Introduction To Measure Theory

By Ng Tze Beng

We begin by asking several questions.

Question 1. Let C[0,1] be the collection of all continuous real-valued functions on the unit

interval [0,1]. We endow it with the uniform norm, || /| = sup |/ (#)| for f € C[0,1]. Then
te[0,1]

C[0,1] is a normed vector space. This gives rise to a metric in C[0,1] associated with this
norm. With this metric, C[0,1] is a complete metric space and so is a Banach space. Note
that C[0,1] is a real linear space. Observe that the Riemann integral on C[0,1] is a real linear
functional on C[0,1]. Our question is: What is the conjugate space or space of all real linear

functionals on C[0,1]?

Question 2. Now we give the linear space C[0,1] a different norm,

£ = r@)de for

f €C[0,1]. Then we have the associated metric space C[0,1], where the metric d; is now

given by

d(f.9)=|f ~¢l, = [ lr(-g ]

The linear space C[0,1] with this metric is not complete. There is a general construction,

which gives a Banach space X from a normed linear space X. This is called the completion
of the vector space X. It is the equivalent classes of Cauchy sequences of elements of X.

Can we represent the completion C[0,1] of C[0,1] with the norm given above as a function

space?
Question 3. Then what is the conjugate space or dual of C[0,1]?

Practical Lebesgue integration does everything that Riemann integration does, better and
easier and it does more.

For instance:
One aim of integration is to prove theorems like this,

given some hypothesis on the function f,
d d
— [ fndi=f - fonndr

Theorems like this can be reduced to asking:



If f,—f ,then [f,—>[f?
So we want to prove theorem of the form:
If f, — f insome appropriate sense, then f is integrable (in some appropriate
sense) and I f, = I f (in some appropriate sense).
The basic result for Riemann integration is:

Theorem. If each f, :[a,b] > R is continuous (and therefore Riemann integrable)

and f, — f uniformly on the closed and bounded interval [a,b] (and consequently f

. . . . b b
is continuous and so Riemann integrable), then I f —)I f.

Most theorems on convergence of Riemann integrals are merely elaborations of this.

The basic theorem for Lebesgue integration is:
Theorem. If E is a measurable subset, f, : £ — R" is Lebesgue integrable and
f. /" f (monotonic increasing) pointwise or almost everywhere on E, and if f, is
Lebesgue integrable, then f is Lebesgue integrable and IE /. —)IE f.

m _—t

t n B ) . t n
For example, (1——) — e ' as n—> o0 and so for integer m > 0, ¢ [1——) —>t"e" as

n n
w1 1Y
. t"|1——| ,05¢t<n m ot
n—oo. Forintegern=>1,let f (¢)= n . Then f, (t)—>1t"e
0, t>n

pointwise on [0, ) and the sequence of functions ( £, ) 1s monotonic increasing. It follows

by the above result that I[O )fn (t)dt = jon " (1 —Lj dt —)I[O )t'"e*‘dt .
>0 n ,00

We verify that t"e™" is Lebesgue integrable on [0, o). Observe that for 7> 0,

m
t"e™! :2'”m!L(£j e <2"mlefe <2"mle
m!

Therefore, since 2" m le ™ is non-negative and improperly Riemann integrable on [0, ) and

-t

so is Lebesgue integrable on [0, ), it follows that t"e™" is Lebesgue integrable on [0, ).



n Y n n n n m o
NOW,J " 1—— | dt =m! . . — m!. Therefore, I t"e”'dt =m! .
0 n n+l n+2 n+m n+m+1 [0.)

In the sequel, R denotes the extended real numbers R u{—oo, +oo} . Here we note that many

propositions are often simpler when the extended non-negative real numbers R* =[0,0] is

involved.

Measurable Sets and Functions

Definition 1. Suppose Xis a set. A o-algebra A in X is a collection . / of subsets of X such
that

() Xe.”,

(i) if A €. ,then its complement 4° €., and

Gii)if 4, €./ ,forn=1,2, ..., then UA ./ .

n=1

If . 7 is a o-algebra in X, then X or (X, . /) is called a measure space and the elements of . 7/
are called measurable sets.

If (X,.~) is a measure space and Y is a topological space, a function f: X — Y is said to

be measurable if f~'(U) €./ for any open set U'in Y.
Some Immediate Results and Remarks
(1) Ve.7as X e.7.

(2) If 4,4, € /7, then 4 WA, € / .

3)IfA4 .7, forn=1,2, ..., then N 4° =(U Anj €. /. Therefore,. 7 is also
n=1 n=l1
closed under countable intersection.

(4) IfA,Be .7 ,then A-B €./ since A—B=ANB° .

(5) IfA,Be.7 ,then AAB=AUB—-ANB €./ .

Some Related Definitions

(1) If we replaced (ii1) by (i11)* if 4,4, €./ ,then 4 UA, €. ,then we get an algebra
of sets.



(2) If we drop (i) and replace (ii) by (i))* if 4, B € ./ ,then A—B €./, then ./ isa o-
ring of subsets of X.

(3) If we drop (i) and replace (ii) by (ii)*, (iii) by (ii1)*, then . / is a ring of subsets of X.

Note the following implications.

.7 1s a o-algebra = .7 1s an algebra
U U
.7 1s a o-ring = .7 1s aring

The prefix ‘o’ is always connected somehow with countable sum operations. For example, a

topological space Y'is o-compact if Y = K, and each K, is compact.

n=1
The following is an easy consequence of the definition.

Proposition 2. If Y and Z are two topological spaces and (X, . /) is a measure space and if
f:X —Y ismeasurable and g:Y — Z is continuous, then the composition go f: X - Z

1s measurable.

Just like the case of continuous functions, forming sum and product of measurable functions
is a means of investigating measurable functions from simpler easier defined measurable
functions. That we can do so is because sum and product of measurable functions are
measurable.

The next result is used to prove that sum and product of measurable functions are measurable.

Lemma 3. Suppose (X, . ) is a measure space. Suppose u: X —>R and v: X —>R are

measurable functions. Suppose ®:RxR =R”* —Y is continuous. Define #: X —Y by
h(x) = ®(u(x),v(x)) for x in X. Then /4 is measurable. If X is a topological space and u and v

are continuous, then / is continuous.

Proof. For the last statement concerning continuity, the function I': X - RxR = R?
defined by I'(x) = (u(x), v(x)) for x in X, is continuous since the projections onto each factor

are u and v and are continuous. Therefore, #=® oI is a composition of continuous
functions and so is continuous.

We now show that I': X > RxIR is measurable.



Suppose [1 and I» are open intervals in R . We shall show that T™'(/,x1,) € .7.

(I, xL)=u"'(I,)nv'(I,) .. Thisis because u and v are measurable, u '(/,) and

v''(I,) € .. Hence, for any open rectangle, I'!(open rectangle) is measurable.

Take any open set Uin RxR =R*. Then U is a countable union of open rectangles, say

U= G U, , where each U; is an open rectangle. Therefore, I'(U)=T" (U Ul.j =Ur+(u,)
i=1 i=1 i=1

is a countable union of measurable sets in. / and so isin. 7 as. 7 is a o-algebra. Thus, I"is
measurable. Therefore, by Proposition 2, / is measurable.

Corollary 4. Suppose u,v: X - R or C are measurable, then u + vand u-v are

measurable.

For real valued functions u and v, using the continuous function ®:RxR — R defined by
O(x,y)=x+y or O(x,y)=x-y, it follows from Lemma 3, that u + vand wu-v are

measurable.
For complex functions u and v, we use the following to reduce the argument to the real case.

Corollary 5. The complex function f=u+iv: X - C,whereu=Refandv=Imf, is

measurable if, and only if, both « and v are measurable.

Proof. Since the projection maps, Re: C—R and Im:C — R are continuous, it follows by
Lemma 3, that if /" is measurable, then u and v are measurable.

Suppose u and v are measurable. Define @ : R*> — C by ®(x,y)=x+iy. Then plainly, ®

is continuous. Then by Lemma 3, f(x) = ®(u(x),v(x)) is measurable.

Completion of the proof of Corollary 4.

Suppose u,v: X — C are measurable. Then by Corollary 5, Re(u +v) =Reu+Rev and
Im(u# +v) =Imu + Imv are measurable. Hence u + v are measurable. Now
Re(u-v)=Reu-Rev—Imu-Imv and Im(u-v)=Reu -Imv+Imu-Rev. As
Reu-Rev—Imu-Imv and Reu-Imv+Imu-Rev are measurable, it follows that

Re(u-v) and Im(u-v) are measurable and so u-v is measurable.

An immediate consequence of the definition of measurable function is:

Corollary 6. Suppose (X,. ) is a measure space. If E is subset of X, then the
1, ifxeE,

characteristic function of E, y, , defined by y.(x)= ] , 1s measurable, if and
0, ifxgE

only if, £ is measurable, i.e., £ €. /.



