
Lebesgue Measure on The Real Numbers ℝ  

And Lebesgue Theorem on Riemann Integrability 

By Ng Tze Beng 

 

In this article, we shall construct the Lebesgue measure on the set of real numbers ℝ .  We 

shall do this via a set function on the collection of all subsets of ℝ .  This set function is 

called the outer measure on ℝ .  We shall show that the Lebesgue measure is translation 

invariant and that on interval I, it is equal to the length of I. We shall characterize Riemann 

integrability in terms of measure theoretic property. 

Definition 1.  Let I be an interval with end points a and b with a < b.  The length ( )I  is 

defined by ( )I b a   .  If I is an unbounded interval, then define ( )I   .   

We want to extend this notion of length to arbitrary subsets of ℝ . 

Let  be the family of all countable collections of open intervals.  Define  

                                          * :  ℝ , 

by  *( ) ( )
I

I


  


  for any   .   Hence, 0 *( )    .  Note that as each ( )I  is non-

negative, the summation ( )
I

I




 is absolutely convergent (including ∞) and does not depend 

on the order of summation. 

Suppose  is a collection of open intervals and V is a subset of ℝ .  We say    is a covering 

for V or  covers V if 
I

V I


 ∪ .  

Now, let E be an arbitrary subset of ℝ .  Let  ( ) :  covers C E E   .  Note that C(E)   

 .  Define  *( ) inf *( ) : ( )E C E      ℝ .  This is called the Lebesgue outer measure 

of E.   We have thus defined a function from the set of all subsets of ℝ  into ℝ  , 

                       *:  P   ( )ℝ = 2ℝ    ℝ . 

Then we have: 

Proposition 2. 

(i)  *() = 0. 

(ii)  *({ }) 0x   for all xℝ . 
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(iii)  For any two subsets A and B of  ℝ , *( ) *( )A B A B    . 

Proof.  

(i) and (ii) 

Take xℝ . Then for any integer n ≥ 1, the open interval 
1 1

,x x
n n

   
 

 covers {x}.  

Therefore, 
1 1 2

*({ }) ,x x x
n n n

 
       
  

 .  Since 
2

0
n
 , *({ }) 0x  . 

As { }x , 
1 1

{ } ,x x x
n n

      
 

,  *( ) 0   . 

(iii)  Suppose A B .   Then any countable cover of B is also a countable cover of  A.    

Hence, ( ) ( )C B C A .  Therefore, 

             *( ) inf *( ) : ( ) inf *( ) : ( ) *( )B C B C A A            . 

 

Let rℝ .  Let  :r ℝ ℝ  be the translation map given by ( )r x x r    for xℝ .   

 

The next result gives the desirable property of the Lebesgue outer measure on ℝ .  It is 

translation invariant.  Not all outer measures need to be translation invariant but for a 

generalization of length on subsets of ℝ , translation invariant is expected as the translated 

interval is still an interval and the length of the interval does not change after the translation.  

Proposition 3.  For any rℝ ,    * ( ) *r E E    for any subset E of ℝ . 

Proof.   

If I is an open interval with endpoints a < b, then ( )r I  is an open interval with end points a 

+r and b+r .  Hence,    ( )r I I b a     .   For every     , let  

                                            ( ) ( ) :r r I I      . 

Suppose E is a subset of ℝ . 

If   covers E, then plainly, ( )r   covers ( )r E .   Observe that    

                             * ( ) ( ) *r r

I I

I I
 

       
 

    . 
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It follows that          *( ) : ( ) * ( ) : ( ) * : ( )r rC E C E C E               .   

Hence,          * ( ) inf *( ) : ( ) inf *( ) : *r rE C E C E E              .   

As   ( )r r E E   , by applying the above inequality with ( )r E  in place of E and r   in 

place of r , we get     *( ) * ( ) * ( )r r rE E E       .  Hence    * ( ) *r E E   . 

 

Next, we show that the outer measure does extend the meaning of length of an interval. 

Proposition 4.  For any interval I,  *( ) ( )I I  . 

Proof.   We shall establish the proposition for closed and bounded interval I = [a, b] with a < 

b. Now, , ( , )a b a b     for any  > 0 and so  *( ) ( , ) 2I a b b a          .  As 

 is arbitrary, we have that *( ) ( )I b a I    .  We want to show that for every  in C(I),  

*( ) b a    .  Since [a, b] is compact, every open covering  in C(I), has a finite sub-

covering, say  , then *( ) *( )    .  So, we now assume that   is a finite collection of 

open intervals that cover I.   

Starting with a, since   covers I, there is an open interval 1 1( , )a b  in  such that 1 1( , )a a b , 

i.e., 1 1a a b  .  If  1b b , then   1 1 1 1*( ) ( , )a b b a b a       .   If  1b b  , then 1b I  

and there exists an open interval 2 2( , )a b  in  such that 1 2 2( , )b a b  with 2 1 2a b b  .   If 

2b b , then 

         1 1 2 2 1 1 2 2 1 2 2 1( , ) ( , )a b a b b a b a b a b b a a a b b a                . 

Since   is a finite collection, this process of covering the end point of the next interval must 

terminate.  Suppose it terminate at the n-th interval ( , )n na b such that nb b and n ≥ 2. 

Then we have 1k k ka b b  , where we have denoted 0b a for k =1, 2, …., n1.   Hence, we 

have 

               1 1 1

1 1 2

*( ) ( , )
n n n

i i i i i i n n

i i i

a b b a b a b a b a b a   
  

             . 

Therefore,   *( ) inf *( ) : ( )I C I b a        and so *( ) ( )I b a I    . 

Now let I be any bounded interval with end points a, b with a < b.   For any 0
4

b a



   , 

   , ,a b I a b     .  Then by Proposition 2 (iii), 

                                  * , * * ,a b I a b          . 
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It follows that  2 *b a I b a      .  Therefore, as  is arbitrary,  * ( )I b a I    . 

Finally, let I be an unbounded interval.  Then for any real number K > 0, the interval I 

contains a bounded interval H of length ( )H K  .  Therefore, *( ) *( )I H K   .  It 

follows that *( ) ( )I I    . 

Any non-negative set function   defined on a collection of sets, C, is said to be countably 

sub-additive or  sub-additive if for any countably family   of sets in C, 

                                                ( )
E E

E E 
 

∪  . 

It is said to be countably additive or  additive if for any countable family   of pairwise 

disjoint sets in C, 

                                              ( )
E E

E E 
 

∪ .  

Next, we show that * is countably sub-additive.    

Proposition 5.  For any countably family   of subsets of ℝ , 

                                              * *( )
E E

E E 
 

∪ . 

Proof. 

 Let  :nE n  ℕ .  Let  > 0.   By definition of the outer measure *, for each inter n ≥ 1, 

there exists a covering 
n
  of En  in ( )

n
C E  such that 

                                               * *( )
2

n n n
E


     .  ---------------------------- (1) 

Let 
1

n
n

 



 ∪  .  Then  is a countable cover of 

E

E

∪  .  That is,  

E

C E


 ∪ . 

Therefore,   
1

* *( ) *( )n
E n

E    


 

 ∪ , since any open interval in   is in some k  for 

some k and *( ) 0n    for all n ≥ 1. It follows then from (1) that 

                                               
1

* *( )n
E n

E E  


 

 ∪ . 

As this holds for any  > 0,  
1

* *( )n
E n

E E 


 

∪ . 
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Corollary 6.   If E is a countable subset of ℝ , then *( ) 0E  . 

Proof.  Suppose E is countable subset of ℝ  and so  
1

n
n

E x



 ∪ .   Then 

                       
1 1

*( ) * * 0n n
n i

E x x  


 

    
 

∪   by Proposition 5 and Proposition 2(ii). 

Hence, *( ) 0E  . 

