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We begin by asking several questions. 

Question 1.   Let [0,1]C  be the collection of all continuous real-valued functions on the unit 

interval [0,1].  We endow it with the uniform norm, 
[0,1]

sup ( )
t

f f t


=  for [0,1]f C .  Then 

[0,1]C  is a normed vector space.  This gives rise to a metric in [0,1]C  associated with this 

norm.  With this metric, [0,1]C  is a complete metric space and so is a Banach space.  Note 

that [0,1]C  is a real linear space.  Observe that the Riemann integral on [0,1]C  is a real linear 

functional on [0,1]C .  Our question is: What is the conjugate space or space of all real linear 

functionals on [0,1]C ? 

Question 2.  Now we give the linear space [0,1]C  a different norm, 
1

1 0
( )f f t dt=   for 

[0,1]f C .  Then we have the associated metric space [0,1]C , where the metric d1 is now 

given by 

                          
1

1 1 0
( , ) ( ) ( )d f g f g f t g t dt= − = − . 

The linear space [0,1]C  with this metric is not complete.   There is a general construction, 

which gives a Banach space X  from a normed linear space X.   This is called the completion 

of the vector space X.   It is the equivalent classes of Cauchy sequences of elements of X.   

Can we represent the completion [0,1]C  of [0,1]C  with the norm given above as a function 

space? 

Question 3.  Then what is the conjugate space or dual of [0,1]C ?  

Practical Lebesgue integration does everything that Riemann integration does, better and 

easier and it does more. 

For instance: 

One aim of integration is to prove theorems like this,   

given some hypothesis on the function f,  

                        ( , ) (?) ( , )
d d

f x t dt f x t dt
dx dx

=   . 

Theorems like this can be reduced to asking: 
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                             If  nf f→  , then 
nf f→   ?   

So we want to prove theorem of the form: 

If nf f→   in some appropriate sense, then  f  is integrable (in some appropriate 

sense) and 
nf f→   (in some appropriate sense). 

The basic result for Riemann integration is: 

Theorem.  If each :[ , ]nf a b →  is continuous (and therefore Riemann integrable) 

and nf f→  uniformly on the closed and bounded interval [ , ]a b  (and consequently f  

is continuous and so Riemann integrable), then 
b b

n
a a

f f→  . 

Most theorems on convergence of Riemann integrals are merely elaborations of this. 

 

The basic theorem for Lebesgue integration is: 

Theorem.  If  E is a measurable subset, :nf E +→   is Lebesgue integrable and 

nf f  (monotonic increasing) pointwise or almost everywhere on E,  and if  nf   is 

Lebesgue integrable, then  f  is Lebesgue integrable and 
n

E E
f f→  . 

For example,  1

n

tt
e

n

− 
− → 

 
 as n → and so for integer m > 0, 1

n

m m tt
t t e

n

− 
− → 

 
  as 

n →.   For integer n ≥ 1, let 
1 ,0

( )

0,

n

m

n

t
t t n

f t n

t n

  
−    =   




 .    Then  ( ) m t

nf t t e−→  

pointwise on [0, ∞) and the sequence of functions ( )nf  is monotonic increasing.   It follows 

by the above result that 
[0, ) 0 [0, )

( ) 1

n
n

m m t

n

t
f t dt t dt t e dt

n

−

 

 
= − → 

 
   .     

We verify that 
m tt e−

 is Lebesgue integrable on [0, ∞).   Observe that for t ≥ 0,     

                            
1 1
2 2

1
2 ! 2 ! 2 !

! 2

m

t tm t m t m t mt
t e m e m e e m e

m

−− − − 
=   

 
 . 

Therefore, since 
1
22 !
tm m e

−
 is non-negative and improperly Riemann integrable on [0, ∞) and 

so is Lebesgue integrable on [0, ∞), it follows that 
m tt e−

 is Lebesgue integrable on [0, ∞).   
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Now,
0

1 ! ... !
1 2 1

n
n

m t n n n n
t dt m m

n n n n m n m

 
− =   → 

+ + + + + 
 .  Therefore, 

[0, )
!m tt e dt m−


=  . 

In the sequel,   denotes the extended real numbers  , − + .  Here we note that many 

propositions are often simpler when the extended non-negative real numbers [0, ]+ =   is 

involved. 

 

Measurable Sets and Functions  

Definition 1.  Suppose X is a set.  A -algebra A in X is a collection M   of subsets of X such 

that  

          (i)  X  M   , 

          (ii)  if  A   M   , then its complement cA   M   ,   and 

          (iii) if nA   M   , for n = 1, 2,  …. ,  then 
1

n
n

A


=

   M   . 

If  M    is a -algebra in X, then X or (X, M  ) is called a measure space and the elements of M   

are called measurable sets. 

If  (X, M  )  is a measure space and Y is a topological space, a function :f X Y→  is said to 

be measurable if 1( )f U−   M   for any open set U in Y. 

Some Immediate Results and Remarks 

(1)  Ø  M   as cX   M   . 

(2)  If 1 2,A A   M  , then 1 2A A   M   . 

(3)  If nA   M   , for n = 1, 2,  …. ,  then  
1 1

c

c

n n
n n

A A
 

= =

 
=  

 
  M  .   Therefore, M   is also 

closed under countable intersection. 

(4)  If A, B  M   , then A B−   M   since  cA B A B− =   . 

(5)  If A, B  M   , then  A B A B A B =  −    M   . 

 

Some Related Definitions 

(1)  If we replaced (iii) by (iii)* if 1 2,A A   M   , then 1 2A A   M   , then we get an algebra 

of sets. 
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(2)  If we drop (i) and replace (ii) by (ii)* if A, B  M   , then A B−   M  ,  then   M    is a -

ring of subsets of X.  

(3)  If we drop (i) and replace (ii) by (ii)*, (iii) by (iii)*, then M    is a ring of subsets of X.  

 

Note the following implications. 

             M     is a -algebra                  M     is an algebra     

                                                                         

             M     is a -ring                       M      is a ring           

 

The prefix ‘’ is always connected somehow with countable sum operations.  For example, a 

topological space Y is -compact if  
1

n
n

Y K


=

=   and each nK  is compact. 

The following is an easy consequence of the definition. 

Proposition 2.   If  Y  and Z  are two topological spaces and (X, M  )  is a measure space and if  

:f X Y→  is measurable and :g Y Z→  is continuous, then the composition :g f X Z→  

is measurable. 

 

Just like the case of continuous functions, forming sum and product of measurable functions 

is a means of investigating measurable functions from simpler easier defined measurable 

functions. That we can do so is because sum and product of measurable functions are 

measurable.    

The next result is used to prove that sum and product of measurable functions are measurable. 

Lemma 3.   Suppose (X, M  )  is a measure space.  Suppose :u X →  and :v X →   are 

measurable functions.  Suppose 
2: Y  = →   is continuous.  Define :h X Y→  by 

( ) ( ( ), ( ))h x u x v x=   for x in X.  Then h is measurable.  If X is a topological space and u and v 

are continuous, then h is continuous. 

Proof.  For the last statement concerning continuity, the function 
2: X →  =   

defined by ( )( ) ( ), ( )x u x v x = for x in X, is continuous since the projections onto each factor 

are u and v and are continuous.  Therefore, h =    is a composition of continuous 

functions and so is continuous.   

We now show that : X →   is measurable. 
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Suppose I1 and I2  are open intervals in .  We shall show that 
1

1 2( )I I−    M  . 

1 1 1

1 2 1 2( ) ( ) ( )I I u I v I− − −  =     M  .  This is because u and v are measurable,  
1

1( )u I−
 and 

1

2( )v I−
  M  .   Hence, for any open rectangle,  -1(open rectangle) is measurable. 

Take any open set U in 2 = .  Then U is a countable union of open rectangles, say 

1
i

i

U U


=

=  , where each Ui is an open rectangle.   Therefore, ( )1 1 1

1 1

( ) i i
i i

U U U
 

− − −

= =

 
 =  =  

 
 

is a countable union of measurable sets in M   and so is in M   as M    is a -algebra.  Thus,   is 

measurable.  Therefore, by Proposition 2, h is measurable. 

Corollary 4.  Suppose , :   or u v X →  are measurable, then u + v and  u v   are 

measurable. 

For real valued functions u and v, using the continuous function :  →  defined by 

( , )x y x y = +  or ( , )x y x y =  , it follows from Lemma 3, that u + v and  u v   are 

measurable. 

For complex functions u and v, we use the following to reduce the argument to the real case. 

Corollary 5.   The complex function :f u iv X= + → , where u = Re f and v = Im f ,  is 

measurable if, and only if, both u and v are measurable. 

Proof.   Since the projection maps, Re: →  and Im: →  are continuous, it follows by 

Lemma 3, that if  f  is measurable, then u and v are measurable. 

Suppose u and v are measurable.  Define 
2: →  by  ( , )x y x iy = + .  Then plainly,  

is continuous.  Then by Lemma 3, ( ) ( ( ), ( ))f x u x v x=   is measurable. 

Completion of the proof of Corollary 4.   

Suppose , :u v X →  are measurable.  Then by Corollary 5, Re( ) Re Reu v u v+ = +  and 

Im( ) Im Imu v u v+ = +  are measurable.   Hence u + v are measurable.  Now 

( )Re Re Re Im Imu v u v u v =  −   and ( )Im Re Im Im Reu v u v u v =  +  .   As  

Re Re Im Imu v u v −    and Re Im Im Reu v u v +   are measurable, it follows that 

( ) ( )Re  and Imu v u v   are measurable and so u v   is measurable. 