Corollary 7. Suppose (X, . /) is a measure space. A function f: X — R or C is measurable

implies that |f| is measurable.

Proof. Since the modulus function | | :R or C > R is continuous, it follows from

Proposition 2 that | f| is measurable.

A question naturally arises is that, if we have a collection of subsets of X, then can there be a
smallest o-algebra on X that contains this collection? The collection of all subsets of X is the
extreme case it is a o-algebra that contains all o-algebra in X. The next proposition gives the
existence of such a smallest o-algebra.

Proposition 8. Suppose Q2 is a collection of subsets of X. Then there is a smallest o-algebra
.~ in X containing Q.

Proof. Consider the collection of all o-algebras containing 2 . Obviously, this collection is
not empty as it contains the o-algebra of all subsets of X. Then let

A= N Y.

¥ is a o—algebraoQ

This is obviously a o-algebra contained in any o-algebra containing Q and so is the smallest
o-algebra containing Q.

We call this algebra the o-algebra generated by Q .

A very important example is when (X, . /") 1s a topological space and ./ is its topology.
Then the o-algebra in X generated by ./ is called the Borel measure of X , more precisely it

is the o-algebra in X generated by the open sets of X and the elements in . / are called the
Borel subsets of X.

Suppose (X, . /) and (Y, .»/") are topological spaces. Suppose f:(X,./ ) — (¥, ./ )1is
continuous. Let. 7 be the o-algebra of all Borel subsets of (X, .-"). Forany U open in (7,
Y,ie, U e.r, f(U)isopenin(X,. ),ie., f'(U) €./, afortiori, Borel. Thus, f

1s . #/-measurable or Borel measurable.

Definition 9. Suppose (X, . /") is a topological space. A Borel measurable real, or extended
real, or complex function is called a Borel function.

We have the following criterion for the measurability of a function.

Proposition 10. Suppose (X, . /) is a measure space and f: X — Y is a function.
() Q={EcY: fY(E) €./} isa calgebra.

(2) If Yis atopological space, f is measurable and E C Y is a Borel subset of Y, then f~!(E)
e. /.



(3)If Y =R, thenif /™ ((a,»]) €. forany aeRR, then f is measurable.

Proof.
1) (1) As f"(Y)zXe 7, YeQ.

(i) If 4eQ ,then 'Y -A)=f"'X)-f ' (A=X—-f"(4) €. since f'(4) e
./ . Therefore, Y—-AeQ .

(i) If 4 €Q forn=12, ..., then f“(GAnj= Uf™A4) e.r ,since cach

n=1

f7(4,)) €. 7 and . 7 is a c-algebra. Therefore, @1 A4,€Q .

Hence Q is a o-algebra.

(2) Define Q as in part (1). Since f is measurable, Q contains all open subsets of Y. Since
by part (1) Q is a o-algebra and contains all open subsets of Y, it contains all Borel subsets of
Y. Hence fN(E) €. 7.

(3) Let Q={EC R : fYE) e.7}. Thenby part (1) is a c-algebra and contains all
open subsets of R. Thus for any open subset U of R, fW(U) e.7. By hypothesis,

(a,0]eQ foranyain R. Now [-o0,a) = U(a—l,OO} e Q since each (a—l,oo} isin
n=1 n n

Q and Q) is a o-algebra. Therefore, for any a <b in R, the open interval
(a,b) =[—0,b) N (a,o] Q. It follows that Q contains all open intervals and so it contains

all open sets in R . Hence, f1s measurable.

Limit operations

Definition 11. Suppose (a, ) is a sequence in R , where a, € R. Then

(sup {an,---}) 1s a monotonic decreasing sequence and so tends to a limit in R . Call the
limit of this sequence, which is the infimum of (sup{an, = }) , the limit superior of (an) and

is denoted by limsupa, or simply limsupa,. That is,

n—0

limsupa, = }li_rg{sup{an,am,---}} = limsup{an+p,p = 0,1,2,~~-} .

n—o0



(inf {an, X }) is a monotonic increasing sequence and so tends to a limit in R . Call the
limit of this sequence, which is the supremum of (inf {a,, }) , the limit inferior of (a,) and

is denoted by liminf a, or simply liminf a,. That is,

n—0

liminf @, = lim {inf {a,,a

n—>0

-} =liminf {a,, ,, p=0,1,2,--}.

n—w p

n+l>”
Note that limsupa, and liminf @, may be +oo.
Theorem 12. The sequence (a,) converges in R if and only if limsupa, =liminfa, .

Suppose there are infinite number of a, such that a, =+c0. Then limsupa, =+ . If (a,)

converges, then plainly it cannot converge to a finite value or —oo. This means that if it
converges, it must tend to +oo. This implies that (inf {an, o }) is not bounded above and so

liminfa, =+o0.

Similarly, suppose there are infinite number of @, such that @, =—co. Then liminfa, =— o0
CIf (an) converges, it must converge to —co. Consequently, (sup {an, X }) is not bounded

below and so limsupa, =—oo. Therefore, limsupa,=liminf a, = — .

Thus, we are left with the case that there are only finite number of a, that assumes the value

o or —oo. Thus, we may assume without loss of generality that (an) cR.

The conclusion of the theorem now is Theorem 2 of A/l About Lim Sup and Lim Inf. The
proof is given there.

Suppose ( f i X— I@) is a sequence of extended real valued functions. Define

sup £, : X >R by (supfnj(x):sup{fn(x)} for xe X,
limsup f,: X >R by (limsup f,)(x) =limsup f,(x) for x in X,
liminf f, ‘X >R by (liminffn)(x)=liminffn(x) for x in X,

lim f, : X >R by (lim £, ) (x) = lim £, (x) for x in X.

If imf : X SR exists, i.e., lim f, (x)exists for every x in X, then we say lim f, is the

pointwise limit of the sequence (£, ).



Note that if ( [ X > @) is a sequence of extended real valued functions, then
limsup /,: X - R and liminf 7, : X —R always exist and may take the value +oo. (Here,

we include Foo as limit.)

Likewise, if ( [ X > ]R*) is a sequence of extended non-negative real-valued functions,

then limsup f, : X —>R*and liminf [, X SR always exist and may take the value +oo.

(Here, we include +oo as limit.)

Proposition 13. Suppose (X, . /) is a measure space and ( [ X > @) is a sequence of

measurable extended real valued functions. Then g =sup f, and A =limsup f, are

n

measurable. Indeed, inf f, and liminf f, are also measurable.

Proof. By Proposition 10 part (3), we need only show that g~'((a,0]) is measurable for any

ain R. Observe that g~'((a,©]) = [OJ £, ((a,]) € since f,”'((a,]) € ./ for each integer
n=1

n>1. Hence g is measurable. Note that for any function k: X SR,

k™ ([—0,a]) = (k’1 ((a,oo]))c , k7 ((a,0]) = (k’l ((—oo,a]))c and as . / is a o-algebra,

k™' ((a,o|) €. if, and only if, k' ([—w0,a]) €. 7. If g=inf f, ,then
y

n

g ' ((~0,a]) = Lojfn’1 ((—,a]) €. foranyain R. Therefore, inf f, is measurable.
n=1 n

Hence, limsup f, = inf (sup f ”’j is measurable. Similarly, liminf £, :sup(ing fnw) 18
n 20 n p=

measurable.

Corollary 14. (1) The pointwise limit of a sequence of measurable (real or complex)
functions is measurable.

Q) If f,Lg: X —> R are measurable, then max {f, g} and min {f, g} are measurable. In
particular, f, =max{f,0} and f =max{—/,0}=—min{/,0} are measurable.

Note that by proposition 13, The pointwise limit of a sequence of measurable real functions is
measurable. Since a complex function is measurable if, and only, its real and imaginary parts
are measurable. It follows that the pointwise limit of a sequence of measurable complex
functions is measurable.



We next consider a class of easier to visualize measurable functions, namely, the simple
functions. These are used to investigate measurable functions as well as to develop a theory
of integration as we shall see in the next few sections.

Simple Functions

Definition 15. Suppose X is a non-empty set. Then a simple function on X is a non-negative
real valued function, s: X — R", whose range consists of finite set of points in R".
Likewise, we say a complex function on X is simple if its range consists of finite set of points
in C. A real valued simple function on X is a function s: X — R, whose range consists of
finite set of points in R . For now, as we shall define the Lebesgue integral on non-negative
functions, all simple functions are assumed to be non-negative unless otherwise stated. We
may specify that the simple function is non-negative whenever we wish to emphasize that the
result stated is only for non-negative simple function.