 As a consequence, 

Corollary 7.   Every interval is not countable. 

 

The Lebesgue outer measure on ℝ  is countably sub-additive on the collection of all subsets 

of ℝ but not countably additive.  In order to obtain a countably additive function from it, we 

restrict the domain to a subset of the power set of ℝ . In this procedure, we follow 

Caratheodory’s restriction method, we call the restricted collection, the Lebesgue measurable 

subsets of ℝ or the Lebesgue measure on ℝ . 

A subset E of ℝ is said to be Lebesgue measurable if, and only if, for any subset X of ℝ , we 

have, 

                            *( ) *( ) *( )X X E X E      . 

Since   ( )X X E X E    , we have by Proposition 5 that for any subset X of ℝ ,  

                      *( ) *( ) *( )X X E X E      . 

We have immediately the following: 

Lemma 8.  A subset E of ℝ is Lebesgue measurable if, and only if, for all X  ℝ  , 

                      *( ) *( ) *( )X X E X E      . 

 

Proposition 9.  If  E  ℝ  is Lebesgue measurable, then its complement cE E ℝ  is also 

Lebesgue measurable. 

Proof.   Note that for all X  ℝ , ( )X E X E   ℝ  and ( )X E X E   ℝ  .  

Proposition 9 follows from Lemma 8. 
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Observe that for any X  ℝ , X   and X X  .  Trivially we have for any 

X  ℝ ,  *( ) *( ) *( ) 0 *( ) *( )X X X X X           .  Thus, Ø is Lebesgue 

measurable and by Proposition 9, ℝ is Lebesgue measurable.  We record our conclusion as:  

Proposition 10.   and  ℝ are Lebesgue measurable.  

 

Proposition 11.  If A and B are Lebesgue measurable subsets of ℝ , then A B  is also 

Lebesgue measurable. 

Proof.   

Since B is Lebesgue measurable, for any X  ℝ ,  

                           *( ) * ( ) * ( )X A X A B X A B         . 

Now      ( )X A B X A X A B         and so by Proposition 5, 

                          * * * ( )X A B X A X A B         . 

Therefore,  

       * * ( ) * *( ) * ( )X A X A B X A X A X A B                  

                                                   * X A B   . 

Hence,       * *( ) * ( ) * ( )X A X A X A B X A B            . 

But A is Lebesgue measurable and so, 

       *( ) * *( ) * ( ) * ( )X X A X A X A B X A B               for all X  ℝ . 

It follows by Lemma 8 that A B  is Lebesgue measurable. 

 

Corollary 12.  If A and B are Lebesgue measurable subsets of ℝ , then A B  is also 

Lebesgue measurable. 

Proof.  Note that      A B A B     ℝ ℝ ℝ .  Since A and B are Lebesgue measurable, 

by Proposition 9,     and A B ℝ ℝ  are Lebesgue measurable and consequently, by 

Proposition 11,      A B A B     ℝ ℝ ℝ is Lebesgue measurable.  By Proposition 9, 

A B  is Lebesgue measurable. 

 



7 

 

Let M   be the set of all Lebesgue measurable subsets of ℝ . 

Lemma 13.  If  E1, E2, …, En are pairwise disjoint Lebesgue measurable sets in M  , then for 

any X  ℝ ,  

                                   
1

1

* *
nn

i i
i i

X E X E 
 

        
∪ . 

Proof.   The lemma is trivially true for n = 1. 

Let n > 1.  We shall prove this lemma by induction.  Assume the lemma is true for a 

collection of less than n members of pairwise disjoint Lebesgue measurable sets. Let X be any 

subset of ℝ . 

Since En is Lebesgue measurable, for any subset Y of ℝ , 

                               *( ) * *n nY Y E Y E       .  -----------------------  (1) 

Take 
1

n

i
i

Y X E


   
 
∪  .   Now, n nY E X E    and as  

1

n

i i
E


 are pairwise disjoint, 

1

1

n

n i
i

Y E X E



   ∪  .  It follows from (1) that 

                      
1

1 1

* *( ) * *
n n

i n i
i i

X E Y X E X E   


 

           
   

∪ ∪   

and by the induction hypothesis, 

                   
1

1 1

* * *
nn

i n i
i i

X E X E X E  


 

      
 

∪   

                                          
1

*
n

i

i

X E


   . 

This completes the proof. 

Next, we have: 

Theorem 14.   Suppose  
1i i

E



 is a countable collection of Lebesgue measurable subsets of 

ℝ , i.e., members of M  , then 
1

i
i

E



∪  M  . 

Proof.  

The first thing that we do is to write 
1

i
i

E



∪  as a disjoint union. 
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Let 
1 1

S E  ,    2 1 2 1 2 1 2 1S E E E E E E E       ℝ .  For integer n ≥ 2, let 

                               
1 1

1 1

n n

n n i n
i i

S E E E E
 

 

      
 

∪ ℝ ∪ . 

By Proposition 11, Proposition 12 and Proposition 9, Sn is Lebesgue measurable for integer n 

≥ 2. 

Plainly, i iS E  for all integer i ≥ 1.  Therefore, 
1 1

i i
i i

S E
 

 
∪ ∪ .  Take 

1
i

i

x E



∪ . Then nx E for 

some integer n ≥ 1.  If n =1, then 
1 1nx E E S   .  If n > 1, then let k be the least integer 

such that kx E . Then k  n.  If k =1, then 
1 1kx E E S   .  If k > 1, then jx E  for j  k1.  

Therefore, 
1

1

k

k i k
i

x E E S



  ∪ .  It follows that 

1 1
i i

i i

E S
 

 
∪ ∪ .  Hence, 

1 1
i i

i i

E S
 

 
∪ ∪ .   

For i   j,  
11

1 1

ji

i j i j k k
k k

S S E E E E


 

           
   
ℝ ∪ ℝ ∪   

                              
1

1

j

i j k
k

E E E




     
 
ℝ ∪  , if  i < j, 

                                . 

As   i   j   either i < j or j < i. It follows that i jS S   for i   j.  We conclude that  
1

i
i

S



∪   

is a disjoint union. 

Let  
1 1

n

n i i
i i

D S E E


 
  ∪ ∪  .   Then Dn is Lebesgue measurable by Corollary 12.  Therefore, 

for X  ℝ , 

                          *( ) * * * *n n nX X D X D X D X E            , 

since nX E X D    .  It then follows by Lemma 13 that 

                       
1

*( ) * *
n

i

i

X X S X E  


    .    

Since this holds for any integer n ≥ 1, we have 

                    
1

*( ) * *i

i

X X S X E  




    .   ----------------  (1) 

But by Proposition 5 (countable sub-additivity of the outer measure), 
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1 11

* * ( ) * *i i i
i ii

X S X S X S X E   
  

 

            
   

 ∪ ∪ . 

It follows from (1) that   *( ) *( ) *X X E X E       .   Hence, by Lemma 8, 
1

i
i

E E



 ∪  

is Lebesgue measurable.  That is, E M  .  

 

We now state our main theorem 

Theorem 15.  The set M  , of all Lebesgue measurable subsets of ℝ , is a -algebra and (ℝ , 

M  ) is a measure space.   The set function on M   given by the restriction of the Lebesgue 

outer measure to M  ,    = *M   : M    ℝ ,  is a positive measure.  Hence, (ℝ , M , ) is a 

measure space. 

M   is called the Lebesgue measure on ℝ  and the set function,   : M    ℝ  is called the 

Lebesgue measure. 

 

Proof.  By Proposition 9, Proposition 10 and Theorem 14, M   is a -algebra and so (ℝ , M  ) 

is a measure space.   Since ( ) *( ) 0     ,  is non-trivial.  It remains to show that  is 

countably additive on M  . 

Suppose  
1i i

E



is a countable collection of pairwise disjoint Lebesgue measurable sets in M  . 