An immediate consequence of the definition of measurable function is: 

Corollary 6.  Suppose (X, M  )  is a measure space.    If  E is subset of X , then the 

characteristic function of E, E  , defined by 
1,  if ,

( )
0,  if  

E

x E
x

x E



= 


 , is measurable, if and 

only if, E is measurable, i.e., E M   . 
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Corollary 7.  Suppose (X, M  ) is a measure space.  A function :  or f X →  is measurable 

implies that  f   is measurable. 

Proof.  Since the modulus function :  or →  is continuous, it follows from 

Proposition 2 that f   is measurable. 

A question naturally arises is that, if we have a collection of subsets of X, then can there be a 

smallest -algebra on X that contains this collection?  The collection of all subsets of X is the 

extreme case it is a -algebra that contains all -algebra in X.  The next proposition gives the 

existence of such a smallest -algebra. 

Proposition 8.  Suppose   is a collection of subsets of X.  Then there is a smallest -algebra 

M   in X containing  . 

Proof.  Consider the collection of all -algebras containing  .  Obviously, this collection is 

not empty as it contains the -algebra of all subsets of X.  Then let 

                 M   
  is a algebra − 

=  . 

This is obviously a -algebra contained in any -algebra containing  and so is the smallest 

-algebra containing . 

We call this algebra the -algebra generated by  . 

A very important example is when (X, T   ) is a topological space and T    is its topology.   

Then the -algebra in X generated by  T   is called the Borel measure of X , more precisely it 

is the -algebra in X generated by the open sets of X and the elements in M   are called the 

Borel subsets of X.     

Suppose (X, T   ) and (Y, S   ) are topological spaces.   Suppose  f : (X, T   ) → (Y, S   ) is 

continuous.  Let M   be the  -algebra of all Borel subsets of (X, T   ).   For any U open in (Y, 

S   ) , i.e.,  U    S   ,  1( )f U−  is open in (X, T   ), i.e., 1( )f U−   T   , a fortiori, Borel.  Thus,  f  

is M  -measurable or Borel measurable. 

Definition 9.   Suppose (X, T   ) is a topological space.  A Borel measurable real, or extended 

real, or complex function is called a Borel function. 

We have the following criterion for the measurability of a function. 

Proposition 10.   Suppose (X, M  )  is a measure space  and  :f X Y→  is a function. 

(1)   ={ E  Y :  f −1(E)   M   } is a -algebra.  

(2)  If  Y is a topological space,  f  is measurable and E  Y is a Borel subset of Y, then f −1(E)  

 M   . 
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(3) If  Y =  , then if ( )1 ( , ]f a−    M    for any a , then  f  is measurable.  

Proof. 

(1)   (i)  As 1( )f Y X− =   M    ,  Y   .  

        (ii)  If  A   , then 1 1 1 1( ) ( ) ( ) ( )f Y A f Y f A X f A− − − −− = − = −   M    since 1( )f A−   

M    .   Therefore,  Y A−   . 

        (iii)   If nA   for n =1 ,2, … , then  
1 1

1 1

( )n n
n n

f A f A
 

− −

= =

 
= 

 
  M    , since each 

1( )nf A−
  M    and  M    is a -algebra.  Therefore,  

1
n

n

A


=

  .   

Hence  is a -algebra.  

(2)   Define  as in part (1).  Since  f  is measurable,  contains all open subsets of  Y.  Since 

by part (1)  is a -algebra and contains all open subsets of Y, it contains all Borel subsets of 

Y.  Hence  f -1(E)   M   . 

(3)   Let    ={ E   :  f -1(E)   M   }.  Then by part (1) is a -algebra and contains all 

open subsets of .    Thus for any open subset U of ,   f -1(U)   M   .  By hypothesis,  

( , ]a    for any a in .   Now 
1

1
[ , ) ,

c

n

a a
n



=

 
− = −  

 
    since each 

1
,

c

a
n

 
−  

 
 is in 

 and  is a -algebra.   Therefore, for any a b  in , the open interval   

( , ) [ , ) ( , ]a b b a= −    .  It follows that  contains all open intervals and so it contains 

all open sets in .   Hence, f is measurable.   

 

Limit operations 

Definition 11.  Suppose ( )na  is a sequence in  , where na  .   Then 

 ( )sup ,na  is a monotonic decreasing sequence and so tends to a limit in  .   Call the 

limit of this sequence, which is the infimum of   ( )sup ,na , the limit superior of ( )na  and 

is denoted by limsup n
n

a
→

 or simply limsup na .  That is, 

                 1limsup lim sup , , limsup , 0,1,2,n n n n p
n n p

a a a a p+ +
→ →

= = =  . 
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 ( )inf ,na   is a monotonic increasing sequence and so tends to a limit in  .   Call the 

limit of this sequence, which is the supremum of   ( )inf ,na , the limit inferior of ( )na  and 

is denoted by lim inf n
n

a
→

  or simply liminf na .  That is, 

                  1liminf lim inf , , liminf , 0,1,2,n n n n p
n n p

a a a a p+ +
→ →

= = = . 

Note that limsup na  and liminf na may be  . 

Theorem 12.   The sequence ( )na  converges in  if and only if limsup na = liminf na . 

Suppose there are infinite number of na  such that na = + . Then limsup na  = +∞ .   If ( )na  

converges, then plainly it cannot converge to a finite value or −∞.  This means that if it 

converges, it must tend to +∞.  This implies that   ( )inf ,na  is not bounded above and so 

liminf na  = + ∞ .   

Similarly, suppose there are infinite number of na  such that na = − .  Then liminf na  = − ∞ 

.  If ( )na  converges, it must converge to −∞.  Consequently,  ( )sup ,na  is not bounded 

below and so limsup na  = − ∞.   Therefore, limsup na = liminf na  = − ∞.     

Thus, we are left with the case that there are only finite number of na that assumes the value 

∞ or −∞.  Thus, we may assume without loss of generality that ( )na  .  

The conclusion of the theorem now is Theorem 2 of All About Lim Sup and Lim Inf.  The 

proof is given there. 

 

Suppose  ( ):nf X →  is a sequence of extended real valued functions.  Define   

sup :n
n

f X →  by    sup ( ) sup ( )n n
n n

f x f x
 

= 
 

  for  x X , 

limsup :nf X →   by  ( )limsup ( ) limsup ( )n n
n

f x f x
→

= for x in X, 

liminf :nf X →  by  ( )liminf ( ) liminf ( )n n
n

f x f x
→

= for x in X, 

lim :nf X →  by ( )lim ( ) lim ( )n n
n

f x f x
→

= for x in X. 

If  lim :nf X →  exists, i.e., lim ( )n
n

f x
→

exists for every x in X, then we say lim fn is the 

pointwise limit of the sequence ( )nf . 
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Note that if  ( ):nf X →   is a sequence of extended real valued functions, then  

limsup :nf X →   and liminf :nf X →  always exist and may take the value  .  (Here, 

we include   as limit.) 

Likewise, if ( ):nf X +→  is a sequence of extended non-negative real-valued functions, 

then  limsup :nf X +→ and liminf :nf X +→  always exist and may take the value + .  

(Here, we include +  as limit.) 

 

Proposition 13.  Suppose (X, M  ) is a measure space and ( ):nf X → is a sequence of 

measurable extended real valued functions.  Then sup n
n

g f=   and limsup nh f=  are 

measurable.  Indeed, inf n
n

f   and liminf nf  are also measurable. 

Proof.   By Proposition 10 part (3), we need only show that 1(( , ])g a−   is measurable for any 

a in .  Observe that ( )1 1

1

(( , ]) ( , ]n
n

g a f a


− −

=

 =   since ( )1 ( , ]nf a−     M   for each integer 

n ≥ 1.   Hence g is measurable.   Note that for any function :k X → ,  

( ( )( )1 1([ , ]) ,
c

k a k a− −− =  , ( ) ( ( )( )1 1( , ] ,
c

k a k a− − = −   and as M   is a -algebra, 

( ( )1 ,k a−    M    if, and only if, 1([ , ])k a− −   M   .  If  inf n
n

g f=  , then 

( )1 1

1

(( , ]) ( , ]n
n

g a f a


− −

=

− = −   M    for any a in .   Therefore, inf n
n

f  is measurable. 

Hence, 
0

limsup inf supn n p
n p

f f +


 
=  

 
  is measurable.  Similarly, ( )

0
liminf sup infn n p

pn

f f +


=  is 

measurable. 

 

Corollary 14.   (1)  The pointwise limit of a sequence of measurable (real or complex) 

functions is measurable. 

(2)  If , :f g X →   are measurable, then max {f, g} and min {f, g} are measurable.   In 

particular, max{ ,0}f f+ =  and  max{ ,0} min ,0f f f− = − = −  are measurable. 

Note that by proposition 13, The pointwise limit of a sequence of measurable real functions is 

measurable.  Since a complex function is measurable if, and only, its real and imaginary parts 

are measurable.  It follows that the pointwise limit of a sequence of measurable complex 

functions is measurable.   
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We next consider a class of easier to visualize measurable functions, namely, the simple 

functions.  These are used to investigate measurable functions as well as to develop a theory 

of integration as we shall see in the next few sections. 

Simple Functions 

Definition 15.  Suppose X is a non-empty set.  Then a simple function on X is a non-negative 

real valued function, :s X +→ , whose range consists of finite set of points in + .  

Likewise, we say a complex function on X is simple if its range consists of finite set of points 

in .  A real valued simple function on X is a function :s X → , whose range consists of 

finite set of points in .  For now, as we shall define the Lebesgue integral on non-negative 

functions, all simple functions are assumed to be non-negative unless otherwise stated.  We 

may specify that the simple function is non-negative whenever we wish to emphasize that the 

result stated is only for non-negative simple function.  