If X=4UA4,U---UA, is adisjoint union such that S‘AiZ a, fori=1, ..., n, where the «'s

are distinct, then s = Zai X, 1s asimple function (real or complex) and all simple function

i=1

is of this form.

0if , . L
A trivial example is s:[0,1] > R", given by s(x) = *eQ .. The function s is a simple
1, otherwise

function.

If (X, . 7) is a measure space, then the real or complex simple function s is measurable if, and
only if, all 4; are measurable, i.e., A; € . /. The collection of real valued simple functions
forms a real vector space or a linear space. The collection of complex simple functions forms
a complex vector space.

The restriction of the range of s to R™ is purely technical as we shall first consider integrating
non-negative functions f and then extend to complex function f* by writing

f=Ref+ilmf=(Ref) —(Ref) +i(Imf) —i(Imf) ,where (Re /) and(Ref)
and (Im f )+ and( Im f )_ are respectively the positive and negative parts of Re fand Im f

respectively.

Theorem 16. Let (X, . /) be a measure space and f: X —R" is a non-negative measurable
function. Then there exists a monotone increasing sequence of (non-negative) measurable
simple functions (s,) converging pointwise to f. If fis bounded, then (s,) converges

uniformly to 1.

10



Proof.

We construct the sequence (s,) as follows. For each integer n > 1, divide the interval [0, n]

1
into nx2" sub-intervals of length 7

. . n2" .
Let E,; =7 @12}11,%]] , i=1L2,--,n2" |, F =f_1([n,oo)) and s, :zlz—nl;(Em +nye

i=1

Since f is measurable, the sets £,

1,1

and F, are measurable.

-1 i-1
Note that £, , =E,,, , VE , .., , where sz = > or j=2i—1. Ontheset £, s,.,(x)
j-1 i-1 . Jj -l o
takes on the value ~— = when xisin E ,, . and the value > when x is in
211+ 211 n+l,j n+l 2n
E,. ;.- Observe also that

F= £ ([neo) =/ (n+ 1) 0 £ ([mn+1)) = F 0 /7 ([mn +1))
and /7' ([n.n+1))=U{E,,,, :i=n2""+1to (n+1)2""}.

Thus, on the set F and on the set

n+l >

s,.,(x) takes on the value n +1 when x is in E

n+l,j

f([n.n+1)), s,,,(x)takes on values > 7, when s,(x) is defined and is equal to n.

Therefore, s,,, >, .

n+l =

Since f(x)<oo ,take an integer N such that N> f'(x), then foralln >N, s, (x) < N and so

the sequence is pointwise convergence. Moreover, for each integer n > f'(x), f (x) lies in

{12_”1 ,é] for some 7 such that 1 <7 <n2" and so s, (x)< f(x). Furthermore,
1
s, (%)= f(x) o Hence lims, (x) = f(x) .

Now, suppose f is bounded such that 0< f < K and K> 1.

First of all, note that F, = for all integer n > K. For any integer n > K,

E,=f" ([Z;,éj}@ if 2"K+1<i<n2".

11



This means for 0 < f < K, we effectively partition the interval [0, K] into 2" K sub-intervals

1
each of length o

Observe that since f(x) < K, for any integer N > K, N > f'(x) for all x, and so for all n > N,

s,,,(x) < N for all x and so the sequence is uniformly bounded. Moreover, for each integer n

. _ . 1
>N, f(x)lies in [12_}11,21_”) for some i such that 1<i<n2" sothat, s, (x)= f(x)— o for all

1
x. Hence, for all n > N and for all x, f(x)>s,(x) 2 f(x)— > This means that (s,)

converges uniformly to f .

Definition 17. Suppose (X, . /) is a measure space, i.c., X is a non-empty set and . / is a o~

algebra on X'. A function y:. 7/ SR is countably additive, if for any countable collection of

disjoint sets, {4, }, of . 7, we have that ,u( U A”j =Y u(4,). The function u s finitely
n=1 =1

k k
additive, if for any finite collection {Ai}f_l of disjoint sets of . /, then ,u(U Al.j = z ,u(Al.) .
B =l ]

A positive measure yron . / is a countably additive function . 7/ — R* mapping the o-
algebra . 7 into the extended positive real numbers, a real measure on . /is a countably
additive function z:./7—R mapping the o-algebra . 7 into the real numbers and a complex
measure on . /1s a countably additive function x: . /— C mapping the o-algebra . 7 into the
complex numbers. Hence, a real measure is a complex measure but a positive measure is not
necessarily a real measure nor a complex measure. For a positive measure u, we shall
assume that for at least one 4 in. 7, u(A4) <o, otherwise, x4 is a trivial positive measure

taking only oo as its value.

If. 7 is an algebra of sets, then a finitely additive set function on. /7 is also called a content,

it is a real content, if it is real valued, a positive content, if its range is R™, a complex content
if it is complex valued.

Suppose (X, . /) is a topological space and ./ is its topology. Let. 7 be the o-algebra of
Borel subsets of X, i.e., . is the collection of Borel measurable sets in .X. Then a measure
defined on . / is called the Borel measure of X. It is a real Borel measure, if it is real-valued,

12



a positive Borel measure, if its range is R", a complex Borel measure, if it is complex
valued.

Suppose s a positive measure. Then since p(A4) = u(AV D) = u(A)+ () for some A
with p(A) <o, w(d)=0. For areal or complex measure, plainly u(<J)=0.

Positive Measures.

Proposition 18. Suppose (X, . 7)) is a measure space and g . /' SR sa positive measure
on (X,.~). Then

(1) u is monotonic, i.e.,if Ac B and 4, B €. /7, then u(A) < u(B) ;
(2) pi1s continuous from below, i.e.,if 4 4, <+ , A, €.~ forall integer n > 1, with

A, c4,, and A=U4,  then u(d)=limu(4,) or p(A4,)—>pu(4) and
n=1 n—0

(3) wis continuous from above, i.e.,if 4 204, DDA D+ , An €. forall integer n
> 1, with 4, D 4,,,and for some integer i, u(4,)<c and 4=4
n=l1

|, then u(A)=1lim ,u(An)
or u(A4,)—> u(A).

n—>0

Proof.

(1) Suppose Ac B and 4, B €. 7. Now B=AU(B—A) adisjoint union. Therefore,
H(B) = u(A)+ u(B—A)= u(A) as u(B—-A4)=0.

Q) Let B=A ,B,=A,—4 , ...,B =4 —A4 ... .

n—1 >

Then 4, =B, U B, U---U B, adisjoint union. Therefore, by additivity,

Moreover, 4=U 4, = U B, is a countable disjoint union of sets in . ~. Hence, by countable

n=1 n=1

additivity, u(A4)= iy(Bi) . It follows that x(4,)= iy(Bi) - iy(Bi) = u(A).
j i=1

i=1 i=1

(3) We may suppose without loss of generality that z(4,) <oo. Otherwise, if u(A4)<o,

we may just re-index the 4;’s to start with 4; as 41 and discard the previous 4;’s .

13



Let C,=A4 —A, forn>1. Then obviously, C,cC,cC,c--cC,c- ,ie, C, cC,,,.
Note that 1(C, )= 1(A4)—1(A4,) < pu(4) < and U C =4- N A = A — A. Therefore, by
n=l1 n=1

part (2), p(C,)=u(4)—u(4,) > p(4 —A) = p(4)— p(A) . It follows that 1(4,) —> u(A)

Examples. 1. Unit mass concentrated at xo, xo €X, X is a non-empty set.
u(A)=1if x,e A4, otherwise ©(A4)=0.
2. Counting measure.

number of points in 4 if 4 is finite,

X is a non-empty set. u(A)= )
oo, otherwise

3. Restriction of a measure.

Suppose (X, . #) is a measure space and E € ./ . Suppose i is a positive measure on. // .
Then the function u, :. 7 —>R" defined by p,(A)=u(ANE)for A €. isalso a positive
measure. Indeed, ifwelet. 7g = {ANE: Ae . },then. 7 is a o-algebra on E with. 7/

.~ and the restriction of g to. /g is a positive measure on. 7/ .

Remark. The condition that for some integer i, ,u(A,) <ooin part (3) of Proposition 18 is

necessary. We have the following example. Let X = {1, 2,3, } be the set of positive

integers. Let. 7 be the collection of all subsets of Xand ;. 7 — R* be the counting

measure. For each integer n> 1, let 4, ={n,n+1,n+2,---}. Then for each integer n > 1,

ie, 4 24, >---. Note that 4= ﬁAﬂ = andso u(A)=0. But u(4,)=o0

n=1

4,24

n+l

for each integer n > 1 and so u(4,) cannot converge to x(A4) .

