Gl(x)du, = | Ledu,+| du, <[ L(x)dp, +

e G — 3)
b b b 3¢ b 3e
and _[ G2(x)dp, = _[ M(x)d p, —L X1+ 2(b)—g@) du, ZL M (x)d p1, -
> [, /1 )dﬂg—g—%g{f( )dug—%g. --------------------- 4)

Therefore, for n>max{N1, N2}, it follows from (2), (3) and (4) that

r’ f,(x)du, < j" f(x)du, +%g+g = j’ fx)du, +%€ and

[ wdu, = [ G2dp, o= [ feodu, -2z = [ fordu, -2

Thus, for n > max{N1, N2},
L reodu, =22 <[ f o, <[ feodp, +22.
a g 4 a’" &n a g 4

Hence, lim | f,()du, = f()dp, .

The next Theorem is a variation of Theorem 9.

Theorem 17. Suppose (g, :[a,b] > J)is a sequence of bounded function
converging uniformly to a continuous function g :[a,b] —> J, where J is a closed
and bounded interval. Suppose ¢:J — R is a function such that the total
variation of the composition functions ¢eo g, :[a,b] >R, V(¢og,,[a,b]) <K for
some K > 0 and for all positive integer n. Suppose g,(x)=g(x) for xeE,

and £ = JE, is an everywhere dense set in [a, b] with {a,b} c E.

n=1

Suppose either g, is continuous for all » or fog, is Riemann Stieltjes

E CE

n+l
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integrable with respect to ¢o g, , that is, I ’ f(g,(x))d4,, exists for all .

Suppose f:J — R is a continuous function and ¢o g is of bounded variation.
Then

Ib f(g,(x)dA,, — jb f(g(x)dA,, -

Proof. Since fis continuous and g, converges uniformly to g, fog, converges

uniformly to fog.

We note that since f'is continuous on J, f'is uniformly continuous on J.
Therefore, given any ¢ >0 , there exists § >0 such that for all x, y in J,

=y <82 @) - fW < - s 3)

Since g, converges to g uniformly, there exists an integer N > 0 such that

n>N=

g,(x)—g(x)|< ¢ forall x in [a, b].
It follows from (3) that

n>N=

gn(x)—g(x)|<5:>|fogn(x)—fog(x)|<% for all x in [a, b].
Therefore, for all n > N,

I (&0~ F(eCN)dd, | << Vpog, Labl<e.

It follows that lim 0

[[(f(e. )~ r(g(D)da,,

Therefore, lim [ f(g,(x)dA,, =lim[ f(g()d4,,

Now, ¢og, :[a,b] >R is a sequence of function of bounded variation such that
V(gog,,[a,b]) <K for all integer n >1. Since fog is continuous, by Theorem 12
, there exists a subsequence ¢og, :[a,b] >R such that ¢og, converges to a

function ® of bounded variation such that ®(x)=¢(g(x)) for every x in £ and

lim [ f(g(0)dA,,, = [ F(g(Dd2, .
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Since J' ’ f(g(x))d, exists, given & >0, there exists a §, >0 such that for any

partition P:a=x,<x ,<--<x, =b with |P| <4, any Riemann Stieltjes sum

3 £ (g)) (@)~ (x, ) satisfies

‘ J, £(gtNda, =3 £ (@) - ) <

Similarly, there exists a &, >0 such that for any partition

P:a=x,<x <--<x,=b with |P||<6,, any Riemann Stieltjes sum

Zf(g(u,-))(ciﬁog(x[)—qﬁog(x,.,l)) satisfies

‘ [WACIE T2 WICIONIEFCARTRFIEM) B

Take any subdivision P:a=x,<x <---<x, =b of [a, b] with norm sufficiently
small so that |P| < min(5,,6,).

Since E 1s dense in [a, b], we can choose a subdivision P:a=x,<x <---<x, =b
such that |P| <min(s,,6,) and x, € Efor 0<i<N. Then we have

‘J‘j f(g(x))dlq) _Zf(g(ui))(q)(xi) _q)(xi—l))‘

<&

= ‘ J, £(8(Nd A, =3 (@) (f ()~ f(g())

<¢&. Therefore,

and ‘I: f(gx)da,, —Zf(g(ui))(¢og(xi) —pog(x.,))

<2¢.