If 1 2 nX A A A=     is a disjoint union such that 
iA is =  for i =1, …, n, where the 'si  

are distinct, then 
1

i

n

i A

i

s  
=

=   is a simple function (real or complex) and all simple function 

is of this form. 

A trivial example is :[0,1]s +→ , given by
0 if ,

( )
1,   otherwise

x
s x


= 


.  The function s is a simple 

function. 

If (X, M  ) is a measure space, then the real or complex simple function s is measurable if, and 

only if, all Ai are measurable, i.e., Ai  M  .  The collection of real valued simple functions 

forms a real vector space or a linear space.  The collection of complex simple functions forms 

a complex vector space. 

The restriction of the range of s to +  is purely technical as we shall first consider integrating 

non-negative functions  f  and then extend to complex function  f  by writing  

( ) ( ) ( ) ( )Re Im Re Re Im Imf f i f f f i f i f
+ − + −

= + = − + −  , where ( ) ( )Re  and Ref f
+ −

 

and ( ) ( )Im  and Imf f
+ −

 are respectively the positive and negative parts of Re f and Im f 

respectively. 

 

Theorem 16.  Let (X, M  ) be a measure space and :f X +→  is a non-negative measurable 

function.  Then there exists a monotone increasing sequence of (non-negative) measurable 

simple functions ( )ns  converging pointwise to  f.  If  f is bounded, then ( )ns  converges 

uniformly to  f  . 
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Proof. 

We construct the sequence ( )ns  as follows.  For each integer n ≥ 1, divide the interval [0, n] 

into 2nn   sub-intervals of length 
1

2n
. 

Let 1

,

1
,

2 2
n i n n

i i
E f −  −  

=  
  

 ,  1,2, , 2ni n=  ,  ( )1 [ , )nF f n−=   and  
,

2

1

1

2

n

n i n

n

n E Fn
i

i
s n 

=

−
= +  

. 

Since  f  is measurable, the sets ,n iE  and nF  are measurable. 

Note that , 1, 1, 1n i n j n jE E E+ + +=   , where 
1

1 1

2 2n n

j i
+

− −
=  or 2 1j i= − .   On the set ,n iE , 1( )ns x+  

takes on the value 
1

1 1

2 2n n

j i
+

− −
=  when x is in 1,n jE +  and  the value 

1

1

2 2n n

j i
+

−
  when x is in 

1, 1n jE + + .   Observe also that   

            ( ) ( )  )( )  )( )1 1 1 1

1[ , ) [ 1, ) , 1 , 1n nF f n f n f n n F f n n− − − −

+=  = +   + =  +  

and  )( )  1 1 1

1,, 1 : 2 1 to ( 1)2n n

n if n n E i n n− + +

++ = = + + . 

Thus, on the set 1nF + , 1( )ns x+  takes on the value n +1 when x is in 1,n jE +  and on the set 

 )( )1 , 1f n n− + , 1( )ns x+ takes on values n , when ( )ns x  is defined and is equal to n. 

Therefore, 1n ns s+   . 

Since ( )f x    , take an integer N such that N > f (x), then for all n ≥ N, 1( )ns x N+   and so 

the sequence is pointwise convergence.  Moreover, for each integer n > f (x), f (x) lies in 

1
,

2 2n n

i i− 


 
 for some i such that 1 2ni n   and so ( ) ( )ns x f x .   Furthermore, 

1
( ) ( )

2
n n

s x f x − . Hence lim ( ) ( )n
n

s x f x
→

=  . 

Now, suppose  f  is bounded such that 0 f K   and K ≥ 1. 

First of all, note that nF =  for all integer n ≥ K.  For any integer n > K, 

1

,

1
,

2 2
n i n n

i i
E f −  −  

= =  
  

  if  2 1 2n nK i n+   . 
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This means for 0 f K  , we effectively partition the interval [0, K] into 2n K sub-intervals 

each of length 
1

2n
. 

Observe that since ( )f x K , for any integer N ≥ K, N > f (x) for all x, and so for all n ≥ N, 

1( )ns x N+  for all x and so the sequence is uniformly bounded.  Moreover, for each integer n 

≥ N,  f (x) lies in 
1

,
2 2n n

i i− 


 
 for some  i  such that 1 2ni n   so that, 

1
( ) ( )

2
n n

s x f x −  for all 

x.  Hence, for all n ≥ N and for all x,
1

( ) ( ) ( )
2

n n
f x s x f x  − .  This means that ( )ns  

converges uniformly to  f  . 

 

Definition 17. Suppose (X, M  ) is a measure space, i.e., X is a non-empty set and M   is a -

algebra on X .  A function  : M  →  is countably additive, if for any countable collection of 

disjoint sets,  nA , of M  ,  we have that ( )
1 1

n n
n n

A A 


= =

 
= 

 
 . The function  is finitely 

additive, if for any finite collection  
1

k

i i
A

=
 of disjoint sets of M  , then ( )

1 1

kk

i i
i i

A A 
= =

 
= 

 
 .   

A positive measure  on M   is a countably additive function  : M  → +  mapping the -

algebra M  into the extended positive real numbers, a real measure on M  is a countably 

additive function  : M  →  mapping the -algebra M  into the real numbers and a complex 

measure on M  is a countably additive function : M  →  mapping the -algebra M  into the 

complex numbers.  Hence, a real measure is a complex measure but a positive measure is not 

necessarily a real measure nor a complex measure.  For a positive measure , we shall 

assume that for at least one A in M  , ( )A   , otherwise,  is a trivial positive measure 

taking only ∞ as its value.    

 

If M   is an algebra of sets, then a finitely additive set function on M    is also called a content, 

it is a real content, if it is real valued, a positive content, if its range is + , a complex content 

if it is complex valued. 

 

Suppose (X, T   ) is a topological space and T    is its topology.   Let M    be the -algebra of 

Borel subsets of X, i.e.,   M     is the collection of Borel measurable sets in X.  Then a measure 

defined on M   is called the Borel measure of X. It is a real Borel measure, if it is real-valued, 



13 

 

a positive Borel measure, if its range is + , a complex Borel measure, if it is complex 

valued. 

Suppose   is a positive measure.  Then since ( ) ( ) ( ) ( )A A A   =  = +   for some A 

with ( )A   , ( ) 0  = .  For a real or complex measure, plainly ( ) 0  = . 

Positive Measures.  

Proposition 18.   Suppose (X, M  ) is a measure space and  : M  → +  is a positive measure 

on (X, M  ) .  Then 

(1)    is monotonic, i.e., if A B  and A, B  M  , then ( ) ( )A B  ; 

(2)   is continuous from below, i.e., if  1 2A A    ,  An  M    for all integer n ≥ 1, with 

1n nA A +  and  
1

n
n

A A


=

=  , then ( )( ) lim n
n

A A 
→

=  or  ( ) ( )nA A →   and 

(3)   is continuous from above,  i.e., if  1 2 nA A A      ,  An  M    for all integer n 

≥ 1, with 1n nA A + and for some integer i, ( )iA    and 
1

n
n

A A


=

=  , then ( )( ) lim n
n

A A 
→

=  

or  ( ) ( )nA A → . 

Proof. 

(1)  Suppose A B  and A, B  M  .  Now ( )B A B A=  −  a disjoint union.  Therefore, 

( ) ( ) ( ) ( )B A B A A   = + −   as ( ) 0B A −  . 

(2)  Let 1 1B A=  , 2 2 1B A A= −  ,  … , 1n n nB A A −= −  , ….  . 

Then 1 2n nA B B B=     a disjoint union.  Therefore, by additivity,  

                  ( ) ( )
1

n

n i

i

A B 
=

=   . 

Moreover, 
1 1

n n
n n

A A B
 

= =

= =  is a countable disjoint union of sets in  M  .   Hence, by countable 

additivity, ( ) ( )
1

i

i

A B 


=

=  .   It follows that ( ) ( ) ( )
1 1

( )
n

n i i

i i

A B B A   


= =

= → =  . 

(3)  We may suppose without loss of generality that 1( )A   .  Otherwise, if ( )iA   , 

we may just re-index the Ai’s to start with Ai as A1 and discard the previous Ai’s . 
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Let 
1n nC A A= −  for n ≥ 1.  Then obviously,  1 2 3 nC C C C      , i.e.,  

1n nC C + .  

Note that ( ) 1 1( ) ( ) ( )n nC A A A   = −      and  
1 1

1 1
n n

n n

C A A A A
 

= =

= − = − .  Therefore, by 

part (2),  ( ) 1 1 1( ) ( ) ( ) ( ) ( )n nC A A A A A A     = − → − = − .  It follows that  ( ) ( )nA A →

. 

Examples.  1.  Unit mass concentrated at x0, x0 X, X is a non-empty set. 

( ) 1A =  if  
0x A  , otherwise ( ) 0A = . 

2.  Counting measure. 

 X is a non-empty set.  
number of points in  if  is finite,

( )
,  otherwise

A A
A


= 


 . 

3.  Restriction of a measure. 

Suppose (X, M  ) is a measure space and  E  M   .  Suppose  is a positive measure on M   . 

Then the function E  : M   → +  defined by ( ) ( )E A A E =  for  A  M    is also a positive 

measure.   Indeed, if we let M  E  =  {AE: A M   }, then M  E  is a -algebra on E with M  E  

M    and the restriction of   to M  E  is a positive measure on M  E . 