Integration of Non-negative Functions

Definition 19. Suppose (X, . /) is a measure spaceand E €./ . Letu:. /7 >R" bea

n
positive measure on X. Let s= Za[ x, be a(non-negative) measurable simple function on
i=l1

X. Define
J.ESdﬂ:;aiu(Ai NE).
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If 7:X —)IR_+ is a measurable function, i.e., a. / - measurable function, then
IE fdu=sup {J.Es d s 1s a measurable simple function and 0 < s <f' }

is called the Lebesgue integral of f over E.

We may omit the word “Lebesgue”, write IE f for JE f du when no confusion arises.

Plainly, the definition of the integral includes the definition of the integral for the measurable
simple function.

We have the following obvious properties.

Properties 20. Suppose E is a measurable set in . /.

(1) Ifo< f < g are measurable functions, then IE f< J'E g .

(2) If f>0 1s measurable and E, c E, are measurable, then IE f< IE f.

(3) If £>0 is measurable and ¢ e R*, then IE(cf):cIEf.
(4) If f(x)=0 for all x in E, then J'E £ =0, even by convention when u(E)=o .

(By convention for multiplication in R , 0x0=0 .)

(5) If w(E)=0 ,then L =0, even by convention when f(x)=o for all x in E.

(6) If >0 is measurable, then IE fdu= _[X x:fdu. (We could have started

with the definition of the integral of f over X and use this to define the integral
of fover E.)

In the sequel, by a measure we shall always mean a positive measure unless
otherwise stated.

Proposition 21. Suppose (X, . /) is a measure space. Let y:. 7 SR bea positive
measure on X. Suppose s is a (non-negative) measurable simple function on X. For E € . 7,
define

wE)=|, sdu.

Then ¢ is a positive measure on X.

Proof.

15



Suppose s = Z a, ¥, 1s anon-negative measurable simple function on X. We must show
i=1

that ¢ is countably additive and non-trivial, i.e, not identically equal to .

Suppose {Ci},: is a countable collection of pairwise disjoint sets in the o-algebra. /. Let

C=UC, . Then

p(C) = _[Csd,u = [Z:ai,u(Ai mC) by definition of _[Csdy ,

= Z a, x (z (A NC k)J by countably additivity of 1,
i=1 k=1

= Z(Za (A NC )j by rearrangement
k=1

Il
M8

j :kz‘:ﬁﬂ(ck)

k=1

It follows that ¢ is countably additive. Moreover, by definition, (&) =0 and so ¢ is not
identically equal to co.

The next result says that Lebesgue integration is linear on the collection of non-negative
measurable simple functions.

Proposition 22. Suppose (X, . /) is a measure space and s and ¢ are two (non-negative)
measurable simple functions on X. Then s + ¢ is a measurable function. Suppose y:. 7 —

R" is a positive measure on X. Then

IX(s+t)dﬂ:J-Xsdy+thdy .

Proof. Suppose S=Zai;(Ai andt=z,8i;53i. Let D ;=4 NB, ,1<i<n, 1<j<m.

i=1 i=1

Then s, fand s + ¢t are constanton D, ;. Let £, , =X ND, , for1<i<n, 1<j<m.

Then (pm g J. (s+t)d,u (a+,b’) ( 1]) and

J.Ew sdy+J.Eu tdu= al.y(Dl.’j)+ﬁjy(Di,j) .
Thus ¢, (E,;) =0, (E,;)+,(E,,).

16



Next observe that X is a disjoint union of £, ;,i.e., X = U E . Therefore, by

I<i<n,I<j<m

Proposition 21, ¢, (X)= > (oM(E'l.,j): > Q;(Ei,_,-)+ > (pt(E”)

1<i<n,l<j<m 1<i<n,I<j<m 1<i<n,1<j<m
=g (X)+g¢,(X) .

Thus, [ (s+0)du=[ sdu+| tdu follows.

The basic convergence theorem is the Monotone Convergence Theorem. From this we
deduce other convergence theorems and results.

Theorem 23. Lebesgue Monotone Convergence Theorem.

Suppose (X, . /) is a measure space and ( fn) is an increasing sequence of non-negative

measurable functions on X tending pointwise to a function f. Suppose £:. 7 ->R" isa
positive measure on X. Then

J 42 du

Remarks.

We elaborate the hypothesis of this theorem.

First of all, we have

(1) 0<f(x)<f,(x)<--<o0o,forallxinX.

(2) Since ( f (x)) 1S an increasing sequence in R* , 1t tends to a limit, f(x), which may be
o0 .,

(3) Since f is the pointwise limit of a sequence of measurable functions, by Corollary 14, f

is measurable. Note that plainly, fis non-negative and so IX fdu is defined.
Proof of Theorem 23.

Since f, < f,,, ,forintegern=>1, IX [, < fX /... » the sequence (.[X fn) 1s an increasing

sequence in R" and so it converges to some limit « € R* . Moreover, f, < f* for each

integer n > 1 and so _[an SIXf. ItfollowsthataSIXf. If o =+00 , then IXf:+oo
and so J.and,u/'J‘de,u.

17



Now we assume that ¢ <+w.  We shall now proceed to show that o > IX f.

Let s be a measurable simple function with 0 <s < f . Take a real number c such that 0 <c¢
< 1. Define for each integern>1, E = {x f(x)2 cs(x)} . Then for xeX, either f(x)=0,
in which case, f,(x)=0 forall »>1 and s(x) =0sothat xe £, foralln>1,0r f(x)>0,in
which case, cs(x) < f(x) and as f,(x) ./ f(x), there exists an integer N such that n > N
implies that cs(x) < f, (x)< f(x) andsoxe E, for n>N.

Note that as ( f”) is an increasing sequence, £ c— E | for n > 1 and so by the above

argument, X =U E, . It follows that

n=1

[ fduz jEf dp > IE csdp :CJE"Sd” =c@,(E,), - (*)

where ¢ (E)= IEsd 4. By Proposition 21, ¢, is a positive measure. By Proposition 18

part (2), ¢, 1s continuous from below and so
cp (E)— cop, (U]En): cp,(X) =cIXsdy.

Therefore, it follows from (*) that o > ¢ Lsd u for any ¢ with 0 <c¢ <1. It follows that

a> J.Xsd 4 . This is true for any measurable simple function with 0<s < f'. As
IX fdp=sup {IXS d ;s is a measurable simple function and 0 < s <f } ,

aszfdy.

This completes the proof of Theorem 23.

Next, in the following proposition, we show that the Lebesgue integral is linear on non-
negative measurable functions.

Proposition 24. Suppose (X, . /) is a measure space and u:. 7/ SR isa positive measure

on X. If f,g:X—)I@ are measurable, then IX(f+g)dy:ijdy+Ingy.

Proof. Since fand g are measurable, by Theorem 16, there are two monotone increasing

sequences of (non-negative) measurable simple functions, (Sn) and (tn) such that s,/ f

and ¢, /g . Then (s,+t,).”" f +g. Therefore, by the Lebesgue Monotone Convergence

18



Theorem (Theorem 23), IX(Sn +t)du IX (f+g)du. Butby Proposition 22, for each
integer n > 1, .[X(S” +1,)dp= IXsnd,u +JX t du and by the Lebesgue Monotone
Convergence Theorem, IX s.du+ IX tdu/ jX fdu+ IX gdu. Therefore,

[[(f+e)du=[ fdu+| gdu.

An immediate corollary is:

Corollary 25. If f,, f,,---, f, : X —)IR_+ are measurable, then

.[X(fl+f2+"'+f")dﬂ:_[xfld'u+_[){f2dﬂ"'"""_[and/l~

Theorem 26. Suppose f,,f,, -, f,, =1 X —>R" are measurable functions. Then

L(gﬂjdwihﬁ du.

n=1

Proof. By the Lebesgue Monotone Convergence Theorem (Theorem 23),

J.X(gfkjdﬂ/lj‘)((gfk)dﬂ_

By Corollary 25, jX(ifk]dyzinfk du, and so jx(if”jdyzijxfn du.

n=1

The next theorem is an important and very useful result about the integral of lim inf of a
sequence of non-negative measurable functions. This theorem is usually known as Fatou’s
Lemma.

Theorem 27. Fatou’s Lemma.
Suppose (X, . 7)) is a measure space and p:. 7/ SR isa positive measure on X.

Suppose f,, fo, 0 [t X %@ are measurable functions. Then

[ timinf £, dy <liminf [ _f,du.
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Before we give the proof, we give an example to illustrate this theorem.

Example. We suppose that we have already constructed Lebesgue measure x on the unit
interval [0, 1]. It is, of course, a positive measure.

For odd integern > 1, let f, = X0 and for even integer n >2, let f = X -
Then (liminf £, )(x)=0. Therefore, I[O 1]liminf f.,du=0. For odd integer n > 1,

I[o,l]f" d’u - J.[O,l] Z[O,%] d'u - u([O, %]) =~ ,and forevenn =2,

N |— N

1
J.[O,l]f;' du= J.[O,I]Z(Ii’l] du=p((,1])== . It follows that liminf J.an du= 5 Indeed

. . |
J‘[O’uhmlnffn d,u:OShmmeAan dﬂ=§ .