Then for any integer n ≥ 1, by Lemma 13, with X = ℝ , we have  

                               
1 1 1 1

* *
n nn n

i i i i
i i i i

E E E E   
   

        
   

 ∪ ∪   . 

Since 
1 1

n

i i
i i

E E


 
∪ ∪ ,    

1 1 1 1 1

* * *
n nn

i i i i i
i i i i i

E E E E E    
 

    

             
     

 ∪ ∪ ∪  for each n ≥ 

1.  Therefore, 

                         
1 1

i i
i i

E E 


 

   
 

∪ . 

But by Proposition 5 (countable sub-additivity), 

                          
1 1 1 1

* *i i i i
i i i i

E E E E   
  

   

        
   

 ∪ ∪ . 
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It follows that  
1 1

i i
i i

E E 


 

   
 

∪ .   Hence,  is countably additive on M   and so is a 

positive measure on M  .   

Proposition 16.   Every subset E of ℝ with *( ) 0E   is Lebesgue measurable.  Hence, the 

-algebra M   is -complete.  That is the measure space (ℝ ,M , ) is a complete measure 

space. 

Proof. 

Suppose *( ) 0E  .  Take any subset X of ℝ .  Since X E E  , by Proposition 2,

 0 * *( ) 0X E E      and so  * 0X E   .  Also, as X X E  , 

*( ) *( )X X E   .  Therefore, *( ) *( ) *( ) *( )X X E X E X E         .  Hence, 

by Lemma 8, E is Lebesgue measurable.      

Consider the -completion of M  , 

       M  * ={E  ℝ  : there exists A, B  M  , such that A  E  B and ( ) 0B A   }. 

Note that M     M  *.   If  A, B  M   is such that A  E  B and ( ) 0B A   , then since

E A B A   , *( ) *( ) ( ) 0E A B A B A        implies that E – A  M   and so   

 E E A A     M   .  It follows that M  *  M   .  Therefore, M  * = M    and so M   is -

complete.   

 Proposition 17.  Every open subset of ℝ is Lebesgue measurable.  Hence the Borel subsets 

of ℝ , B   is contained in the -algebra M   of Lebesgue measurable subsets of ℝ . This means 

B   is a sub -algebra of M  . 

Proof.  Any open subset E of ℝ  is a countable union of open intervals.  By Theorem 14, it is 

sufficient to show that any open interval is Lebesgue measurable.   

Since  ( , ), ( , ) : ,a b a b  ℝ  is a subbase for the topology on ℝ , by Proposition 11, it is 

sufficient to show that (a, ∞) and (∞, b) for any a and b in ℝ , are Lebesgue measurable.  

Note that, for any subset X in ℝ , ( , ) ( , ]X a X a     .  If we can show that (a, ∞) is 

Lebesgue measurable, then by Proposition 9, ( , ] ( , )a a   ℝ is Lebesgue measurable.  It 

follows then that for any b in ℝ , by Theorem 14, 
1

1
( , ) ,

n

b b
n





      
∪  is Lebesgue 

measurable.  Hence, it is sufficient to prove that (a, ∞) is Lebesgue measurable for any a in 

ℝ .   We shall show that for any subset X  ℝ , 

                   *( ) *( ( , )) *( ( , ])X X a X a        . 

If *( )X    , then we have nothing to prove and so we assume that *( )X   . 



11 

 

Take any  > 0.  Then by the definition of the Lebesgue outer measure *, there exists a 

countable covering  of  X by open intervals with  

                           *( ) ( ) *( )
I

I X


    


    . 

For each open interval I   , each of the sets ( , ) and ( , ]I a I a     is either empty or an 

interval.  Moreover,    ( , ) ( , ]I I a I a      is a disjoint union and so 

                     ( ) ( , ) ( , ] * ( , ) * ( , ]I I a I a I a I a                . 

As  ( , ) :I a I        covers ( , )X a  , 

       *( ( , )) * ( , )
I

X a I a


 


      
 
∪    

                                 * ( , )
I

I a





   , by Proposition 5 (countable sub-additivity). -----(1) 

Similarly, since  ( , ] ( , ]
I

X a I a


    ∪ ,  

          *( ( , ]) * ( , ]
I

X a I a


 


      
 
∪   by Proposition 2(iii), 

                                      * ( , ]
I

I a





   , by Proposition 5.  ---------------- (2) 

It follows from (1) and (2) that 

*( ( , )) *( ( , ])X a X a         

     * ( , ) * ( , ]
I I I

I a I a I
  

  
  

           

*( )X   . 

Since this is true for any  > 0, *( ( , )) *( ( , ]) *( )X a X a X        . 

This holds for any subset X  ℝ , by Lemma 8, (a, ∞) is Lebesgue measurable. 

This completes the proof. 

In summary, we have  

Theorem.  (ℝ ,M , ) is a measure space such that M   is -complete,  is non-trivial and M   

contains the Borel subsets of ℝ .  
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Next, we investigate the relation of the Lebesgue integral with the Riemann integral on a 

bounded interval. 

Definition 18.  Suppose E is a Lebesgue measurable subset of ℝ . We say a real valued 

Lebesgue measurable function :f E ℝ  is Lebesgue integrable if  

                                                       
E

f d    . 

(See Definition 29, Introduction to Measure Theory.) 

 

We recall the following result. 

Theorem 19.   Suppose E is a Lebesgue measurable subset of ℝ and ( )E   .  Suppose 

:f E ℝ  is bounded.  Then  f  is measurable if, and only if, the lower and upper Lebesgue 

integral of  f are the same.  The lower Lebesgue integral of  f is defined by  

 sup : , ( )
E E

f d d f S E        and the upper Lebesgue integral of  f  is defined by 

 inf : , ( )
E E

f d d f S E        , where S(E) is the set of real-valued simple 

measurable functions on E.   

(This is Theorem 7 in Positive Borel Measure and Riesz Representation Theorem.) 

Proof. 

Suppose f is measurable.  As f is bounded, we assume f   . Let n
n

 



 , for integer 

n ≥ 1.  Define 
1

. [ ( 1) , )n i n nE f i i        for 1 i n  , n = 1, 2, … .  

Then ,n iE  are measurable and for each integer n ≥ 1, 

          
,

1

( )
n

n i
i

E E 


   
 
∪   , where 

,
1

n

n i
i

E

∪ is a disjoint union, 

                    ,

1

n

n i

i

E


   . 

Let  
,

1

( 1)
n i

n

n n E

i

i   


    and  
,

1
n i

n

n n E

i

i   


   for each integer n ≥ 1.  Thus, ,n n    

are simple measurable functions on E such that  

                                ( ) ( ) ( )n nx f x x     for all x in E. 

Therefore,  
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                         ,

1

( 1) ( )
n

n n n i
E E

i

f d d i E     


               

and  

                        ,

1

n

n n n i
E E

i

f d d i E     


        . 

Hence, 
,

1

( ) ( )
n

n n i n
E E

i

f d f d E E     


    . 

But 0n   as n   and so 
E E

f d f d   .   Since
E E

f d f d   , it follows that 

E E
f d f d     

Conversely, suppose 
E E

f d f d   .  We shall show that f  is measurable or -measurable. 

Let  ( ) ( ) :L f S E f     and  ( ) ( ) :U f S E f    .   Then   

 sup : ( )
E E

f d d L f        and  inf : ( )
E E

f d d U f      .  Since  f  is 

bounded and ( )E   ,  
E E

f d f d     .  Thus, for any integer n ≥ 1, there exists 

( )n L f   and ( )n U f   such that  

                 
1

n
E E

d f d
n

         and  
1

n
E E

d f d
n

     . 

Hence,   2
n n n n

E E E
d d d

n
              .   This holds for all integer n ≥ 1. 