 

Remark.   The condition that for some integer i, ( )iA   in part (3) of Proposition 18 is 

necessary.  We have the following example.  Let  1,2,3,X =  be the set of positive 

integers.  Let M    be the collection of all subsets of X and  : M   → +  be the counting 

measure.  For each integer n ≥ 1, let  , 1, 2,nA n n n= + + .  Then for each integer n  ≥ 1, 

1n nA A +  , i.e., 1 2A A  .  Note that 
1

n
n

A A


=

= =    and so ( ) 0A = .  But ( )nA =   

for each integer n ≥ 1 and so ( )nA  cannot converge to ( )A  . 

 

Integration of Non-negative Functions 

Definition 19.  Suppose (X, M  ) is a measure space and  E  M   .   Let  : M   → +  be a 

positive measure on X.   Let  
1

i

n

i A

i

s  
=

=   be a (non-negative) measurable simple function on 

X.   Define 

                            ( )
1

n

i i
E

i

sd A E  
=

=  . 



15 

 

If  :f X +→  is a measurable function, i.e., a M   - measurable function, then  

      sup :  is a measurable simple function and 0
E E

f d s d s s f =           

is called the Lebesgue integral of f over E.   

We may omit the word “Lebesgue”, write  
E

f   for 
E

f d  when no confusion arises. 

Plainly, the definition of the integral includes the definition of the integral for the measurable 

simple function. 

We have the following obvious properties. 

Properties 20.  Suppose E is a measurable set in  M  . 

(1)  If0 f g   are measurable functions, then 
E E

f g   . 

(2)   If 0f   is measurable and 1 2E E are measurable, then 
1 2E E

f f  . 

(3)   If 0f   is measurable and c + , then ( )
E E

c f c f=  . 

(4)   If  f (x) = 0 for all x in E, then 0
E

f = , even by convention when ( )E =   . 

       (By convention for multiplication in  , 0 0 =  .) 

(5)  If  ( ) 0E =  , then 0
E

f = , even by convention when ( )f x =   for all x in E. 

(6)   If 0f   is measurable, then 
E

E X
f d f d  =  .   (We could have started 

with the definition of the integral of  f  over X and use this to define the integral 

of f over E.)  

In the sequel, by a measure we shall always mean a positive measure unless 

otherwise stated. 

Proposition 21.  Suppose (X, M  ) is a measure space.   Let  : M   → +  be a positive 

measure on X.   Suppose s is a (non-negative) measurable simple function on X.  For E  M  , 

define 

                          ( )
E

E s d =  . 

Then   is a positive measure on X. 

Proof. 
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Suppose 
1

i

n

i A

i

s  
=

=   is a non-negative measurable simple function on X.  We must show 

that  is countably additive and non-trivial, i.e, not identically equal to ∞. 

Suppose  
1i i

C


=
 is a countable collection of pairwise disjoint sets in the -algebra M  .  Let 

1
k

k

C C


=

=   .  Then  

              ( )
1

( )
n

i i
C

i

C s d A C   
=

= =    by definition of 
C

s d ,  

                        
1 1

( )
n

i i k

i k

A C 


= =

 
=   

 
   by countably additivity of   , 

                        
1 1

( )
n

i i k

k i

A C 


= =

 
=  

 
   by rearrangement 

                        ( )
1 1k

k
C

k k

s d C 
 

= =

= =  . 

It follows that  is countably additive.  Moreover, by definition, ( ) 0  =  and so  is not 

identically equal to ∞. 

 

The next result says that Lebesgue integration is linear on the collection of non-negative 

measurable simple functions. 

Proposition 22.  Suppose (X, M  ) is a measure space and s and t are two (non-negative) 

measurable simple functions on X.  Then s + t is a measurable function.  Suppose  : M   →

+  is a positive measure on X.   Then 

                           ( )
X X X

s t d s d t d  + = +    . 

Proof.    Suppose 
1

i

n

i A

i

s  
=

=   and 
1

i

m

i B

i

t  
=

=  .   Let  ,i j i jD A B=   , 1  i  n, 1  j  m.  

Then s, t and s + t are constant on ,i jD .  Let , ,i j i jE X D=   for 1  i  n, 1  j  m.   

Then  ( ) ( ) ( )
,

, ,( )
i j

s t i j i j i j
E

E s t d D    + = + = +  and                      

( ) ( )
, ,

, ,
i j i j

i i j j i j
E E

s d t d D D     + = +   . 

Thus ( ) ( ) ( ), , ,s t i j s i j t i jE E E  + = + . 
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Next observe that X is a disjoint union of ,i jE , i.e., 
,

1 ,1

i j

i n j m

X E
   

= .   Therefore, by 

Proposition 21,  ( ) ( ) ( ) ( ), , ,

1 ,1 1 ,1 1 ,1

s t s t i j s i j t i j

i n j m i n j m i n j m

X E E E   + +

           

= = +     

                                        ( ) ( )s tX X = +  . 

Thus,  ( )
X X X

s t d s d t d  + = +    follows. 

 

The basic convergence theorem is the Monotone Convergence Theorem.  From this we 

deduce other convergence theorems and results. 

 

Theorem 23. Lebesgue Monotone Convergence Theorem. 

Suppose (X, M  ) is a measure space and ( )nf  is an increasing sequence of non-negative 

measurable functions on X tending pointwise to a function  f .  Suppose  : M   → +  is a 

positive measure on X.   Then 

                                           
n

X X
f d f d   . 

Remarks.  

We elaborate the hypothesis of this theorem. 

First of all, we have 

(1)    1 20 ( ) ( )f x f x     , for all x in X. 

(2)    Since ( )( )nf x  is an increasing sequence in +  , it tends to a limit, f (x), which may be 

∞ . 

(3)  Since f  is the pointwise limit of a sequence of measurable functions, by Corollary 14, f  

is measurable.  Note that plainly, f is non-negative and so 
X

f d  is defined. 

Proof of Theorem 23. 

Since 1n nf f +  , for integer n ≥ 1,  
1n n

X X
f f +  ,  the sequence ( )n

X
f  is an increasing 

sequence in +  and so it converges to some limit  + .  Moreover, nf f  for each 

integer n ≥ 1 and so 
n

X X
f f  .   It follows that 

X
f    .   If  = +  , then 

X
f = +

and so 
n

X X
f d f d   .   
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Now we assume that   + .      We shall now proceed to show that  
X

f    . 

Let s be a measurable simple function with 0 s f   .   Take a real number c such that 0 < c 

< 1.  Define for each integer n ≥ 1,  : ( ) ( )n nE x f x cs x=  .  Then for xX, either  f (x) = 0 , 

in which case, ( ) 0nf x =  for all n ≥ 1 and s(x) = 0 so that nx E  for all n ≥ 1, or   f (x) > 0, in 

which case, ( ) ( )cs x f x  and as ( ) ( )nf x f x , there exists an integer N such that n ≥ N 

implies that ( ) ( ) ( )ncs x f x f x   and so nx E  for  n ≥ N .  

Note that as ( )nf  is an increasing sequence, 1n nE E +  for n ≥ 1 and so by the above 

argument,  
1

n
n

X E


=

=  .   It follows that  

                 ( )
n n n

n n s n
X E E E

f d f d cs d c s d c E      = =    ,  ------------------  (*) 

where  ( )s
E

E s d =  .  By Proposition 21,  s  is a positive measure.  By Proposition 18 

part (2), s  is continuous from below and so 

                            
1

( ) ( )s n s n s
Xn

c E c E c X c s d   


=

 
→ = = 

 
 . 

Therefore, it follows from (*) that 
X

c s d    for any c with 0 < c < 1.  It follows that 

X
s d   .  This is true for any measurable simple function with 0 s f  .  As       

                sup :  is a measurable simple function and 0
X X

f d s d s s f =    , 

X
f d   . 

This completes the proof of Theorem 23. 

 

Next, in the following proposition, we show that the Lebesgue integral is linear on non-

negative measurable functions. 

Proposition 24.  Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure 

on X. If  , :f g X +→  are measurable, then ( )
X X X

f g d f d g d  + = +   . 

Proof.   Since f and g are measurable, by Theorem 16, there are two monotone increasing 

sequences of (non-negative) measurable simple functions, ( )ns   and ( )nt  such that ns f  

and nt g  .  Then ( )n ns t f g+ + . Therefore, by the Lebesgue Monotone Convergence 
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Theorem (Theorem 23), ( ) ( )n n
X X

s t d f g d + +  .   But by Proposition 22, for each 

integer n ≥ 1, ( )n n n n
X X X

s t d s d t d  + = +    and by the Lebesgue Monotone 

Convergence Theorem, 
n n

X X X X
s d t d f d g d   + +    .  Therefore, 

( )
X X X

f g d f d g d  + = +   . 

 

An immediate corollary is: 

Corollary 25.  If 1 2, , , :nf f f X +→  are measurable, then  

                  ( )1 2 1 2n n
X X X X

f f f d f d f d f d   + + + = + + +    . 

 

Theorem 26.  Suppose  1 2, , , , :nf f f X +→  are measurable functions.   Then  

                          
1 1

n n
X X

n n

f d f d 
 

= =

 
= 

 
   .  

Proof.   By the Lebesgue Monotone Convergence Theorem (Theorem 23),  

                      
1 1

n

k k
X X

k k

f d f d 


= =

   
   
   
   . 

By Corollary 25, 
1 1

n n

k k
X X

k k

f d f d 
= =

 
= 

 
   ,  and so  

1 1

n n
X X

n n

f d f d 
 

= =

 
= 

 
   . 

 

The next theorem is an important and very useful result about the integral of lim inf of a 

sequence of non-negative measurable functions.  This theorem is usually known as Fatou’s 

Lemma. 

Theorem 27.  Fatou’s Lemma. 

Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure on X. 