Since we have not constructed the Lebesgue measure, for X = [0, 1], we may take the o~
algebra. 7 ={ X, 0, [0,%] , (5,1] } and the positive measure on ./, to be given by u(J)=0

(0. =1, w(0.4]) =5 and (k1) = .

Proof of Theorem 27.

For each integer n> 1, let g, (x) =inf { /,(x), f,,,(x),---} = inf {fo:x(X)}. Then g, (x)< f,(x)
for all x in X and for all k> n. By Proposition 13, g is measurable. Moreover,
g,(x)<g,,,(x) forall x in Xso that (g, ) is a monotone increasing sequence of measurable

functions and liminf f, =lim g, . Therefore, by the Lebesgue Monotone Convergence

Theorem (Theorem 23),

_[Xgndﬂ/‘J.X(lir}giBfﬂ)du_

But J‘Xgnd,uSJ‘kady for all k> n and so J.XgndySinf{J.Xﬁld,u,J-XfMdy,---}. Hence

lim [ g, du< lim(inf{J.X fodws[ o d,u,---}) =liminf | £, du. It follows that

n—>0 n—>0 n—>0

jX(liranigfﬂ)dﬂ <liminf Ian du.
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Proposition 28. Suppose (X, . /) is a measure space and p:. 7/ SR isa positive measure

on X. Suppose f: X —>R" is measurable. Define for each £ in . 7, p(E)= IEfdy. Then

@ 1s a positive measure on . ~ and for any . /-measurable function g: X — R* ,
Ing¢=IXg'fd,u :

Proof. Plainly, ¢(<)= J@ fdu=0. (See Properties 20 (5) ). Clearly ¢ is mon-negative.

Now we show that ¢ is countably additive. Suppose {E,.}Z1 is a countable collection of

pairwise disjoint sets in the o-algebra. 7. Let E=UE,. Note that as the sets in the

i=1

collection, { E }Zl , are pairwise disjoint, y,.f = z Xif - Therefore,

1
i—1

oE)=[ fdu=[ z.fdu= fx(izg,fjdﬂ

=3 jX %5 fdu, by Theorem 26,
i=1

since y, f is measurable and non-negative for each i > 1,

=i¢(Ei)'

It follows that ¢ is countably additive.
Suppose that g is a measurable function. Then there is a monotone sequence of (non-

negative) measurable simple functions (sn) such that s, /" g. Suppose s = Zal. X4 1sa
i=1

measurable simple function. Then

IXSd¢: Zai (D(Ai) = Zai J.A Sdu= Zai JXZA,fdﬂ
i1 i=1 ' i=1

=ifxa,~ zAifdu=fX(Zn‘,a,- ZA,.deFIXSfdM

Hence, szn d¢=sznfdu for each integern>1. As s, /" g, s,/ gf . Therefore, by

the Lebesgue Monotone Convergence Theorem (Theorem 23), L{ s, dp / IX gd@ and that

IXsnd(p:J.Xsnfd,u/'Ingdy . Hence, J.nggo:'[ngdy.
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Integration of Complex Functions With Respect To Positive Measure

Definition 29.

Suppose (X, . #) is a measure space and & :. 7~ —R" is a positive measure on X. Suppose

fX- R is a measurable function. We say f is Lebesgue integrable or summable on X if

[ |fld <.

This makes sense since f, =max{f,0} and / =max{—/f,0}=—min{f,0} are
measurable. As |f| =f. +f andthat when f, (x)=0c0, f (x)=0 and when f (x)=

f.(x)=0 so that the sum f, + f is always meaningful in R*. Using this fact, we can show

that f, + f =| f | is measurable.

We now consider real valued measurable function f: X - R. Likewise, we say f is

Lebesgue integrable or summable on X if
[ 1Adpu<e.

Note that if we let E, = f7'([0,00)) and E_= /™' ((—0,0)), then E, and E_ are measurable
and f:ZE+f+ZE7f'

Let L'(X, 1) be the set of all Lebesgue integrable real valued measurable functions on X.
Thus, if f€L(X,u), |f|=/f,+/ ismeasurableand IX(ﬁ +f)d p <o so that

IX f.d pu<oo and J.X fd u<x. Hence, a measurable real valued function f* is Lebesgue

integrable if and only if IX f.d p<oo and IX f-d u<x. Define the Lebesgue integral of f,

fodﬂ , by
J-deﬂZJ-Xf*dﬂ_.[Xf‘dﬂ'
Obviously, this is well defined as —o0 < J‘X f.d ,u—IX fdu<wo.

Proposition 30. L'(X, u) is a real vector space and the Lebesgue integration

_[X :L'(X, 1) > R is areal linear functional.
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Proof. If f,geL'(X,u) and a,B R , then by Corollary 4, a f + g is measurable.

Moreover, af+ﬂg| < |a| |f| +|ﬁ||g| so that by Properties 20 (1) and (3),

[lar+peldus] lol|fldpu+] |Bleldu=|a|] |fldu+|pl] |gldu<co.
Thus, af +Bgel'(X,u). Hence, L'(X, ) is a real vector space.

We shall now show that Lebesgue integration is linear on L' (X, ).
Observe that f+g=(f+g) —(f+g) =/, +g —/f —g_ sothat

(f+g),+f +g. =(f+g) +f +g,.

Therefore,
[((f+e), +f +e )du=] (f+g),du+] fdu+[ gdu
:IX((f+g)+ +f +g_)dﬂZIX(f+g)_dﬂ+JXﬂdﬂ+IXg+du~
Hence,
[ (f+g).du=[ (f+g) du=] fdu+| gdu=[ fdu+| gdu
szfdy+Jngy.
This means [ (f+g)du=| fdu+| gdu.
Take any o >0, then (arf') =af, and (af) =af . Therefore,
[ (afdu=| (af)du=[ (af)du=a| fdu-a| fdu=a| fdu.

Suppose a< 0. Then —a > 0 and so IX(—af)dy = —anfdu.

Now IX—fdy=—_[deﬂ because (—f), =max{—/,0}=f and (-f)_=max{f,0}=f, .
Therefore, _,[X(af)dﬂ=IX(_af)dﬂ=—aIdeﬂ and so Ix(af)dﬂ:ajxfdﬂ' This

shows that the Lebesgue integral is a real linear functional.

Now, we consider measurable complex function on X. Suppose f: X — C is measurable.

Then by Corollary 5, Re f'and Im fare measurable. By Corollary 7,

f | is measurable. We

say a measurable complex function f is Lebesgue integrable, if IX| f |d 1 <o . Note that
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|Ref Imf| £|f| and |f| S|Ref|+|lmf| . It follows that /" is Lebesgue integrable if and
only if Re fand Im /" are Lebesgue integrable. We define

b

ijdyszRefdijXnnfdy.

Let L'(X,C, 1) be the collection of all Lebesgue integrable measurable complex functions on
X.

Then we have,

Proposition 31. L'(X,C, u) is a complex vector space and the Lebesgue integration

IX : L'(X,C, u) > C is a complex linear functional.

Proof.

If f,gel'(X,C,u) and a,B€C ,thenby Corollary 4, af + g is measurable.

Now IX|0!f+ﬂg|dﬂ§jX|05f|dﬂ+J-X|ﬁg|dﬂ=|06|_[X|f|d,u+|ﬂ|J.X|g|dy<oo. Hence,

af + Bg is Lebesgue integrable. Therefore, L'(X,C, 1)is a complex vector space.

For f,ge L'(X,C,u),

[ (f+g)du=] Re(f+g)du+if tm(f+g)du
:IX(Ref+Reg)dy+ijx(hnf+hng)dy
=jXRefdﬂJrIXRegdy+i(thnfdy+thngdy), by Proposition 30,

[ i sau.

Take any ¢ € C. Then for feL'(X,C,u),
af =(Rea+ilma)(Re f+ilmf)=ReaRe f —ImaIm f +i(Ream f +ImaRe f).

Therefore,

IXafd,u:JX(ReaRef—ImaImf)dy+iJX(ReaImf+ImaRef)d,u
:ReaIXRefdy—hnaIXImfdy+i(ReaIXImfd,u+ImaIXRefd,u),

by Proposition 30,
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:(Rea+zIma)(J.XRefdy+zIXImfdy)
—af fdu.
This proves that the Lebesgue integral is a complex linear functional on L' (X, C, ).

Proposition 32. If feL'(X,C,u)or feL(X,u) then ‘J.dey‘SJ.X|f|dy .

Proof. Suppose f e L (X,C,u). Let L{fd,u =re” , where r =Ude,u‘ and

Hzargjxfd,u.