Define , : E  ℝ , by  
1

sup n n
  


   and   

1
inf n n

  


 .  Then both  and    are 

measurable since each n  and n are measurable for all integer n ≥ 1.  

Plainly, n nf        . 

Let 
1

: ( ) ( )kD x E x x
k

      
 

 .   

Obviously, 
,

1
: ( ) ( )k n n k nD x E x x D

k
       

 
 for all integer n ≥ 1. 

Hence, 
,

1
k nD n n

k
      and so  

,

1
k nD n n

E E
d d

k
       .  It follows that 
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                                 ,

1 2
k n n n

E
D d

k n
      . 

Therefore,    ,

2
k k n

k
D D

n
    for all integer n ≥ 1.  It follows that   0kD  . 

Let  : ( ) ( ) 0D x E x x     .   Then 
1

k
k

D D



 ∪  and 

1 2 kD D D D    ⋯ ⋯ .  

Therefore,  ( ) lim 0k
k

D D 


  .  This means    almost everywhere with respect to the 

Lebesgue measure .  As f   ,  f    on E D  and f   almost everywhere 

with respect to the Lebesgue measure .  Since E is measurable and the Lebesgue measure is 

complete, E D  is measurable. Therefore, f is measurable on E D  since   is measurable.  

Hence, f  is measurable. 

 

Theorem 20. Suppose E is a Lebesgue measurable subset of ℝ  and ( )E   .  Suppose 

:f E ℝ  is a bounded measurable function. Then  f  is Lebesgue integrable and 

                    
E E E E E

f d f d f d f d f d                . 

(This is Theorem 8 in Positive Borel Measure and Riesz Representation Theorem.) 

Proof. 

Since :f E ℝ is measurable,  max ,0f f   and  min ,0f f    are measurable.  

Thus, f f f     and   f f f    is measurable.  Note that ,  and f f f 
 are 

bounded non-negative functions.   Then by definition, 

                    sup : 0 , ( )
E E

f d s d s f s S E         

and          sup : 0 , ( )
E E

f d s d s f s S E       . 

Since both  : 0 , ( )
E

s d s f s S E     and  : 0 , ( )
E

s d s f s S E     are bounded 

above by ( )K E for some constant K such that ( )f x K  for all x in E, 
E

f d  and 

E
f d  exist and are finite and so 

E E E
f d f d f d         .  Thus, by definition, f 

is Lebesgue integrable on E and  

                                    
E E E

f d f d f d         . 

Since f   is measurable, 
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                     sup : ( ) sup : ( ) :
E E E

f d d L f d S E f                  

                                 sup : ( ) : 0
E E

d S E f f d           . 

Similarly, we have 
E E

f d f d    .  By Theorem 19, 
E E E

f d f d f d          and 

E E E
f d f d f d        . 

E E E E
f d f d f d f d              

                  inf : , ( ) sup : ( ),
E E

d f S E d S E f                  

                 inf : , ( ) inf : ( ),
E E

d f S E d S E f                   

                 inf : , ( ) inf : ( ),
E E

d f S E d S E f                        

                 inf : , ( ) inf : , ( ),
E E

d f S E d f S E                   

                inf : , , , ( )
E E

d d f f S E                 

                 inf : , , , ( )
E

d f f S E               

                inf : , ( )
E E

d f f f S E f d            . 

Similarly, 

         
E E E E

f d f d f d f d              

                 sup : , ( ) inf : ( ),
E E

d f S E d S E f                 

                 sup : , ( ) sup : ( ),
E E

d f S E d S E f                   

                 sup : , ( ) sup : ( ),
E E

d f S E d S E f                        

                 sup : , ( ) sup : ( ),
E E

d f S E d S E f                   
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                sup : , , , ( )
E E

d d f f S E                 

                 sup : , , , ( )
E

d f f S E               

                 sup : , ( )
E E

d f f f S E f d            . 

Thus, we have 
E E E E

f d f d f d f d          .  Now, as f is measurable and 

( )E   , by Theorem 19, 
E E

f d f d   and so it follows that 

                     
E E E E

f d f d f d f d          . 

 

Suppose :[ , ]f a b ℝ  is bounded.  A step function s on [a, b] is a function that assumes 

finite constant values on the open subintervals of [a, b] defined by some partition of [a, b].  

More precisely, there is a partition 
0 1 2 nx a x x x b     ⋯  and a set of constants, 

1 2
, , , n  ⋯  such that ( ) is x   for 

1i ix x x    for 1  i  n.  Plainly, a step function is a 

simple -measurable function.  We define the Riemann integral on step function s by the  

expression,  

                            1

1

( )
nb b

i i i
a a

i

s R s x x 


    .  

This is the usual definition of Riemann integral on step function.  Observe that as a step 

function s is bounded and measurable, s is Lebesgue integrable and  

                    
 

 
0

1 1
[ , ] [ , ]

1 1

( , ) ( )
n

i i

n n

i i i i i i
a b a b x

i i

s d s d x x x x    


 
 

      .   

Thus, the Riemann integral of a step function and the Lebesgue integral of a step function are 

the same.  This is the main lead to showing that Riemann integrals are Lebesgue integrals. 

 

Let *([ , ])S a b  be the set of all step functions on [a, b].  The lower Riemann integral of  f  is 

defined to be  

                       sup : , *([ , ])
b b

a a
R f f S a b        

and the upper Riemann integral of  f  is defined to be  
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                       inf : , *([ , ])
b b

a a
R f f S a b      . 

As f is bounded, the upper and lower Riemann integrals exist.  The bounded function f is said 

to be Riemann integrable if 

                                 
b b

a a
R f R f  . 

Now a step function in *([ , ])S a b is a linear combination of characteristic functions of 

subintervals plus a finite number of linear combination of characteristic functions of singleton 

sets.  So, by Proposition 4, for *([ , ])S a b , 
[ , ]

b

a a b
d    .  Now let ([ , ])S a b  be the set 

of real-valued measurable simple functions on [a, b].  Then *([ , ]) ([ , ])S a b S a b .  

Moreover, 

                
[ , ]

inf : , *([ , ]) inf : , *([ , ])
b b

a a a b
R f f S a b d f S a b                  

                               inf : , ([ , ])
b

a
d f S a b      . 

and              
[ , ]

sup : , *([ , ]) sup : , *([ , ])
b b

a a a b
R f f S a b d f S a b                

                        
[ , ]

sup : , ([ , ])
a b

d f S a b      . 

The lower Lebesgue integral of  f  is    

                        
[ , ] [ , ]

sup : , ([ , ])
a b a b

f d d f S a b            

and the upper Lebesgue integral of  f  is 

                 [ , ]
inf : , ([ , ])

b

a b a
f d d f S a b         

Thus, we have 

                                          
[ , ] [ , ]

b b

a a b a b a
R f f d f d R f       . 

So, if  f  is Riemann integrable on [a, b], then 
[ , ] [ , ]a b a b

f d f d     .   By Theorem 19, if  

[ , ] [ , ]a b a b
f f  , then :[ , ]f a b ℝ  is -measurable.  Therefore, f is bounded and Lebesgue 

measurable and so f is Lebesgue integrable and the Lebesgue integral, 
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[ , ] [ , ] [ , ]

b b

a b a b a b a a
f d f d f d R f R f          .   Thus, if f is Riemann integrable, then f is 

Lebesgue integrable and the Riemann integral and the Lebesgue integral are the same. 

 

Hence, we have proved the following theorem. 

Theorem 21.  Suppose  :[ , ]f a b ℝ  is a bounded and Riemann integrable function.  Then f  

is Lebesgue integrable (therefore, -measurable) and 

                       
[ , ]

b

a b a
f d R f   , the Riemann integral of f on [a, b]. 