Suppose  1 2, , , , :nf f f X +→  are measurable functions.   Then 

                      liminf liminfn n
X X

f d f d   . 
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Before we give the proof, we give an example to illustrate this theorem. 

Example.  We suppose that we have already constructed Lebesgue measure  on the unit 

interval [0, 1].  It is, of course, a positive measure. 

For odd integer n ≥ 1, let  1
2

[0, ]nf =   and  for even integer n ≥ 2, let 1
2

( ,1]nf =  . 

Then ( )liminf ( ) 0nf x = .   Therefore, 
[0,1]

liminf 0nf d = .  For odd integer n ≥ 1,  

( )1
2

1
2[0, ][0,1] [0,1]

1
[0, ]

2
nf d d   = = =   , and for even n ≥ 2,  

( )1
2

1
2( ,1][0,1] [0,1]

1
( ,1]

2
nf d d   = = =   .  It follows that 

1
liminf

2
n

X
f d =  .   Indeed 

[0,1]

1
liminf 0 liminf

2
n n

X
f d f d =  =   . 

Since we have not constructed the Lebesgue measure, for X = [0, 1], we may take the -

algebra M   ={ X, Ø, 1
2

[0, ] , 1
2

( ,1] } and the positive measure on M   , to be given by ( ) 0  =  

, ( )[0,1] 1 =  , ( )1
2

1
[0, ]

2
 =   and ( )1

2

1
( ,1]

2
 =  . 

 

Proof of Theorem 27. 

For each integer n ≥ 1, let    1
0

( ) inf ( ), ( ), inf ( )n n n n k
k

g x f x f x f x+ +


= = .  Then ( ) ( )n kg x f x   

for all x in X and for all k ≥ n.    By Proposition 13, ng  is measurable.   Moreover, 

1( ) ( )n ng x g x+  for all x in X so that ( )ng  is a monotone increasing sequence of measurable 

functions and  liminf limn n
n n

f g
→ →

= .  Therefore, by the Lebesgue Monotone Convergence 

Theorem (Theorem 23),  

                                ( )liminfn n
X X n

g d f d 
→  . 

But   
n k

X X
g d f d    for all k ≥ n and so  1inf , ,n n n

X X X
g d f d f d  +   .  Hence  

 ( )1lim lim inf , , liminfn n n n
X X X Xn n n

g d f d f d f d   +
→ → →

 =    .  It follows that  

                         ( )liminf liminfn n
X Xn n

f d f d 
→ →

  . 
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Proposition 28.  Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure 

on X.  Suppose :f X +→  is measurable.   Define for each E in M  , ( )
E

E f d =  .  Then 

  is a positive measure on M   and for any M  -measurable function :g X +→ , 

                                       
X X

g d g f d =    .  

Proof.  Plainly,  ( ) 0f d 


 = = .  (See Properties 20 (5) ). Clearly   is mon-negative.    

Now we show that   is countably additive.  Suppose   
1i i

E


=
 is a countable collection of 

pairwise disjoint sets in the -algebra M  .  Let 
1

i
i

E E


=

= .   Note that as the sets in the 

collection,  
1i i

E


=
 , are pairwise disjoint, 

1
iE E

i

f f 


=

=   .   Therefore, 

   
1

( )
iE E

E X X
i

E f d f d f d     


=

 
= = =  

 
      

            
1

iE
X

i

f d 


=

=  , by Theorem 26, 

                                      since 
iE f  is measurable and non-negative for each i ≥ 1,  

           ( )
1

i

i

E


=

=  . 

It follows that   is countably additive.   

Suppose that g is a measurable function.  Then there is a monotone sequence of (non-

negative) measurable simple functions ( )ns  such that ns g .  Suppose 
1

i

n

i A

i

s  
=

=  is a 

measurable simple function.  Then 

        ( )
1 1 1

i
i

n n n

i i i i A
X A X

i i i

s d A f d f d       
= = =

= = =       

                    
1 1

i i

n n

i A i A
X X X

i i

f d f d s f d      
= =

 
= = = 

 
    . 

Hence, 
n n

X X
s d s f d =   for each integer n ≥ 1.  As ns g , ns f g f .   Therefore, by 

the Lebesgue Monotone Convergence Theorem (Theorem 23), 
n

X X
s d g d    and that 

n n
X X X

s d s f d g f d  =    .  Hence, 
X X

g d g f d =  . 
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 Integration of Complex Functions With Respect To Positive Measure 

 Definition 29. 

Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure on X.   Suppose 

:f X →   is a measurable function.  We say  f  is Lebesgue integrable or summable on X if 

                      
X

f d     . 

This makes sense since max{ ,0}f f+ =  and  max{ ,0} min ,0f f f− = − = −  are 

measurable.  As  f f f+ −= +   and that when ( )f x+ =  , ( ) 0f x− =  and when ( )f x− =    

( ) 0f x+ =  so that the sum f f+ −+   is always meaningful in + .  Using this fact, we can show 

that f f f+ −+ =   is measurable. 

We now consider real valued measurable function :f X → .   Likewise, we say  f  is 

Lebesgue integrable or summable on X if 

                      
X

f d     . 

Note that if we let 
1([0, ))E f −

+ =   and ( )1 ( ,0)E f −

− = − , then  and E E+ −  are measurable 

and E Ef f f 
+ −

= + .  

Let 1( , )L X   be the set of all Lebesgue integrable real valued measurable functions on X.  

Thus, if 1( , )f L X  ,   f f f+ −= +   is measurable and ( )
X

f f d + −+    so that 

X
f d +    and 

X
f d −   .  Hence, a measurable real valued function f  is Lebesgue 

integrable if and only if  
X

f d +    and 
X

f d −   .  Define the Lebesgue integral of  f,   

X
f d  , by 

                                  
X X X

f d f d f d  + −= −    . 

Obviously, this is well defined as 
X X

f d f d + −−  −    .  

Proposition 30.   1( , )L X   is a real vector space and the Lebesgue integration 

1: ( , )
X

L X  →  is a real linear functional. 
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Proof.  If 1, ( , )f g L X   and ,    , then by Corollary 4, f g +  is measurable.  

Moreover, f g f g   +  +  so that by Properties 20 (1) and (3), 

           
X X X X X

f g d f d g d f d g d          +  + = +       . 

Thus,  1( , )f g L X  +  .  Hence, 1( , )L X   is a real vector space. 

We shall now show that Lebesgue integration is linear on 1( , )L X  . 

Observe that ( ) ( )f g f g f g f g f g+ + − −+ −
+ = + − + = + − −  so that 

                ( ) ( )f g f g f g f g− − + ++ −
+ + + = + + + . 

Therefore,  

( )( ) ( )
X X X X

f g f g d f g d f d g d   − − − −+ +
+ + + = + + +       

( )( ) ( )
X X X X

f g f g d f g d f d g d   − − + ++ −
= + + + = + + +    . 

Hence,   

( ) ( )
X X X X X X

f g d f g d f d g d f d g d     + + − −+ −
+ − + = + − +        

                                                   
X X

f d g d = +  . 

This means ( )
X X X

f g d f d g d  + = +   . 

Take any  ≥ 0, then ( )f f  ++
=  and ( )f f  −−

=  .   Therefore, 

             ( ) ( ) ( )
X X X X X X

f d f d f d f d f d f d           + −+ −
= − = − =      . 

Suppose  < 0.  Then − > 0 and so ( )
X X

f d f d   − = −  . 

Now 
X X

f d f d − = −   because  ( ) max ,0f f f+ −− = − =   and  ( ) max ,0f f f− +− = =  . 

Therefore,  ( ) ( )
X X X

f d f d f d     − = − = −    and so ( )
X X

f d f d   =  .  This 

shows that the Lebesgue integral is a real linear functional. 

Now, we consider measurable complex function on X.   Suppose :f X →  is measurable.  

Then by Corollary 5, Re f and Im f are measurable.  By Corollary 7, f   is measurable.  We 

say a measurable complex function f  is Lebesgue integrable, if 
X

f d    .  Note that 
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Re , Imf f f  and Re Imf f f +  .  It follows that f  is Lebesgue integrable if and 

only if Re f and Im f  are Lebesgue integrable.  We define 

                             Re Im
X X X

f d f d i f d  = +   . 

Let 1( , , )L X   be the collection of all Lebesgue integrable measurable complex functions on 

X.   

Then we have, 

Proposition 31.   1( , , )L X   is a complex vector space and the Lebesgue integration  

1: ( , , )
X

L X  →  is a complex linear functional. 

Proof.   

If  1, ( , , )f g L X   and ,     , then by Corollary 4, f g +  is measurable.    

Now 
X X X X X

f g d f d g d f d g d          +  + = +       .  Hence,  

f g +  is Lebesgue integrable.  Therefore, 1( , , )L X  is a complex vector space. 

For 1, ( , , )f g L X  ,   

( ) ( ) ( )Re Im
X X X

f g d f g d i f g d  + = + + +     

                      ( ) ( )Re Re Im Im
X X

f g d i f g d = + + +     

                      ( )Re Re Im Im
X X X X

f d g d i f d g d   = + + +    , by Proposition 30, 

                      
X X

f d g d = +  . 

Take any   .   Then for  1( , , )f L X  ,  

( )( ) ( )Re Im Re Im Re Re Im Im Re Im Im Ref i f i f f f i f f      = + + = − + + . 

Therefore,  

( ) ( )Re Re Im Im Re Im Im Re
X X X

f d f f d i f f d       = − + +       

( )Re Re Im Im Re Im Im Re
X X X X

f d f d i f d f d       = − + +    ,  

                            by Proposition 30, 
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( )( )Re Im Re Im
X X

i f d i f d   = + +     

X
f d =  . 

This proves that the Lebesgue integral is a complex linear functional on  1( , , )L X  . 