J.de,u‘ :r:e_iQIdey:J.X(e_i‘gf)d,Lz:IXRe(e_iaf)dy+i'|.XIrn(e_i9f)d,Ll.

Therefore,
Since e‘ingfdy =r isreal, IXIrn(e_igf)dy =0 and Ude,u‘ = J‘XRe(e_'Hf)d,u.

It follows that ‘ijdy‘SjX|f|du as Re(e”pf)s|f|.

Suppose f el (X,u). If '[X fdu=0, then we have nothing to prove. Suppose
J-de,uzo,then Udey‘:IdeySJ-X|f|du. If Ide,u<O,

‘Ideu‘z—IdeySIX|f|dy. It follows that ‘J.dey‘SJ.X|f|dy.

Now for feL'(X,C,u) or feL(X,u),we can define ||f||#1 =IX|f|dy. Then

L'(X,C, u) and L'(X, 1) are almost a normed linear space. In order that this definition
gives rise to a norm, we have to take equivalence classes of functions in L'(X,C, 1) or
L'(X,u). Wesay f = g almost everywhere, if there exists a measurable subset N such that
U(N)=0 and f(x)=g(x) forall x notin N. Thus, if we take the equivalence classes of

almost everywhere equal functions, then the above definition || / ||y1 = IX| fldu gives anorm

on equivalence classes of almost everywhere equal measurable functions in L' (X, C, ) and
L'(X, ). This norm induced a metric on the equivalence classes and with this metric the
equivalence classes of almost everywhere equal measurable functions in L' (X, C, z) and

L'(X, 1) are complete metric spaces, which are also called Banach spaces. (See Theorem 11,

Convex Function, L” Spaces, Space of Continuous Functions, Lusin’s Theorem.)
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Theorem 33. Lebesgue Dominated Convergence Theorem.
Suppose (X, . /) is a measure space and u:. 7/ SR isa positive measure on X.

Suppose ( [ X—> (C) 1s a sequence of . /- measurable functions on X and f, — f

pointwise on X. Suppose further that there exists a Lebesgue integrable function
g:X —[0,0] such that |fn|Sg for all integer n > 1. Then, f,, f € L'(X,C, u)and

J-and,u—{[de,u. Even more is true, J-X|fn—f|d,u—>0.

Proof. Since |fn| <g and f — f pointwise on X, f| <g. By Corollary 14 part (1), fis
measurable. As g is Lebesgue integrable and | fn| <g, f, is Lebesgue integrable for all

integer n > 1. For the same reason, f is Lebesgue integrable. That is to say,
S [ eL(X,C,u).

fn—f|S|fn|+|f|S2g and so 2g—|fn —f|20 for all
integer n > 1. We may now apply Fatou’s Lemma (Theorem 27). Note that

2g-f, —f| — 2g pointwise on X. Therefore, liminf(2g—|fn —f|) =2g and by Fatou’s

Note that for each integer n > 1,

Lemma,

[, 2gdu<timint [ (2g-|f,~fl)du=| 2edp+liminf [ (-|f,~f])du

But by Proposition 10, All About Lim Sup And Lim Inf,

ot (-

1 —f|)dﬂ=—1ims;1ij|ﬁ1 —fldu.

Therefore,

J‘X2gdy£jx2gdy—lir’1?_)s;1pj)(fn—f|d,u :

This implies that limsupJ-X|fn —f|d,u£0. But limsupJ.X|fn —f|d,u20. Hence,

n—0

1imsuij|fn ~fldu=o0.

It follows that liminf [ |/, - f]d = limsup jX

n—>0

fn—f|d/1=0 .

fo=fldu=0.

Therefore, lim IX

By Proposition 32, 0< ‘ .[X( f=f )d ,u‘ < J.X f=f | dy . Therefore, by the Squeeze Theorem,
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IX(f" —f)du—0. It follows that ij,, du=fodﬂ+IX(fn _f)d,ll—h.‘xfd'u'

Remark.

We may replace the convergence of f, by f — f pointwise almost everywhere on X and

that | fn| < g for all integer n > 1 except on a set of measure zero. We explain this below.

Suppose there exists a . /- measurable subset A4 such that 1(4) =0 and f, (x) = f(x) forall
x not in A. Suppose that there exists a . / - measurable subset B such that #(B) =0 and

fn(x)| < g(x)for integer n> 1 and for all x not in B. Let N=AUB and E=(4UB)".
Then p(N)=0and E is . /- measurable. It follows by Theorem 33, that f, and f/ are

Lebesgue integrable over £ and hence over X in some sense since E° = N is of measure zero.

We elaborate on this below. By Theorem 33, we have that J.E f.du— J.E fduand so

Jedvdu=[ fodus] g du=] 1 du— |, fdu.

As u(N) =0, we may ignore the behaviour of the function over N, we may arbitrarily set the
meaning of the integral over a set of measure zero to be zero, even though the function may
not be measurable over the null set and hence may not actually be x integrable over X. Thus,

we may set Idey:_[Efdy+'[Nfdy:J.Efdy and

J:

so that IX|fn —f|d,u=J.E

fi=Aldu=[\f,~fldu+] |f, = fldu

Sy=Adp+[ |1, = fldu=[ 1S, ~fldu—0.

We may legitimately do this if we simply take the integral over the completion z of the

measure 4 .

Note that the restriction of f, to E, f,

, converges pointwise to a measurable function /
on E. Therefore, since E is measurable, 4 is measurable on £. This means that for any open
set, U, in C or R, f'(U)NE=h"'(U) is measurable but it is not necessary that (V)
is measurable as f'(U)NE‘ < AUB and f'(U)N E° need not be measurable. If the
measure space (X, . /) is u - complete, then f~'(U) N Eis measurable, so that f~'(U) is

measurable. Hence, if the measure space (X, . /) is u - complete, then we may conclude that
the almost everywhere limit function, f , is measurable. Note that here, we have used the

meaning of the integral J.X fdu tobe J.E fdu since E° is of measure zero. Similarly, for the
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other integral, ,[X|fn —f|d,u 1s to be understood as _Ufn —f|d,u and of course, INfdy and

Jy

To state the corresponding conclusion in Theorem 33 for ( [ X— (C) a sequence of . /-

f —f| d u are to be taken as zero.

measurable functions on X converging almost everywhere pointwise to f on X, it is

customary to assume that f is g-measurable so that the integral, IX fdu, is defined.

If we are just interested in the limit of the integral, IX f, du, we may define a function

lim f,| (x),x€E
h: X —>C by h(x)={""" . Then /4 is u - measurable and /4 = /" almost
0,xeE°

everywhere on X and '[X fdu— IXh d . We may not conclude that fis g-measurable and

integrable with respect to the measure x. Of course, if the measure g is complete, then f* is
p-measurable and IX fdu= IX hdu.

In view of the above remark, we may state the following variation of the Dominated
Convergence Theorem:

Suppose (X, . #) is a measure space and x:. 7 —R" is a positive measure on X.

Suppose ( f i X— (C) 1s a sequence of . /- measurable functions on X and f, — f

pointwise almost everywhere on X. Suppose further that there exists a Lebesgue integrable
function g: X —[0,0] such that |, (x)| < g(x) for almost all x in X and for all integer n > 1.

Then, f, € L'(X,C, 1) and there exists 4 e L'(X,C, 1) such that f= h almost everywhere on

X , with respect to , J.and,u—>thdy and Ian—h|d,u—>0 .

Corollary 34. Suppose (X, . ) is a measure space and x: . 7/ SR isa positive measure on

X. Suppose ( [ X—> (C) is a sequence of . /- measurable functions on X such that

gIX

J,

du<o.

Then Z f, converges except perhaps on the points of some set contained in some set of -
n=1

0

, ifxe N¢
> filx), ifxe @

measure zero, N , and if we define f by f(x) =145
0,ifxeN

cn
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Ixfdﬂ:ijxﬁ’dﬂ'

Proof. By hypothesis, each f is Lebesgue integrable over X. Consider the function

n

. Then g is a function into R* . Since each | fn| is measurable, g is measurable.

s

g=2,
n=1

i

By Theorem 26, ngdy = J.X[i ]d,u = iIX|fn|d,u <oo. This implies that g is
n=1 n=1

Lebesgue integrable on X, i.e, g € L'(X,C, i), and that if we let
G={xeX:g(x)<w}=g'([0,0)), then G is. /- measurable and x(G°)=0. Let N =G".