 

Example. A bounded function, not Riemann integrable but Lebesgue integrable, the Dirichlet 

function. 

Let  :[0,1]f ℝ  be defined by 
1,  if  is rational,

( )
0, if  is irrational

x
f x

x


 


 .   It is easily seen that 
1

0
1R f   

and 
1

0
0R f   so that f is not Riemann integrable.  Note that since the rational numbers in [0, 

1] is a set of Lebesgue measure zero, f  = 0 except on a set of Lebesgue measure zero.  

Therefore, by Proposition 39 in Introduction To Measure Theory, f  is Lebesgue measurable.  

Since f is bounded and the interval [0, 1] is of finite Lebesgue measure, by Theorem 20, f  is 

Lebesgue integrable and 
[ , ]

0
a b

f d  . 

We next characterize Riemann integrable function in terms of Lebesgue measure. 

Theorem 22.  A bounded function :[ , ]f a b ℝ  is Riemann integrable if, and only if, it is 

continuous a.e. [] on [a, b]. 

 

Before we prove Theorem 22.  We show that the lower and upper Riemann integrals of a 

bounded function as defined above via step functions are the same as the usual ones using 

Darboux sums. 

Suppose now  f : [a, b]  R is a bounded function. 

Let P :  a = x0 < x1< ... < xn = b  be a partition for [a, b]. 

The upper Darboux sum with respect to the partition P is defined by 

  
where M i = sup{ f (x) : x  [x i-1 , xi ]}.   Note that since f  is bounded on [a, b],  f  is bounded 

on each [x i-1 , xi] and so the supremum Mi exists for each i.   Likewise for each i, mi = inf{ f 

U f, P �
i1

n

M ix i  x i1,
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(x) : x  [x i-1 , xi ]} exists since f  is bounded on each [x i-1 , xi].   We define the lower 

Darboux sum with respect to the partition P by 

.  

Because for each integer i such that 1  i  n,  mi  Mi ,  L( f , P)  U( f , P). 

 

Since  f  is bounded, there exist real numbers m and M such that  m  f (x)  M for all x in [a, 

b].   Hence m   Mi   M  and m   mi   M for i = 1, 2, ..., n.  Therefore, for any partition P 

the upper Darboux sum  

 .   

Hence the set of all upper Darboux sums (over all partitions of [a, b]) is bounded below by 

m(b a).  Likewise, the lower Darboux sum  

.   

We conclude that the set of all lower Darboux sums (over all partitions of [a, b]) is bounded 

above by M(ba).   We may now make the following definition following Darboux. 

 

Definition 23.  Suppose  f : [a, b]  R is a bounded function.  Then the upper Darboux 

integral or upper integral is defined to be 

 inf ( , ) :  a partition of [ , ]
b

a
U f U f P P a b . 

The lower Darboux integral or lower integral is defined to be 

  sup ( , ) :  a partition of [ , ]
b

a
L f L f P P a b . 

We say f  is Darboux integrable if 
b b

a a
U f L f  .  

 

Note that by the completeness property of the real numbers, the upper integral exists, because 

the set of all upper Darboux sum is bounded below and the lower integral exists because the 

set of all lower Darboux sum is bounded above.   

 

We shall show that 
b b

a a
R f L f    and 

b b

a a
R f U f  . 

 

For a partition P :  a = x0 < x1< ... < xn = b of [a, b], we can associate a step function, g, to the 

lower Darboux sum L(f, P), defined by 

                             ( ) ig x m  for x in 
1

( , )i ix x , 1 i  n,  ( ) ( )i ig x f x for 0  i  n . 

Then ( , )
b

a
g L f P .  It follows that  

                  ( , ) :  a partition of [ , ] : , *([ , ])
b

a
L f P P a b f S a b      . 

Therefore,                     

   sup ( , ) :  a partition of [ , ] sup : , *([ , ])
b b b

a a a
L f L f P P a b R f f S a b          . 

Next, we show that for any step function s f ,  
b b

a a
s L f  . 

 

L f, P �
i1

n

m ix i  x i1

U f, P �
i1

n

M ix i  x i1 m m�
i1

n

x i  x i1  mb  a

L f, P �
i1

n

m ixi  x i1 [ M�
i1

n

x i  x i1  Mb  a
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Suppose the step function s f  is given by the partition P: 
0 1 2 nx a x x x b     ⋯  and 

a set of constants, 
1 2
, , , n  ⋯  such that ( ) is x   for 

1i ix x x    for 1  i  n.  As s  f , 

( ) ( )i s x f x    for 
1i ix x x    and so  1inf ( ) : ( , )i i if x x x x   .  

Let 1
1
min i i

i n
K x x  
   .   Then there exists an integer N such that 

1

4

K
k N

k
   . 

Using k ≥ N, we introduce more partition points into P to give Qk :    

            

0 0 1 1 1 2 2 2 1 1 1i i i n n n n nx a b a x b a x b a x b a x b a x n                   ⋯ ⋯ ,  

where 
1

i ib x
k

   for  0  i  n1 and 
1

i ia x
k

   for 1  i  n . 

Note that  1inf ( ) [ , ]i i if x b a    for 1  i  n .   Note that 1 1

2
0i i i ia b x x

k
       for 1  

i  n .    

( , )kL f Q   

     
1

1 1

1 0 1

inf ( ) [ , ] ( ) inf ( ) [ , ] ( ) inf ( ) [ , ] ( )
n n n

i i i i i i i i i i i i

i i i

f x b a a b f x x b b x f x a x x a


 
  

          
   

   
1

1

1 0 1

2 1 1
( ) inf ( ) [ , ] inf ( ) [ , ]

n n n

i i i i i i i

i i i

x x f x x b f x a x
k k k





  

          . 

Hence, 1

1

lim ( , ) ( )
n b

k i i i
ak

i

L f Q x x s 


     .    It follows that 

                          sup ( , ) :  a partition of [ , ]
b b

a a
s L f P P a b L f   .  

Therefore, 
b b

a a
R f L f   and so 

b b

a a
R f L f   . 

 

Similarly, we can show that 
b b

a a
R f U f  . 

 

We have thus proved: 

 

Proposition 24.  Suppose  f : [a, b]  R is a bounded function.  Then the lower Darboux 

integral of f  is equal to the lower Riemann integral of  f,  the upper Darboux integral of f  is 

equal to the upper Riemann integral of  f .  The function f is Riemann integrable if, and only 

if,  f  is Darboux integrable.   

 

The next result is a technical result that helps to find a sequence of step functions whose 

integrals converge to the lower Riemann integral and also a sequence of step functions whose 

integrals converge to the upper Riemann integral. 

 

 



21 

 

 

Lemma 25. The Refinement Lemma. 

Suppose  f : [a, b]  R is a bounded function.  Suppose Q and P are partitions of  [a, b] such 

that Q is a refinement of P, that is, every partition point of P is also a partition point of Q.  

Then 

                      L( f , P)  L( f , Q)  and U( f , Q)  U( f , P). 

 

Proof.    

This is a well known result.  We prove the result first when Q has just one additional point 

than P.  Then proceed to the general case by induction. 

Suppose Q contains just one additional point y than P.  Let P be denoted by P :  a = x0 < x1< 

... < xn = b.  Suppose  y  (xj-1, xj) for some j between 1 and n.  Then Q is the partition Q :  a 

= x0 < x1< ...<xj-1 < y < xj <  < xn = b.   Let mj' = inf{ f (x) : x  [x j-1 , y]} , mj'' = inf{ f (x) : 

x  [y, x j]}.   Then 

mj = inf{ f (x) : x  [x j-1 , xj]}  mj' , mj''.   

Therefore,   

  

             . 

Let Mj' = sup{ f (x) : x  [x j-1 , y]} , Mj'' = sup{ f (x) : x  [y, x j]}.  Then  

                                   Mj = sup{ f (x) : x  [x j-1 , xj]}  Mj' , Mj''.  