Proposition 32.   If  1( , , )f L X  or 1( , )f L X    then 
X X

f d f d    . 

Proof.  Suppose 1( , , )f L X  .  Let i

X
f d re  =  , where 

X
r f d=   and 

arg
X

f d =  . 

Therefore, ( ) ( ) ( )Re Imi i i i

X X X X X
f d r e f d e f d e f d i e f d       − − − −= = = = +     . 

Since i

X
e f d r − =  is real, ( )Im 0i

X
e f d − =  and ( )Re i

X X
f d e f d −=  . 

It follows that  
X X

f d f d    as ( )Re ie f f−  .  

Suppose 1( , )f L X  .  If 0
X

f d = , then we have nothing to prove.  Suppose  

0
X

f d  , then 
X X X

f d f d f d  =    .  If 0
X

f d  , 

X X X
f d f d f d  = −    . It follows that 

X X
f d f d   . 

 

 Now for  1( , , )f L X   or 1( , )f L X  , we can define 
,1 X

f f d


=  .  Then   

1( , , )L X   and 1( , )L X   are almost a normed linear space.   In order that this definition 

gives rise to a norm, we have to take equivalence classes of functions in 1( , , )L X   or 

1( , )L X  .  We say  f  = g almost everywhere, if there exists a measurable subset N such that 

( ) 0N =  and ( ) ( )f x g x=  for all x not in N.  Thus, if we take the equivalence classes of 

almost everywhere equal functions, then the above definition 
,1 X

f f d


=   gives a norm 

on equivalence classes of almost everywhere equal measurable functions in 1( , , )L X   and 

1( , )L X  .  This norm induced a metric on the equivalence classes and with this metric the 

equivalence classes of almost everywhere equal measurable functions in 1( , , )L X   and 

1( , )L X   are complete metric spaces, which are also called Banach spaces.  (See Theorem 11, 

Convex Function, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem.) 
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Theorem 33.  Lebesgue Dominated Convergence Theorem. 

Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure on X.    

Suppose ( ):nf X →  is a sequence of M  - measurable functions on X and nf f→  

pointwise on X.   Suppose further that there exists a Lebesgue integrable function 

: [0, ]g X →   such that nf g  for all integer n ≥ 1.  Then, 
1, ( , , )nf f L X  and 

n
X X

f d f d →  .  Even more is true, 0n
X

f f d− → . 

Proof.   Since  nf g  and nf f→  pointwise on X,  f g .   By Corollary 14 part (1), f is 

measurable.  As g is Lebesgue integrable and nf g , nf  is Lebesgue integrable for all 

integer n ≥ 1.  For the same reason, f  is Lebesgue integrable.  That is to say, 
1, ( , , )nf f L X  . 

Note that for each integer n ≥ 1, 2n nf f f f g−  +   and so 2 0ng f f− −   for all 

integer n ≥ 1.  We may now apply Fatou’s Lemma (Theorem 27).  Note that 

2 2ng f f g− − →  pointwise on X.  Therefore, ( )liminf 2 2n
n

g f f g
→

− − =  and by Fatou’s 

Lemma, 

             ( ) ( )2 liminf 2 2 liminfn n
X X X Xn n

g d g f f d gd f f d   
→ →

 − − = + − −      

But by Proposition 10, All About Lim Sup And Lim Inf,   

                             ( )liminf limsupn n
X Xn n

f f d f f d 
→ →

− − = − −  . 

Therefore, 

                        2 2 limsup n
X X Xn

g d gd f f d  
→

 − −    . 

This implies that limsup 0n
Xn

f f d
→

−  .   But limsup 0n
Xn

f f d
→

−  .  Hence, 

                                       limsup 0n
Xn

f f d
→

− = .    

It follows that liminf limsup 0n n
X Xn n

f f d f f d 
→ →

− = − =    . 

Therefore, lim 0n
Xn

f f d
→

− = .  

By Proposition 32,  ( )0 n n
X X

f f d f f d  −  −  .  Therefore, by the Squeeze Theorem,  
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( ) 0n
X

f f d− → .  It follows that ( )n n
X X X X

f d f d f f d f d   = + − →    . 

 

Remark.   

We may replace the convergence of  
nf  by  nf f→  pointwise almost everywhere on X and 

that nf g  for all integer n ≥ 1 except on a set of measure zero. We explain this below. 

Suppose there exists a M  - measurable subset  A such that (A) = 0  and ( ) ( )nf x f x→  for all 

x not in A.  Suppose that there exists a M  - measurable subset B such that (B) = 0 and  

( ) ( )nf x g x for integer n ≥ 1 and for all x not in B.  Let N A B=   and ( )
c

E A B=  .  

Then ( ) 0N = and E is M  - measurable.   It follows by Theorem 33, that  and nf f  are 

Lebesgue integrable over E and hence over X in some sense since cE N=  is of measure zero.  

We elaborate on this below.  By Theorem 33, we have that 
n

E E
f d f d →  and so       

                       
n n n n

X E N E E
f d f d f d f d f d    = + = →     . 

As ( ) 0N = , we may ignore the behaviour of the function over N, we may arbitrarily set the 

meaning of the integral over a set of measure zero to be zero, even though the function may 

not be measurable over the null set and hence may not actually be  integrable over X.  Thus, 

we may set 
X E N E

f d f d f d f d   = + =     and   

                             
n n n

X E N
f f d f f d f f d  − = − + −     

so that 0n n n n
X E N E

f f d f f d f f d f f d   − = − + − = − →    . 

We may legitimately do this if we simply take the integral over the completion    of the 

measure  .   

Note that the restriction of  nf   to E,  
n E

f   converges pointwise to a measurable function h 

on E.   Therefore, since E is measurable, h is measurable on E.  This means that for any open 

set, U,  in  or , 1 1( ) ( )f U E h U− − =  is  measurable but it is not necessary that  1( )f U−  

is measurable as 1( ) cf U E A B−     and 1( ) cf U E−   need not be measurable.  If the 

measure space (X, M  ) is  - complete, then 1( ) cf U E−  is measurable, so that 1( )f U−  is 

measurable.  Hence, if the measure space (X, M  ) is  - complete, then we may conclude that 

the almost everywhere limit function,  f  , is measurable.  Note that here, we have used the 

meaning of the integral 
X

f d  to be 
E

f d  since cE  is of measure zero. Similarly, for the 
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other integral, 
n

X
f f d−  is to be understood as 

n
E

f f d−  and of course, 
N

f d  and 

n
N

f f d−  are to be taken as zero. 

To state the corresponding conclusion in Theorem 33 for ( ):nf X →  a sequence of M  - 

measurable functions on X  converging almost everywhere pointwise to f  on X , it is 

customary to assume that  f  is -measurable so that the integral, 
X

f d , is defined. 

If we are just interested in the limit of the integral, 
n

X
f d ,  we may define a function   

:h X →  by  
lim ( ),

( )
0,

n En

c

f x x E
h x

x E

→
 

= 


 .  Then h is  - measurable and h = f  almost 

everywhere on X and 
n

X X
f d hd →  .  We may not conclude that f is  -measurable and 

integrable with respect to the measure  .  Of course, if the measure  is complete, then f  is 

-measurable and 
X X

f d hd =  . 

In view of the above remark, we may state the following variation of the Dominated 

Convergence Theorem: 

Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure on X.    

Suppose ( ):nf X →  is a sequence of M  - measurable functions on X and nf f→  

pointwise almost everywhere on X.   Suppose further that there exists a Lebesgue integrable 

function : [0, ]g X →   such that ( ) ( )nf x g x  for almost all x in X and for all integer n ≥ 1.  

Then, 
1( , , )nf L X   and there exists 1( , , )h L X   such that  f = h almost everywhere on 

X , with respect to , 
n

X X
f d hd →   and 0n

X
f h d− →  . 

 

Corollary 34.  Suppose (X, M  ) is a measure space and  : M   → +  is a positive measure on 

X.  Suppose ( ):nf X →  is a sequence of M  - measurable functions on X  such that                            

1

n
X

n

f d


=

  . 

Then  
1

n

n

f


=

   converges except perhaps on the points of some set contained in some set of -

measure zero, N , and if we define f  by 1

( ),  if 
( )

0, if 

c

k

k

f x x N
f x

x N



=




= 
 


 , then 
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1

n
X X

n

f d f d 


=

=   .  

Proof.    By hypothesis, each  nf   is Lebesgue integrable over X.   Consider the function 

1

n

n

g f


=

=  .  Then g is a function into +  .   Since each nf  is measurable, g is measurable.  

By Theorem 26, 
1 1

n n
X X X

n n

g d f d f d  
 

= =

 
= =   

 
    .   This implies that g is 

Lebesgue integrable on X, i.e, 1( , , )g L X  , and that if we let 

1{ : ( ) } ([0, ))G x X g x g−=    =  , then G is M  - measurable and ( ) 0cG = .  Let cN G= .   

This means 
1

( )n

n

f x


=

  converges absolutely on G.    Since ( ) 0cG = , 
1

( )n

n

f x


=

  converges 

almost everywhere on X.    We define 

                         1

( ),  if ,
( )

0,   if 

n

n

c

f x x G
f x

x G N



=




= 
  =


 . 

Then  f  is measurable and 
1

( )
n

k

k

f x
=

  converges pointwise to f (x) for x in G.    Now 

1 1

( ) ( )
n n

k k

k k

f x f x g
= =

    and  g is Lebesgue integrabe implies that  
1

( )
n

k

k

f x
=

  is Lebesgue 

integrable on X , hence on G.  Therefore, by the Lebesgue Dominated Convergence Theorem 

(Theorem 33),  

              
1

n

k
G G

k

f d f d 
=

 
→ 

 
  . 