This means Z /. (x) converges absolutely on G. Since 1(G°)=0, Z /. (x) converges

n=l n=l

almost everywhere on X. We define

o0

£ = nzzllfn(x), ifxeq, |

0, ifxeG°'=N

Then f is measurable and Z £, (x) converges pointwise to f(x) for x in G. Now
k=1

PWAS

integrable on X', hence on G. Therefore, by the Lebesgue Dominated Convergence Theorem
(Theorem 33),

(S fr e

<> |f,(x)|< g and g is Lebesgue integrabe implies that »_ f,(x) is Lebesgue
k=1

k=1

Hence an:,fok du—[ fdu. Thus kzw;jG]; du=[ fdu . As u(G)=0, it follows that

J.de’u:ij.xf”d’u'

n=1

Set of Measure Zero And The Completion of A Measure
If P is some property of points of a measure space (X, . /) and u is a positive measure on X,

(for example, Z /. (x) converges ” ) and if {x : not P(x) } is contained in some set of x-

n=l

measure zero, then we say that the property P holds almost everywhere with respect to pon
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X, abbreviated a. e. [¢]. We may simply say that P holds almost everywhere on X when the
measure x4 is understood to have been given.

Examples.

1. In the previous Corollary, Z f, (x) converges absolutely almost everywhere on X.

n=1

2. If f,g:X — C are two complex functions and if {x f(x)# g(x)} is contained in a set

of measure zero, then /* and g are equal a.e. [1]. Note that the relation “equal a.e. []” is an
equivalence relation on the collection of all complex functions on X. Moreover, if f=g a.e.

[4], then IX fdu= IX gdu, the integrals either both exist or both do not exist. The

behaviour of functions on set of measure zero is not noticed by the integral.

3. It may happen (though rarely in practice) that 4 € . 7/, y(A) =0 and B Abut B ¢ . /.
However, we would like 1(B) = 0.

Example. X=[0,1], ./={ @, X, [0,1], (1,2] }. u(@) = p((1,2]) =0, u([0,1]) = u(X)=1. So
,u((l, 2]) =0 but no proper subset of (1,2] is . /- measurable.

If the behaviour of (3) above does not happen, then we say the measure u is complete.

The triplet (X, . 7, i), where (X, . /) is a measure space and y: . 7/ —> R" isa positive
measure on the o-algebra, is also called a measure space, where we specifically specify the
measure function .

Proposition 35. Suppose (X, . 7, 1) 1s a measure space. Let

/*={ EcX:thereexists 4,B €./ ,suchthat A c Ec Band u(B—A)=0}.

Define for Ein. 7%, u*(E)=pu*(A4)=u*(B)=pu(A). Then./* is a o-algebra, u*isa
(positive) measure on . ~* and the measure space (X, . 7%, y*) is complete. We call the
triplet (X, . 7%, u*) the 1 - completion of . /.

Proof.
(1) . 7* is a o-algebra.
(i) Plainly, X €. 7*.

(i) If E €. 7/*, then there exists 4, B € . /,such that A c E < Band u(B—A)=0. Hence,
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B C E° < A° and ,u(A" —B"):,u(B—A)zo. Therefore, E€ €. 7*.

(iii) If {£,} _, is a countable collection of sets in. /*, then for each integer n > 1, there

exists A, , B, € ./, such that A, c E, < B, and u (B, — 4,) = 0. Hence,

Cs
s
s

B .

n

A c

1 n

E, c

n 1 n=1

Since . / is a o-algebra, U 4, and U B, arein. /. Note that

n=1 n=1

n=1

y(Uan —~ UlAnj S,u(U (B, —An)js > u(B,—4,)=0.
n= n= n=1
The last inequality is by the o-sub-additive of s

Hence u(UBn—UAnjzo and so GE,, e./*

el n=l n=1
Therefore, . 7/ * is a o-algebra.

(2) w* is well defined on . 7*.

Let Ee.7%*.

Suppose we have 4;, B; € . /, suchthat 4; c E < Biand u(B,—A4,)=0fori=1, 2.

Then 4 —A4, = B,—A andsince w(B,—A4,)=0, u(A4 —A4,)=0. Similarly, we get
p(4, —4)=0.

Therefore,
:U(Al)=ﬂ((A1 m"éiz)k-)(Al —AQ))=,u(A1 m"42)4';‘1("41 —A2)=,u(A1 mAz)
:ﬂ(Al ﬁA2)+/,1(A2 _A1):ﬂ(A2)-

Therefore, g*(E) is independent of the choice of 4, B € . 7/, such that A c E < B and
u(B—A4)=0.

(3) u* is a positive measure on . 7/ *.
Plainly, £#*(@) = 0. We now show that //* is o-additive.

Suppose {E,}._, is a countable collection of pairwise disjoint sets in. ~*. Then for each

integer n > 1, there exists 4, , B, € ./, such that A, < E,, < B, and (B, — A,) = 0. Since the
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collection {£ } _ is pairwise disjoint, {4, } _, is a countable collection of disjoint sets in . /.

We have shown that G A < G E < Loj B, and y( Us,-U Anj =0. Therefore,
n=1 n=l1

n=1 n=1 n=1

y*(@ Enjzy(CJ Anjzzu(An),by the o-additivity of 4,

This proves that g* is o-additive and so it is a positive measure.
If . 7 =. /7%, then we say the o-algebra is y-complete.

We have made use of the o-sub-additivity of the measure s
We state the result below.
Lemma 36. Any positive measure, 4, on a g-algebra . 7/ is o-sub-additive.

Proof.

Suppose {Cn }:z is a countable collection of sets in the o-algebra . 7.

1
0 n—1

Let C=UC, , H =C,, H,=C,—C, and forintegern>2, H =C, —UC, . Then for
n=l k=1

integern>1, H, cC,, UC, =U H, and the collection {H,}"

n=1 n=1 n=l

1s pairwise disjoint. Note
that each H, € . 7. Therefore, by o-additivity or countable additivity,

LR (AR A

n= n= n=1 n=1

This shows that x is o-sub-additive.

Proposition 37. Suppose (X, . 7, i) is a measure space with g-completion, (X, . 7*, 1*).

Let f be a. 7* - measurable real or complex function on X. ( f might notbe./ -
measurable.) Then there exists a. / - measurable function g such that f'= g a.e. [#].

Proof.
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(1) We prove first for the characteristic function of members of . /* . Suppose E €. 7/*, and
A,Be . 7,suchthat A c Ec Band u(B—A)=0. For f =y, ,take g= y,. Therefore, f

(x) = g (x) except possibility for x in B — 4 which is of g-measure zero.

Hence, f=ga.e. [y].

(2) Hence, for. 7*-measurable simple function, /', which is a finite linear combination of
characteristic functions, there exists a . #/~-measurable simple function g such that /=g a.e.

[#]. We elaborate this as follows.

Suppose s = Z o, y. 1sa.*-measurable simple functions. We may assume that E;’s are
i=1

disjoint sets in. #/*. Then take 4;, Bi € . 7/, suchthat 4;c E;c Biand (Bi—A4:)=0,i=

l,...,n. Let g=2al.;(4 . Then s = g a.e. 4] since ,u(LnJ(Bl.—Ai)j=O.

i=1 =l

(3) Suppose f is a non-negative . /* - measurable function from X into R*. By Theorem16,
there exists a monotone increasing sequence of non-negative . /* - measurable simple

functions (s,) converging pointwise to f. By (2) above, there exists a monotone increasing
sequence of non-negative . /- measurable simple functions (¢,) such that s, =¢ a.e. [u].
Therefore, (¢,) converges pointwise to a. /- measurable function g. Since union of

countable number of sets of z~measure 0 is also of g~measure 0, g = f a.e. [4].

(4) Suppose f is areal . 7* - measurable function from X into R . Then write f'=f —f .
By part (3), there exists non-negative real . /- measurable functions & and 4 such that
k=f+ae [uland h=f-ae. [u]. Thus,g= k—h=f ae. [4].

Suppose f is a complex . 7* - measurable function. Then f =Re f+iIm f and Re fand

Im f are real . 7* - measurable functions. By what we have just proven, there exists real . /-
measurable functions g1 and g» such that Re f+ =g a.e. [¢] and Im f+ = g» a.e. []. Then

g = g1 +i g is a complex . /- measurable function and f =g a.e. [y].

This completes the proof.

Remark. Thus, in view of the above proposition, we may ignore the behaviour of functions
on sets of measure zero.

1. We may extend the definition of measurability of a function f:X — Y to mean “there
exists a set £ < X such that p(E)=0and f'(U)NE €./, So f may be badly behaved

and not even defined on E° .
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2. Corollary to Lebesgue Dominated Convergence Theorem. Suppose ( | X—> (C) isa

sequence of complex . /- measurable functions on X such that ZIX |f.|du<oo. Then

n=1

Z f, (x) converges for almost all x with respect to x and

(30 Jau=3

The function Z /. (x) may not be defined on some set of g~measure zero.

n=1

Proposition 38. Suppose (X, . 7, u) is a measure space and p:. 7/ SR isa positive
measure on X. Suppose feL(X,C,u) or feLl(X,R,u)=L(X,u).