Therefore,   

1

1

( , ) ( )
n

i i i

i

U f P M x x 


    

             
1

1 1 1

1 1

( ) ( ) ( ) ( )
j n

i i i j j j j i i i

i i j

M x x M y x M x y M x x


  
  

           

             
1

1 1 1

1 1

( ) ( ) ( ) ( ) ( , )
j n

i i i j j j j i i i

i i j

M x x M y x M x y M x x U f Q


  
  

            . 

This proves the lemma for the case when Q has just one additional partition point than P. 

For the general case, if Q contains k points not in P, then there is a sequence of partitions, P = 

P0,  P1 , P2 ,  , Pk = Q  where Q is obtained by adding one point at a time.  That is  Pi+1 , is 

obtained by adding one point in Q not in Pi to Pi.  Thus by the special case, 

               L( f , P)=L( f , P0 )  L( f , P1 )  L( f , P2 ) ( f , Pk) =L( f , Q)   

and 

               U( f , P)=U( f , P0 )  U( f , P1 ) U( f , P2 ) U( f , Pk) =U( f , Q). 

This completes the proof. 

 

Proposition 26.  Suppose  f : [a, b]  R is a bounded function.  Then there exists a sequence 

of partitions (Pk ) of  [a, b] such that Pk   Pk+1, lim 0k
k

P


 , 

L f, P �
i1

n

mixi  x i1 �
i1

j1

mixi  x i1 mjy  xj1 mjxj  y  �
ij1

n

mixi  x i1

[�
i1

j1

mixi  xi1 mj
∏y  xj1 mj

∏∏xj  y  �
ij1

n

mix i  x i1  L f, Q
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                   ( , )
b

k
a

L f P L f    and ( , )
b

k
a

U f P U f   . 

Proof.  By definition of the lower and upper Datboux integral, there exist partitions P1' and 

P1'' of  [a, b] such that 

          11 ( , )
b b

a a
L f L f P L f      and  1( , ) 1

b b

a a
U f U f P U f    .  

Let  P1 be a common refinement of P1' and P1'' for which ||P1|| < 1.  Then by the Refinement 

Lemma (Lemma 25), 

             11 ( , )
b b

a a
L f L f P L f      and 1( , ) 1

b b

a a
U f U f P U f    . 

Similarly, there exist partitions P2' and P2'' of  [a, b] such that 

         2

1
( , )

2

b b

a a
L f L f P L f       and  2

1
( , )

2

b b

a a
U f U f P U f     . 

Let  P2 be a common refinement of P1 , P2' and P2'' for which ||P2|| < 1/2.  Then  

            2

1
( , )

2

b b

a a
L f L f P L f      and  2

1
( , )

2

b b

a a
U f U f P U f     .  

We now define the sequence {Pk } by repeating the above process.  Suppose we have defined 

partition Pk  such that Pk1   Pk and ||Pk|| < 1/k. By the definition of the lower and upper 

Darboux integrals, there exist partitions Pk+1' and Pk+1'' of  [a, b] such that 

             1

1
( , )

1

b b

k
a a

L f L f P L f
k


  

   and 1

1
( , )

1

b b

k
a a

U f U f P U f
k


  

   .   

Let  Pk+1 be a common refinement of Pk , Pk+1' and Pk+1'' for which ||Pk+1|| < 1/(k+1).  Then by 

the Refinement Lemma, we have 

         1

1
( , )

1

b b

k
a a

L f L f P L f
k

  
  ,   1

1
( , )

1

b b

k
a a

U f U f P U f
k

  
    

and that Pk   Pk+1.   

In this way we obtain the sequence of partitions {Pk } of  [a, b] such that  Pk  Pk+1 and  

lim 0k
k

P


 . In particular, by the definition of convergence of sequence or by the Comparison 

Test,  ( , )
b

k
a

L f P L f   and ( , )
b

k
a

U f P U f  .  This completes the proof. 

 

 

Proof of Theorem 22. 

Suppose f  is Riemann integrable. 
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By Proposition 26, there exists a sequence of partitions (Pk ) of  [a, b] such that Pk   Pk+1,  

lim 0k
k

P


 , 

                   ( , )
b

k
a

L f P L f   and ( , )
b

k
a

U f P U f  . 

For each partition Pk :  a = x0 < x1< ... < xn = b.  We can associate a step function k   to the 

lower Darboux sum L(f, Pk) and a step function k  to the upper Darboux sum U(f, Pk) 

defined by 

                              1( ) inf ( ) : [ , ]k i i ix m f x x x x     for x in 1( , )i ix x , 1 i  n,  

                             ( ) ( )k i ix f x   for 0  i  n  

and                        1( ) sup ( ) : [ , ]k i i ix M f x x x x    for x in 1( , )i ix x , 1 i  n,  

                             ( ) ( )k i ix f x   for 0  i  n ( ) ( )k i ix f x  .  

 

Then ( , ) and ( , )
b b

k k k k
a a

L f P U f P    .  It is easily seen that  k  is a monotonic 

increasing sequence of step functions and  k is a monotonic decreasing sequence.  

Note that since k  and k  are step functions, they  are Lebesgue measurable and k kf     

for all integer k ≥ 1.   Since f  is bounded,  the sequence  k is uniformly bounded and so 

converges pointwise in [a, b] to a function  on [a, b].   Similarly,  k  converges pointwise 

on [a, b] to a function  on [a, b].  By Corollary 14 of Introduction To Measure Theory,   

and   are Lebesgue measurable.  Observe that  f   . 

Now, f  is Riemann integrable implies, by Theorem 21, that  f  is Lebesgue integrable and  

[ , ]

b

a b a
f d R f   . 

By Proposition 26, 

          
[ , ] [ , ]

( , )  and ( , )
b b b b

k k k k k k
a b a d a b a d

d L f P L f d U f P U f                . 

By the Lebesgue Dominated Convergence Theorem, since both  k and  k are bounded 

by constant function, 

                  
[ , ] [ , ] [ , ] [ , ]

 and  k k
a b a b a b a b

d d d d            . 

Therefore, 
[ , ] [ , ]

b b

a b d d a b
d L f U f d         . Hence,  

[ , ]
0

a b
d    .  As 0   ,  

by Proposition 38 part (1) of Introduction to Measure Theory,     = 0 a.e. [] on [a, b]. 
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Hence, there is a set [ , ]E a b  such that ( ) 0E   and ( ) ( )x x  for [ , ]x a b E  .  Let  

kL be the set of partition points of Pk for each integer k ≥ 1.  Then 
1

k
k

L L



 ∪  is countable and 

so ( ) 0L  .  Let H E L   and ( ) 0H  since H is the union of two sets of Lebesgue 

measure zero. Now we claim that f  is continuous at each point [ , ]x a b H  .  Take 

0 [ , ]x a b H  and so 0 0 0( ) ( ) ( )x f x x   .   As 0 0( ) ( )k x x ր , given  > 0, there exists 

an integer N ≥ 1 such that 0 0 0( ) ( ) ( )kk N x x x        .  Likewise, as 0 0( ) ( )k x x ց

, there exists an integer M ≥ 1 such that 0 0 0( ) ( ) ( )kk M x x x        .   Let  

max{ , }J N M .  Let JL be the partition points of the partition JP  associated with the lower 

and upper sum ( , ) and ( , )J JL f P U f P .   Hence 0 Jx L  and so 0x  is in some open interval, 

say I, defined by the partition points of JP .  Thus, there exists a  > 0 such that 

0 0( , )x x I    .  Observe that 0 0 0( ) ( ) ( ) ( ) ( )J J J Jx x f x x x        for all 

0 0( , )x x x    .  Therefore, for 0 0( , )x x x    ,  

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )J J J Jf x x x x f x x x x f x                     . 