Hence  
1

n

k
G G

k

f d f d 
=

→  .  Thus  
1

k
G G

k

f d f d 


=

=   .   As ( ) 0cG = , it follows that

1

n
X X

n

f d f d 


=

=   . 

 

Set of Measure Zero And The Completion of A Measure 

If P is some property of points of a measure space (X, M  ) and  is a positive measure on X,   

(for example,  “ 
1

( )n

n

f x


=

  converges ” ) and if  {x : not P(x) } is contained in some set of -

measure zero, then we say that the property P holds almost everywhere with respect to  on 
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X,  abbreviated a. e. [].  We may simply say that P holds almost everywhere on X when the 

measure   is understood to have been given. 

Examples. 

1.  In the previous Corollary,  
1

( )n

n

f x


=

  converges absolutely almost everywhere on X. 

2.  If , :f g X →  are two complex functions and if  : ( ) ( )x f x g x  is contained in a set 

of measure zero, then f  and g are equal a.e. [].  Note that the relation “equal a.e. []” is an 

equivalence relation on the collection of all complex functions on X.  Moreover, if   f = g  a.e. 

[], then 
X X

f d g d =  ,  the integrals either both exist or both do not exist.  The 

behaviour of functions on set of measure zero is not noticed by the integral. 

3. It may happen (though rarely in practice) that A  M  , (A) =0 and B  A but B  M  .  

However, we would like (B) = 0. 

Example.  X = [0,1],  M  ={ Ø, X, [0,1], (1,2] }. ( )( ) (1,2] 0  = = , ( )[0,1] ( ) 1X = = .  So 

( )(1,2] 0 =  but no proper subset of (1,2] is M  - measurable.   

If the behaviour of (3) above does not happen, then we say the measure  is complete.   

 

The triplet (X, M  ,  ), where (X, M  ) is a measure space and  :  M   → +  is a positive 

measure on the -algebra, is also called a measure space, where we specifically specify the 

measure function . 

 

Proposition 35.  Suppose (X, M  ,  ) is a measure space.  Let  

       M  * ={ E  X : there exists A, B  M  , such that A  E  B and ( ) 0B A − = }. 

Define for E in M  *, *( ) *( ) *( ) ( )E A B A   = = = .  Then M  * is a -algebra,  * is a 

(positive) measure on M  * and the measure space (X, M * , *) is complete.  We call the 

triplet (X, M * , *) the  - completion of M   . 

Proof. 

(1)  M  * is a -algebra. 

(i) Plainly, X  M  *. 

(ii) If E  M  *, then there exists A, B  M  , such that A  E  B and ( ) 0B A − = .  Hence, 
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      Bc  Ec  Ac and ( ) ( ) 0c cA B B A − = − = .  Therefore, Ec  M  *. 

(iii) If  1{ }n nE 

=  is a countable collection of sets in M  *, then for each integer n ≥ 1, there 

exists An , Bn  M  , such that An  En  Bn and  (Bn – An) = 0.  Hence, 

                             
1 1 1

n n n
n n n

A E B
  

= = =

  . 

Since M   is a -algebra, 
1 1

  and n n
n n

A B
 

= =

 are in M   .    Note that  

                ( ) ( )
1 1 1 1

0n n n n n n
n n n n

B A B A B A  
  

= = = =

   
−  −  − =   

   
 .  

The last inequality is by the -sub-additive of . 

Hence 
1 1

0n n
n n

B A
 

= =

 
− = 

 
 and so 

1
n

n

E


=

  M  *. 

Therefore, M  * is a -algebra. 

(2) * is well defined on M  *. 

Let  E  M  *.  

Suppose we have Ai , Bi  M  ,  such that Ai  E  Bi and ( ) 0i iB A − = for i =1, 2.   

Then 1 2 2A A B A−  −  and since 2 2( ) 0B A − = , 1 2( ) 0A A − = .  Similarly, we get 

2 1( ) 0A A − = . 

Therefore,  

           ( ) ( )( ) ( ) ( ) ( )1 1 2 1 2 1 2 1 2 1 2( )A A A A A A A A A A A    =   − =  + − =       

                     ( ) ( )1 2 2 1 2( )A A A A A  =  + − = . 

Therefore,  *(E) is independent of the choice of A, B  M  , such that A  E  B and 

( ) 0B A − = .   

(3) * is a positive measure on M  *. 

Plainly, *(Ø) = 0.  We now show that * is -additive. 

Suppose 1{ }n nE 

=  is a countable collection of pairwise disjoint sets in M  *.   Then for each 

integer n ≥ 1, there exists An , Bn  M  , such that An  En  Bn and  (Bn – An) = 0.  Since the 
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collection 1{ }n nE 

= is pairwise disjoint, 1{ }n nA 

=  is a countable collection of disjoint sets in M  .  

We have shown that  
1 1 1

n n n
n n n

A E B
  

= = =

   and 
1 1

0n n
n n

B A
 

= =

 
− = 

 
.  Therefore, 

                      ( )
1 1 1

* n n n
n n n

E A A  
 

= = =

   
= =   

   
 , by the -additivity of  , 

                                        ( )
1

* n

n

E


=

=  . 

This proves that  * is -additive and so it is a positive measure. 

 

If  M   = M  *, then we say the -algebra is -complete. 

 

We have made use of the -sub-additivity of the measure . 

We state the result below. 

Lemma 36. Any positive measure,  , on a -algebra M   is -sub-additive. 

Proof. 

Suppose  
1n n

C


=
 is a countable collection of sets in the -algebra M  .   

Let 
1

n
n

C C


=

=  , 1 1H C=  , 2 2 1H C C= −  and for integer n ≥ 2, 
1

1

n

n n k
k

H C C
−

=

= −  .  Then for 

integer n ≥ 1, n nH C , 
1 1

n n
n n

C H
 

= =

=  and the collection  
1n n

H


=
 is pairwise disjoint.  Note 

that each Hn  M   .  Therefore, by -additivity or countable additivity,  

                    ( ) ( )
1 1 1 1

n n n n
n n n n

C H H C   
  

= = = =

   
= =    

   
  .  

This shows that  is -sub-additive. 

Proposition 37.   Suppose (X, M  ,  ) is a measure space with -completion, (X, M  * , * ). 

Let  f  be a M  * - measurable real or complex function on X.  ( f might not be M   - 

measurable.)  Then there exists a M   - measurable function g such that f = g a.e. []. 

Proof.   
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(1)  We prove first for the characteristic function of members of M  * .  Suppose E  M  *, and 

A, B  M  , such that A  E  B and ( ) 0B A − = .  For  Ef =  , take Ag = .  Therefore, f 

(x) = g (x) except possibility for x in B – A which is of -measure zero. 

Hence, f = g a.e. []. 

(2) Hence, for M *-measurable simple function, f , which is a finite linear combination of 

characteristic functions, there exists a M -measurable simple function g such that  f = g a.e. 

[].  We elaborate this as follows.   

Suppose 
1

i

n

i E

i

s  
=

=   is a M *-measurable simple functions.  We may assume that Ei’s are 

disjoint sets in M *.  Then take Ai , Bi  M  , such that Ai  Ei  Bi and  (Bi – Ai) = 0, i = 

1,…, n.   Let 
1

i

n

i A

i

g  
=

=  .  Then s = g a.e. [] since ( )
1

0
n

i i
i

B A
=

 
− = 

 
.  

(3)  Suppose f  is a non-negative M * - measurable function from X into + .  By Theorem16, 

there exists a monotone increasing sequence of non-negative M * - measurable simple 

functions ( )ns  converging pointwise to  f.  By (2) above, there exists a monotone increasing 

sequence of non-negative M  - measurable simple functions ( )nt  such that n ns t=  a.e. [].  

Therefore, ( )nt  converges pointwise to a M  - measurable function g.  Since union of 

countable number of sets of -measure 0 is also of -measure 0, g = f  a.e. []. 

(4) Suppose f  is a real M * - measurable function from X into .  Then write f f f+ −= −  .  

By part (3), there exists non-negative real M  - measurable functions k and h such that 

k = f+  a.e. [] and h = f−  a.e. [] .  Thus, g =  k − h = f   a.e. [] .   

Suppose  f  is a complex M * - measurable function.  Then  f  = Re f + i Im f  and  Re f and    

Im f  are  real M * - measurable functions.  By what we have just proven, there exists real M  - 

measurable functions g1  and g2 such that  Re f+ = g1  a.e. [] and Im f+ = g2  a.e. [].  Then    

g  = g1 +i g2 is a complex M  - measurable function and  f  = g a.e. []. 

This completes the proof. 

Remark. Thus, in view of the above proposition, we may ignore the behaviour of functions 

on sets of measure zero.     

1.  We may extend the definition of measurability of a function f :X → Y to mean “there 

exists a set E  X such that ( ) 0cE = and 1( )f U E−    M   ,  So  f  may be badly behaved 

and not even defined on Ec .    
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2.  Corollary to Lebesgue Dominated Convergence Theorem.   Suppose ( ):nf X →  is a 

sequence of complex M  - measurable functions on X  such that  
1

n
X

n

f d


=

  .   Then  

1

( )n

n

f x


=

 converges for almost all x with respect to  and      

                                     
1 1

n n
X X

n n

f d f d 
 

= =

 
= 

 
   . 

The function 
1

( )n

n

f x


=

 may not be defined on some set of -measure zero. 

Proposition 38.  Suppose (X, M  ,  ) is a measure space  and  : M   → +  is a positive 

measure on X.  Suppose 1( , , )f L X   or 1 1( , , ) ( , )f L X L X  = .   