(1) If Ee.~7 and IE|f|dy=O,thenf=0a.e.[y] on E.
Q) IfforallEe ./, jEfdyzo,then f=0a.e.[ xonkX.

Proof.
Proof of part (1)

(1) We shall prove first for non-negative function f in L' (X, 1).

Take E € . /. For each integern>1, let A4, ={er:f(x)zl} . Then 4, € . 7 and
n

fdu=f, ], e an= u(a).

As [ |fldu=0, u(4,)=0. Since {xeE: f(x)>0}=U4,,
,u({er:f(x)>0})=,u(plAani,u(An)=O.

Therefore, y({er:f(x) >O}) =0. Hence,f=0a.e.[ u]onkE.

(2) Suppose f isin L'(X, ). Then f is real valued. Write f as f. — f_ so that
|f|=/f.+/ . Then f. andf are both Lebesgue integrable. Moreover IE|f|dy=O
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implies that J-Eﬂ dpu=0 and Lf_dy=0. It follows by (1), f+ ,f- =0a.e.[ ulonE.
Hence, f =f+— f- =0a.e. [l on E.

Suppose f € L'(X,C,1). Then f=Re f+iIm f and Re f and Im f are Lebesgue
integral. Moreover as J-E|Ref|dy,jE|hnf|dySIE|f|d,u=O, J-E|Ref|dﬂ=jE|Imf|dy=0.

It follows from (2) that Re /', Im f =0a.e. [ gJon E. Hence, f=Re f+ilm f =0 a.e.|
Ml onE.

Proof of part (2)

Suppose f is real valued, i.e., feL(X,R,u)=L(X,u). Write f=f —f . Let
E={xeX:f+(x)>O} . Then IEfdy=_[Eﬂdy=O implies by part (1) that /. =0 a.e. [ y]
on E. It then follows that f, =0 a.e. [ 4] on X. Similarly, we show that f =0a.e. [ x] on
X. Therefore, f=f —f =0a.e. [y onX

Suppose now f e L'(X,C, ). Then write f =Re f+iIlm f . ForallE €./, IEfdyzo
implies that forall E € . 7, J-ERefd,u =J-EImfd,u =0. Hence by what we have just
proven, Re f,Im f =0 a.e.[ gl on X. Therefore, f=Re f+ilm f =0 a.e.[ ¢l on X.

The advantage of having a complete measure space is evident in the following proposition.

Proposition 39. Suppose (X, . 7, i) is a complete measure space. Thatis, ./ is a c-algebra ,
n:. 7 SR isa positive measure on ./, and . 7/ is y-complete. Let £E < Xbea. 7 -
measurable subset of X. Suppose f,g:E — R are any two extended real valued functions

which are equal almost everywhere with respect to #£zon E. Then f is. 7 -measurable on £
if, and only if, g is. /7 -measurable on E.

Proof. By hypothesis, there exists D €. 7 such that f = g on E-D and @(D) =0. Let
H= {x eE: f(x)# g(x)}. Then H < D. Since . 7 is g~complete and (D) = 0, we have H

€.~ and y(H) = 0.

Suppose f is. 7 -measurable. Then by Proposition 10, forany a€R, ((a,oo]) e. /.
Consider g ((a,%])NH . Since u(g‘1 ((a,]) mH) =0 and . 7 is p-complete,

g’ ((a,oo])ﬂH e. /. Now g™ ((a,oo])ﬁE = (g_1 ((a,oo])ﬁH)ug_1 (((a,oo])ﬁ(E—H)).
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Now, E and H are ./ -measurable implies that £—H is also . 7 -measurable. Observe that
g’ ((a,oo]) m(E—H) =f" ((a,oo])m(E—H) e ./ . Therefore, g~ ((a,oo])mE e. 7.

Hence, by Proposition 10, g is . / -measurable on E.

We can show similarly, that if g is . / -measurable, then f is ./ -measurable.

Suppose (X, . /) is a topological space. Suppose (X, .7, ) is a measure space, where . /
contains all the Borel subsets of X and g is a positive measure on. /. Let E €. 7. An

extended real valued function f:E — R is said to be continuous a.e. [#] on E if, and only if,

there exists a . # -measurable subset D  E such that /" is continuous on £-—D and (D) = 0.

Proposition 40. Suppose (X, . /") is a topological space and (X, . 7, u ) is a g-complete
measure space, where . / contains . 2, the collection of all the Borel subsets of X and xis a
positive measure on . ~. Let E be a non-empty . /-measurable subset of X'. If f:E — R is

continuous a.e. [u] on E, then f is . /-measurable.

Proof. By definition, there exists a . 7/ -measurable subset D < E such that /" is continuous on
E-D and w(D) =0. By Proposition 10 (3), it is sufficient to show that for any a in R ,
f'(a,o] is measurable, i.e., f'(a,0]e. /k.

Let xe f' ((a,oo]) m(E—D) . Then f(x)>a . If f(x)= oo, then by continuity at x, there

exists an open set U_ containing x such that f (Ux N(E —D)) c (a,oo] .

Hence, xeU N(E—-D)c /' ((a,]). Iff(x) <o, then let & = @ >0 . By the
continuity of f'at x, there exists an open set U containing x such that
f(U,N(E-D))c(f(x)—¢, f(x)+¢€). Therefore,

xeU N(E-D)c [ ((f()-& f(x)+e)c [ ((a,%]).

Take V = U U, . Then /7' ((a,%])"(E—D)=V N(E-D). It follows that

xef ™ ((a,])"(E-D) *
(@) =(V n(E-D))u(f " ((ax])nD).

Since V' is open and . / contains all the Borel subsets of X, Ve .7 andasE-Dc Eis. /-
measurable Vm(E—D) e /. Since [ ((a,OO])F\D cD,uD)y=0and. 7 is u-
complete, [ ((a,OO]) ND e.7g. It follows that /' ((a,oo]) € . 7. Thus, we have shown

that forany aeR, f~ ((a 0] ) €.« and so f is. 7/ -measurable.
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Suppose (X, . 7, i) is a measure space, where . /7 is a o-algebra and x is a positive measure,

Recall the space of Lebesgue integrable functions on X, L'(X,C, ) or
L'(X,u)=L(X,R, ). We have shown in Proposition 30 and Proposition 31 that
L'(X,u)=L'(X,R, u)is a real vector space and L'(X,C, u)is a complex vector space. We

define the non-negative function | || , on the respective vector space by

171, = [ | fldu forf e L'(X,p) or L(X,C,p).
Then this function satisfies

(1) for all £,

7, 205 /=0= |1, =0,

Lu

(i1) for any scalar 4 and any f,

Afl,. = WI71,, and

(ii1) for any f and g,

sel, =<, +lel.,.

Any function satisfying the analogous conditions to (i), (ii) and (iii) on a vector space is
called a semi-norm.

By Proposition 38,

£, =0implies that / = 0 a.e. [4] .
Now let V= {f eL(X,R,u): f=0ae. [ﬂ]} . Then N is a vector subspace of L'(X, ).

Define ~ (X, ) = L'(X, )/ N the equivalence classes of almost everywhere equal
functions in L'(X, ). That is, the equivalence relation on L'(X, u)is given by f'is

equivalentto g if f=ga.e. [].  '(X, p) is again a real vector space with the zero element
given by the equivalence class of all functions f=0 a.e. []. We can extend the definition of
(" Lo (X, 1) and it now satisfies,

(i) forall fin ~ '(X, w),

/1,20

fl, =0 1=0,

(i) for any scalar A and any f in ~ (X, p),

21, =1l and

Lu

(iii) for any f and g in " '(X, p),

sel, =<l +lel.,.

This means that | |, ,isanormon Y(X, ). We can view (X, 1) as a metric space by
giving it the metric associated with this norm, by d(f,g)=|f-g|, .+ With this metric,

< (X, u) is a complete metric space, which is called a Banach space. (See Theorem 11,
Convex Function, L” Spaces, Space of Continuous Functions, Lusin’s Theorem.)
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Similarly, if ~ '(X,C, u)= L'(X,C,u)/ N, where N:{feLl(X,(C,,u):f:0 a.e. [y]},

with the norm given by, for f € ~ 1(X,C, p), ||f Hl = IX| f |d M, where fis a representative
A

of the equivalence class f, / '(X,C, u) is a normed vector space and with the metric

associated with this norm, it is a Banach space.

For convenience, when there is no confusion, we often also denote ~ (X, C, 1) by
L(X,C,p) and v (X, ) by L'(X, 1).

This concludes the modest introduction to measure theory. For follow up on L” Spaces, see
my article, Convex Function, L” Spaces, Space of Continuous Functions, Lusin’s Theorem.
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