It follows that 0( ) ( )f x f x    for 0 0( , )x x x    .  This means that the function  f   is 

continuous at 0 [ , ]x a b H  .  Hence, f is continuous a.e. [] on [a, b]. 

 

Suppose  f  is bounded and continuous a.e. [] on [a, b].  By Proposition 40 in Introduction 

To Measure Theory,  f  is Lebesgue measurable.  By Theorem 19, f  is Lebesgue integrable. 

The gist of the proof is to prove that both the lower and upper Darboux integrals of f  are 

equal to the Lebesgue integral of f.   

Recall that  k and  k converge pointwise respectively to Lebesgue integrable functions 

 and   .  Moreover, 

             
[ , ] [ , ] [ , ] [ , ]

 and 
b b

k k
a b a b a a b a b a

d d L f d d U f             ր ց  . 

We shall show that f    a.e. [] on [a, b]. 

Let [ , ]F a b  be such that ( ) 0F   and  f  is continuous at x for all x in [ , ]a b F .  

Let 
1

k
k

G F L



  ∪ .   We shall show that  f    on [ , ]a b G . 

Take [ , ]x a b G  .  Then x is not a partition point of any Pk  and  f  is continuous at x.  

Therefore, given any  > 0, there exists  > 0 such that for all y in [a, b],  
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                          ( ) ( )
2

y x f y f x


      . 

By definition of the partitions  iP , 0iP  .  Therefore, there exists an integer N such that  

kk N P    .  Take any integer k ≥ N.  Suppose the partition Pk is given by a = x0 < x1< 

... < xn = b.  Then 1( , )i ix x x  for some 1 i  n .  Since 1i i kx x P    ,  

                    ( ) ( )
2

f y f x


    for all   1,i iy x x . ------------------------ (1) 

Now,  1( ) sup ( ) : [ , ]k i ix f y y x x   .  Therefore, there exists  0 1,i iy x x   such that 

                                 0( ) ( ) ( )
2

k kx f y x


    . 

It follows that    

                               0 0( ) ( ) ( ) ( )
2

k kx f y x f y


       .  ------------------------- (2)   

Therefore, with this value of y0, it follows from (1) and (2) that  

                   0 0( ) ( ) ( ) ( ) ( ) ( )
2 2

k kx f x x f y f y f x
 

           . 

Since this is true for any k ≥ N, ( ) ( ) lim ( ) ( )k
k

x f x x f x  


    .   As this is true for all  

> 0,  ( ) ( )x f x  .   Hence,  f    on [ , ]a b G . 

 We have  1( ) inf ( ) : [ , ]k i ix f y y x x   .  Therefore, there exists  0 1,i iy x x   such that 

                                 0( ) ( ) ( )
2

k kx f y x


    . 

It follows that    

                              0 0( ) ( ) ( ) ( )
2

k kx f y f y x


      .  ------------------------- (3)   

Therefore, with this value of y0, it follows from (1) and (3) that 

               0 0( ) ( ) ( ) ( ) ( ) ( )
2 2

k kx f x x f y f y f x
 

           . 

Hence, taking limit, we get ( ) ( )x f x   .  As  is arbitrary,  ( ) ( )x f x  .   Therefore,  

f   on [ , ]a b G . 
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Therefore, 

  
[ , ] [ , ]

 
b

a a b a b
L f d f d       and 

[ , ] [ , ]
 

b

a a b a b
U f d f d      . 

It follows that 
[ , ]

b b

a a b a
L f f d U f     and consequently f is Riemann integrable. 

 

Non Lebesgue measurable set   

We have stated that the Lebesgue outer measure is not countably additive on the collection of 

all subsets of ℝ .  This presupposes that a non-Lebesgue measurable subset exist.  The 

restriction of the Lebesgue outer measure on the -algebra of all Lebesgue measurable 

subsets is countably additive.  If every subset is Lebesgue measurable, then the Lebesgue 

outer measure would be countably additive.  The question is:  Does non-Lebesgue 

measurable set exist?    

The answer depends on our system of set theory.   If we admit the Axiom of Choice, then it 

does.  If we don't admit the Axiom of Choice, then every set is Lebesgue measurable, that is, 

if we replace the Axiom of Choice by Solovay Axiom (Axiom of Dependent Choice and 

every subset of ℝ  is measurable).  The two systems of axioms for set theory (Zermelo-

Fraenkel plus Axiom of Choice or Zermelo-Fraenkel plus Axiom of Solovay) are mutually 

incompatible although they are both consistent.  The following is thus of interest to those 

ardent supporters of the Zermelo-Fraenkel plus Axiom of Choice.   

 

We shall use the Axiom of Choice to define a non-Lebesgue measurable subset of [0,1].  

Indeed, we shall also define a non-Lebesgue measurable subset of ℝ  and use this subset to 

show the existence of a non-Lebesgue measurable subset of any set with positive Lebesgue 

outer measure. 

 

Define an equivalence relation R on [0, 1] by x R y if and only if x  y is a rational number.   

This then partitions [0, 1] into disjoint equivalence classes.  By the Axiom of Choice, we can 

choose a point from each of these equivalent classes to form a subset E of [0, 1].  That is, E 

intersects each equivalence class in exactly one point.  Then E is not Lebesgue measurable.  

We shall prove this by contradiction. 

Suppose E is Lebesgue measurable.  

To see this, consider the set [0, 1]  [0, 1] = [1, 1].  The set of rational numbers in [1, 1] 

is countable.  Let {an : n = 1, } be an enumeration of the set of rational numbers in [1, 1].  

Then for each integer n ≥ 1, En = {an + x : x  E } =  E + an is Lebesgue measurable if E is.  

Obviously, En Em = if  n  m.   

We deduce this as follows. 

If x  En Em , then  x = z + a n  for some z in E and  x = z' + a m  for some z' in E .  

Therefore, 0 = z   z'  (am  a n ) and so z   z'  = (am  a n )  and so  z R z' .  But if z  z', then 
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z and z ' would come from different equivalence classes and so z R z' cannot hold.  Thus z  z' 

and so am = an, contradicting am  a n . 

For x in [0, 1] either x is in E or x R y for some y in E.  Note that E E E a    ,when 

0a  . If x R y for some y in E, then x y is a rational number in [1, 1].   Thus x y = aj 

for some j.  Hence, x = y + a j  E + {aj } = Ej .  We have thus shown that [0, 1] 
1

i
i

E



∪ .  

Note that each En is a subset of [1, 2] and so 
1

i
i

E



∪   [1, 2] .   

Now, for each i,  ( Ei ) = ( E + ai ) =( E) as  is translation invariant. Since each Ei is 

measurable and  
1i i

E



 are pairwise disjoint, by the countable additivity of , 

                           
1 1

lim [ 1, 2] 3i i
ni i

E E n E   


 

       
 

∪ .  

  

This is only possible if ( E) = 0.  Therefore,
1

0i
i

E




   
 
∪ .  But then we have, because [0, 1] 


1

i
i

E



∪ ,  

1

1 [0,1] 0i
i

E 




    
 
∪ , which is absurd.  Therefore, E is not Lebesgue 

measurable.   

 

Note that    
1

1 * [0,1] * * [ 1, 2] 3i
i

E  




      
 
∪ .    

If    
1 1

* * lim *i i
ni i

E E n E  


 

    
 

∪ , then it is only possible if (E) = 0 and so by 

Proposition 16, E is Lebesgue measurable and we get a contradiction as before.  This means 

 
1 1

* *i i
i i

E E 


 

   
 

∪ ,  (E) > 0 and  
1

1 * * [ 1, 2] 3i
i

E 




     
 
∪ .  Hence, we can 

conclude that the Lebesgue outer measure is not countably additive.   It also follows that 

there exists an integer n such that  
1 1

* * *( )
nn

i i
i i

E E n E  
 

    
 

∪ .  This means that the 

Lebesgue outer measure is also not finitely additive.  