I/ etz -]/ fgtonda,,
As ¢ is arbitrarily small, we conclude that [ f(g()d2, = [ f(g()d4,, -

Thus, lim [ £(g,()dA,, =lim [ f(g(NdA,, = f(@)di, =] f(@G)dA,,

We can relax the condition of convergence of the sequence of function
¢og, :[a,b]—>R in Theorem 11. We require only this sequence be convergent on

a dense subset of [a, b] in the next theorem.
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Theorem 18. Suppose (g, :[a,b] > J)is a sequence of continuous polygonal
function converging uniformly to a continuous function g:[a,b]— J, where J is
a closed and bounded interval. Suppose g,(a)=g(a) and g,(b) =g(b). Suppose
¢:J — R 1s a function of bounded variation such that the total variation of the
composition functions ¢og, :[a,b] >R, V(dog,,[a,b]) <K for some K > 0 and for
all positive integer n. Suppose f:J — R is a continuous function and ¢og is of
bounded variation. Suppose ¢o g, converges to ¢og at every point in a dense

subset £ in [a, b]. Then [ f(g()d2,, =" f(»d4,

Proof.

Note that {a,b} c E.
As in the proof of Theorem 17, we have lim |’ f(g,(x)dA,, =lim[ f(g()d4,,

Since g, is polygonal, we have shown in the proof of Theorem11, that

jb f(g,(x)d4,., = jg((b)) f(x)d2,. We have shown in the proof of Theorem 17 that

lim [ #(e)da,, = f(g(x)dA,, . Therefore,

[ regenda, =" rda,.

When the function ¢:J — R is monotone, we have the following change of
variable theorem.

Theorem 19. Suppose g:[a,b]—J and f:J — R are continuous functions.
Suppose ¢:J — R 1s monotone and ¢o g :[a,b] > Ris a function of bounded

variation. Then we have Ib f(gx)dA,, = Jj(f: fOdu,.

Proof.
Let P:a=x,<x <---<x, =b be a sub division of [a, b].

g(b)

g(a)

f(y)dﬁ@ - Zf o g(u )(#(g)(x,)—P(g)x, ) » u, €[x,_,x]

g(xiy

N a(x N s,
=2 rodu =3[0 fewdu,
i=1 i=1 =
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Z 07 (F0)=Fle@))du,

=1

Since fog is continuous on [a, b] and so given & >0, there exists 6 >0 such
that |/ og(x)— f°g(y)| <& whenever |x—)|<5. Let |P|<5.

Note that », e[x_,,x,] and for yeg((x_,x]1), | /() - f(gw)|<e.

‘ZF” (F0)=f ) du) < Y| (F0) = f(etw))duy

N
< gz
i=1

where [g(x,,),g(x,)] denotes the closed interval determined

g(xi)
d
jg(xi_1> Hy

< EZ V(g.[g(x),g(x)]),

by the end points {g(x,,),g(x,)},
= EZ|¢(g(x,~ ) - p(g(x,,)| <&V (pog.la,b)),
since ¢ is monotone.

Therefore, <eV(gog.la,b)).

o sz, > f o) (HR)(x) ~HR)(x,..)

Since ¢ is arbitrarily small, it follows that J f(gx)da,, I «0 f»da,.

This concludes the proof of Theorem 19.

Remark.

The function ¢:J — R in Theorem 19 need not be monotone. Using Theorem
18, we can extend Theorem 19 to the case when ¢ is of bounded variation.

Suppose g:[a,b]— J 1is a continuous function. Then g is uniformly continuous
and we can define a sequence of piecewise linear functions g, by joining points

on the graph of g by lines. By uniform continuity of g, we can construct the

sequence of piecewise linear functions g, such that it converges uniformly to g.
Let E, be the set of points in [a, b] that defines the piecewise linear functions
g,. Thatis, E, ={x,:x, =a,x, =b,x,<x,, for1<i<s, —1}, g,(x)=g(x) for 0<i<s,

i+1
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, g, 1s linear on [x,_,x,], joining the points (x,_,g(x,,)) to (x,,g(x,)) by a straight

line for 1<i<s,. Then g (x)=g(x) for all x in E, . Moreover, we may assume

that £, c E,

+1

and E = OE is everywhere dense in [a, b]. Therefore, gog,

n=1
converges pointwise to gogin E.

Suppose ¢o g is of bounded variation.

If g, is linear on the interval [x_,,x,], where g (x,)=g(x,) and g, (x,_,) = g(x._,), then

V#[g,(x.1).g,(x)D, ifg,(x. ) <g,(x,)

the variation V(geg, [, %1]) = {mﬁ, [2, ()., (%)) ifg, () <&, (x,)
<V(gog,[x.,x]).

Therefore, V(gog,.[a,b]) <V(dog,[a,b]).

Therefore, by Theorem 18, [ /(g(x)d4,, = j:(f: F(3)dA,

Thus, we have proved the following theorem.

Theorem 20. Suppose g:[a,b]—J and f:J — R are continuous functions.
Suppose ¢:J — R is a function of bounded variation and ¢o g :[a,b] > R1is also a

z(b)
U r)dA,.

function of bounded variation. Then we have Jb f(gx)da,,, = »
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