(1)  If  E  M    and 0
E

f d = , then f = 0 a.e. [ ] on E. 

(2) If for all E  M   ,, 0
E

f d = , then  f = 0 a.e. [ ] on X. 

Proof.   

Proof of part (1) 

(1) We shall prove first for non-negative function f  in 1( , )L X  .    

Take E  M  .  For each integer n ≥ 1, let  
1

: ( )nA x E f x
n

 
=   

 
 .  Then An  M   and 

                           ( )
1 1

n n
n

E E A A
f d f d f d d A

n n
    =   =    . 

As  0
E

f d = , ( ) 0nA = .   Since  
1

: ( ) 0 n
n

x E f x A


=

  = ,   

                                ( ) ( )
1 1

: ( ) 0 0n n
n n

x E f x A A  


= =

 
  =  = 

 
 . 

Therefore,  ( ): ( ) 0 0x E f x   = .   Hence, f = 0 a.e. [ ] on E. 

(2)  Suppose f  is in 1( , )L X  .  Then f  is real valued.   Write f  as  f f+ −−  so that 

f f f+ −= +  .   Then   and f f+ −  are both Lebesgue integrable.  Moreover 0
E

f d =
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implies that 0
E

f d+ =  and 0
E

f d− = .   It follows by (1),   f +  , f −  = 0 a.e. [ ] on E.   

Hence, f  =f + −  f −  = 0 a.e. [] on E. 

Suppose 1( , , )f L X  .   Then Re Imf f i f= +  and  Re  and Imf f  are Lebesgue 

integral.  Moreover as Re , Im 0
E E E

f d f d f d   =   , Re Im 0
E E

f d f d = =  . 

It follows from (2) that Re f ,  Im  f  = 0 a.e. [ ] on E.   Hence,  Re Im 0f f i f= + =  a.e. [ 

] on E. 

Proof of part (2) 

Suppose  f  is real valued, i.e., 1 1( , , ) ( , )f L X L X  = .  Write f f f+ −= −  .   Let 

 : ( ) 0E x X f x+=   .  Then 0
E E

f d f d += =   implies by part (1) that 0f+ =  a.e. [ ] 

on E.   It then follows that 0f+ =  a.e. [ ] on X.   Similarly, we show that 0f− = a.e. [ ] on 

X.    Therefore,  0f f f+ −= − =  a.e. [ ] on X.   

Suppose now 1( , , )f L X  .  Then write Re Imf f i f= +  .   For all E  M  ,, 0
E

f d =  

implies that for all E  M   , Re Im 0
E E

f d f d = =  .  Hence by what we have just 

proven, Re , Im 0f f =  a.e. [ ] on X .   Therefore, Re Im 0f f i f= + =  a.e. [ ] on X. 

 

The advantage of having a complete measure space is evident in the following proposition. 

Proposition 39.  Suppose (X, M ,  ) is a complete measure space.  That is, M   is a -algebra , 

 : M   → +  is a positive measure on M  , and  M   is -complete.  Let E  X be a M   - 

measurable subset of X.  Suppose , :f g E →  are any two extended real valued functions 

which are equal almost everywhere with respect to  on E.  Then  f  is M  -measurable on E  

if, and only if, g  is M  -measurable on E. 

Proof.   By hypothesis, there exists D  M   such that f  = g on E−D and (D) = 0.  Let  

 : ( ) ( )H x E f x g x=   .  Then H   D.  Since M   is -complete and (D) = 0, we have H 

 M   and (H) = 0.     

Suppose  f  is M  -measurable.  Then by Proposition 10, for any a , ( )1 ( , ]f a−   M  .  

Consider ( )1 ( , ]g a H−   .  Since ( )( )1 ( , ] 0g a H −   =  and M   is -complete, 

( )1 ( , ]g a H−    M  .  Now ( ) ( )( ) ( ) ( )( )1 1 1( , ] ( , ] ( , ]g a E g a H g a E H− − −  =      − .  
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Now, E and H  are M  -measurable implies that E−H is also  M  -measurable.  Observe that   

( ) ( ) ( ) ( )1 1( , ] ( , ]g a E H f a E H− −  − =   −  M   .    Therefore, ( )1 ( , ]g a E−    M  .  

Hence, by Proposition 10, g is M  -measurable on E.   

We can show similarly, that if g is M  -measurable, then  f  is M  -measurable. 

 

Suppose (X, T   ) is a topological space.  Suppose (X, M  ,  )  is a measure space, where M  

contains all the Borel subsets of X and  is a positive measure on M  .  Let E  M  .  An 

extended real valued function :f E →  is said to be continuous a.e. [] on E if, and only if, 

there exists a M  -measurable subset D  E such that f  is continuous on E−D and (D) = 0. 

Proposition 40.  Suppose (X, T   ) is a topological space and (X, M  ,  ) is a -complete 

measure space, where M   contains B , the collection of  all the Borel subsets of X and  is a 

positive measure on M  .  Let E  be a non-empty M  -measurable subset of X . If :f E →  is 

continuous a.e. [] on E, then f  is M  -measurable. 

Proof.  By definition, there exists a M  -measurable subset D  E such that f  is continuous on 

E−D and (D) = 0.  By Proposition 10 (3), it is sufficient to show that for any a in , 
1( , ]f a−   is measurable, i.e., 1( , ]f a−  M  E . 

Let ( ) ( )1 ( , ]x f a E D−   −  .  Then ( )f x a  .  If f (x) = ∞, then by continuity at x, there 

exists an open set xU  containing x such that ( ) ( ( ) ,xf U E D a −   . 

Hence, ( )1( ) ( , ]xx U E D f a−  −   .  If f (x) < ∞, then let 
( )

0
2

f x a


−
=  . By the 

continuity of f at x, there exists an open set xU  containing x such that 

( ) ( )( ) ( ) , ( )xf U E D f x f x  −  − + .  Therefore,    

                  ( ) ( )1 1( ) ( ( ) , ( ) ) ( , ]xx U E D f f x f x f a − −  −  − +   . 

Take 
( )1 ( , ] ( )

x
x f a E D

V U
−   −

=   .  Then ( ) ( ) ( )1 ( , ]f a E D V E D−   − =  − .   It follows that 

                ( ) ( )( ) ( )( )1 1( , ] ( , ]f a V E D f a D− − =  −    . 

Since V is open and M   contains all the Borel subsets of X , V  M    and as E − D  E is M  -

measurable ( )V E D −   M  E .  Since ( )1 ( , ]f a D D−    , (D) = 0 and M   is -

complete, ( )1 ( , ]f a D−     M  E .  It follows that ( )1 ( , ]f a−    M  .  Thus, we have shown 

that for any a , ( )1 ( , ]f a−    M   and so f  is M  -measurable.  
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Suppose (X, M  ,  ) is a measure space, where M   is a -algebra and  is a positive measure,   

Recall the space of Lebesgue integrable functions on X, 1( , , )L X   or 

1 1( , ) ( , , )L X L X = .  We have shown in Proposition 30 and Proposition 31 that 

1 1( , ) ( , , )L X L X = is a real vector space and 1( , , )L X  is a complex vector space.  We 

define the non-negative function 
1,

on the respective vector space by 

                       
1, X

f f d


=    for f   1( , )L X   or 1( , , )L X  . 

Then this function satisfies 

(i) for all f ,  
1,

0f


 ; f = 0  
1,

0f


= , 

(ii) for any scalar   and any f , 
1, 1,

f f
 

 =  and 

(iii) for any  f  and g, 
1, 1, 1,

f g f g
  

+  +  . 

Any function satisfying the analogous conditions to (i), (ii) and (iii) on a vector space is 

called a semi-norm.   

By Proposition 38, 
1,

0f


= implies that f  = 0 a.e. [] .   

Now let  1( , , ) : 0 . . [ ]N f L X f a e =  = .  Then N is a vector subspace of 1( , )L X  . 

Define L   1(X, ) = 1( , ) /L X N  the equivalence classes of almost everywhere equal 

functions in 1( , )L X  .  That is, the equivalence relation on 1( , )L X  is given by f is 

equivalent to g if f = g a.e. [].   L   1(X, ) is again a real vector space with the zero element 

given by the equivalence class of all functions f = 0 a.e. [].   We can extend the definition of 

1,
to L   1(X, ) and it now satisfies, 

(i)  for all f in L   1(X, ), 
1,

0f


 , 
1,

0 0f f


=  = ,  

(ii) for any scalar   and any f  in L   1(X, ), 
1, 1,

f f
 

 =  and 

(iii) for any f  and g in L   1(X, ), 
1, 1, 1,

f g f g
  

+  +  . 

This means that 
1,

is a norm on L   1(X, ).   We can view L   1(X, ) as a metric space by 

giving it the metric associated with this norm, by 
1,

( , )d f g f g


= − .   With this metric,       

L   1(X, ) is a complete metric space, which is called a Banach space.   (See Theorem 11, 

Convex Function, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem.) 
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Similarly, if  L   1(X, , ) = 1( , , ) /L X N , where  1( , , ) : 0 . . [ ]N f L X f a e =  = , 

with the norm given by, for f   L   1(X, , ), 
1, X

f f d


=  , where f is a representative 

of the equivalence class f , L   1(X, , ) is a normed vector space and with the metric 

associated with this norm, it is a Banach space. 

For convenience, when there is no confusion, we often also denote L   1(X, , ) by 
1( , , )L X   and L   1(X, ) by 1( , )L X  . 

This concludes the modest introduction to measure theory.  For follow up on Lp Spaces, see 

my article, Convex Function, Lp Spaces, Space of Continuous Functions, Lusin’s Theorem. 

 