 

 

The following is a general way of getting a non-measurable set. 

The device we would be using is the algebraic difference of two sets.   This time we shall 

obtain a non-measurable subset of ℝ .   Define the same relation as before but now denote by 

~ , on ℝ as follows.   x ~ y if, and only if, x  y is a rational number.  Plainly, this is an 

equivalence relation on ℝ .  Denote the set of equivalence classes by /ℝ ∼ .  Each equivalence 

class has the form  

 :x r r ℚ .  
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Thus, the collection of rational numbers constitutes one equivalence class,  2 :r r ℚ  is 

another equivalence class and  :r r  ℚ is yet another.  Obviously, each equivalence 

class is countable and so since the set of real numbers ℝ  is uncountable, the number of 

distinct equivalence classes is uncountable.  This is because if the number of equivalence 

classes were countable then ℝ  being the union of countable number of equivalence classes, 

each of which is countable, would be countable and thus contradicts the fact that ℝ  is 

uncountable.  By the Axiom of Choice, we can choose a point from each equivalence class to 

form an uncountable set F.  We claim that this set is non-measurable.  This is because the set 

of algebraic difference 

F  F = { x  y: x, y  F } 

cannot contain an interval.   Because any two distinct points of F must differ by an irrational 

number and since F contains only one rational number, F  F contains exactly one rational 

number namely 0.  If F  F were to contain an interval, it would contain rational number 

different from zero which is not possible.   Hence by the following lemma, either F is not 

Lebesgue measurable or *(F) = 0 and F is Lebesgue measurable. 

 

Lemma 27.  If E is a Lebesgue measurable subset of ℝ  with positive measure, i.e.,  (E) > 

0, then E  E contains a non-trivial interval centred at the origin. 

 

We shall prove this lemma later.  Enumerate the set of rational numbers as {an : n = 1, }.  

Now define Fn = {an + x : x  F } =  F + an .   Then by the definition of F, we have  

1
n

n

F



ℝ ∪  .   ----------------  (A) 

Observe that by the definition of F, n mF F   for n  m so that 
1

n
n

F



ℝ ∪  is a countable 

disjoint union. 

If  (F) = 0, then F is Lebesgue measurable by Proposition 16 and since is translation 

invariant, (Fn) =(F + an ) (F) = 0.   Thus, by the countable sub-additivity of the 

Lebesgue outer measure, 
1 1

*( ) * *( ) 0n n
n n

F F  


 

    
 

ℝ ∪  implying that *( ) 0 ℝ ,  

which is not true.   Hence  *(F)  0.  Therefore, by Lemma 27, F is not Lebesgue 

measurable as F – F does not contain an interval.    

 

We have thus produce two non-measurable subsets, one in [0, 1] and one in ℝ .  We shall 

make use of F to produce other non-measurable set. 

 

Now for the proof of Lemma 27. 

 

Proof of Lemma 27.   

Suppose E is a Lebesgue measurable subset of ℝ  with positive measure, i.e.,  (E) > 0 , 

Firstly, we take a special open set G containing E such that  
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 (G) <(1 + )(E). 

How can we obtain G?   Recall that  ( ) *( ) inf *( ) : ( )E E C E       .  

Now for any  > 0, (1 + )(E)>(E).  Therefore, by the definition of infimum, there exists a 

countable cover  of E, i.e.,   C(E), by open intervals such that   

  (1 + )(E) > ()  (E). 

Let  
I

G I


 ∪ .  Then G is an open set in ℝ and so is Lebesgue measurable.  Since ℝ  is 

locally path connected, any open set of ℝ is also locally path connected and so G is locally 

path connected.  Hence, the path components are open sets and therefore, are open intervals.  

As ℝ  has a countable basis for its topology, these components are disjoint open cover for G 

and can at most be countable. Thus, we conclude that G is a countable union of pairwise 

disjoint open intervals.  Let this collection of pairwise disjoint open intervals be denoted by 

.  Then
I I

G I I E
  

  ∪ ∪ .  By the countable additivity of Lebesgue measure, , 

                    *( ) ( ) ( ) *( )
I

I

G G I I
 

     
 

     
 

∪     

                                * *( ) *( ) (1 ) ( )
I

I

I I E
 

     
 

      
 

∪ , 

                                                                                    by the countable sub-additivity of *. 

Thus, we have  

                               ( ) *( ) (1 ) ( )G E       . 

Let {In : n = 1, } be an enumeration of the open intervals in .  Then  
1

n
I n

G I I




 
 ∪ ∪ .  Let  

En = E In.  We have, 

                         
1 1 1

n n n
n n n

E E G E I E I E
  

  

        
 
∪ ∪ ∪ . 

Since In is Lebesgue measurable and E is Lebesgue measurable, En is Lebesgue measurable 

for integer n ≥ 1.  As  ={In : n = 1, } is a countable collection of pairwise disjoint sets, {En 

: n = 1, } is a countable collection of pairwise disjoint measurable subsets.  Therefore, by 

the countable additivity of the Lebesgue measure , 

                               
1 1

( ) n n
n n

E E E  


 

   
 

∪ . 

Note that  
1 1

( ) n n
n n

G I I  


 

   
 

∪ .   Since ( ) (1 ) ( )G E    , we must have that for 

some integer j ≥ 1, 

    ( ) (1 ) ( )j jI E    .              -------------------   (1) 

Let I = Ij and J = Ej .   Then J = Ej = E  Ij  Ij  = I. 

Take  = 1/3.  Then by (1),  (I) <(4/3)(J).  That is, 

                (J)  (3/4)(I) .              -------------------------  (2) 
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We now claim that if  J  is translated by any number d with |d| < (1/2(I), the translated set  

Jd has some points in common with J.   If this is not the case, i.e., J Jd = , then since         

J Jd   I Id , 

    2(J) =  (J) +  (Jd) =  (J Jd ) (I Id ) (I) + |d| < (I) + (1/2(I) = (3/2)(I).    

We would get (J)  (3/4)I) contradicting (2). 

Hence, J Jd  , 

This means that for some y = x + d in Jd , where x is in J, y is also in  J.  Therefore, d = y  x 

is in J J.  This is true for any d with |d| < (1/2(I) and so, the open interval 

  ((1/2)(I), (1/2(I))  J J  E E. 

This completes the proof of lemma 27. 

 

Theorem 28.  For any subset A of ℝ with positive outer measure, i.e., (A) > 0, there is a 

non-measurable subset B 
Proof.Suppose (A) > 0.   Take Fn as defined before using the non-Lebesgue measurable 

subset F of ℝ   By (A), 
1

n
n

F



ℝ ∪  and so  

                              
1 1

n n
n n

A A A F A F
 

 

       
 

ℝ ∪ ∪ . 

Therefore,  

     
1 1

* * *n n
n n

A A F A F  


 

     
 

∪ .             ----------------  (1) 

If  A  Fn  is measurable, then since A  Fn  A  Fn does not contain a non-trivial interval 

(because Fn  Fn dose not contain a non-trivial interval, a consequence of the fact that F  F 

dose not contain a non-trivial interval), by Lemma 27, (A  Fn) = 0. Therefore, since (A) 

> 0,  A  Fn  cannot be measurable for all integer n.  This is because if A  Fn were 

measurable for all integer n, then by (1),  (A )   0 contradicting (A) > 0.  Hence, for 

some integer j,  A  Fj  is not Lebesgue measurable.  Take B = A  Fj . 

This completes the proof of Theorem 28. 

 

With this theorem proven, we conclude this modest introduction to the Lebesgue measure on 

the real numbers ℝ .  

 


