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dx for real number s >-1. We shall show that this integral

Consider the improper integral I
1+e”

is convergent, that is, it has a finite value. Hence, we can define a function A(S) by

interval (—1,00) . We shall show that, as a real valued function, A(S) is

infinitely differentiable on (—1,00) and that it can be differentiated repeatedly by differentiating under

X In(x) dx . It follows that the

())

the integral sign to give, first of all, the first derivative, A'(S) = _[

)

dx is the second

integral I dx is the derivative of A(S) ats =1 and the integral I

dx with

. . . . o X
derivative of A(S) at s=0. We shall prove a relation relating the function A(s) = IO 1o
+e

the Gamma and Eta function, where the Gamma function I'(S) and the Eta function 77(S) are defined

n+l

respectively by I'(s) = I e *x**dx and 7(s) = Z( Y . More precisely, A(S) is the product of
n°

Gamma and Eta functions. Thus, differentiating the product gives the integral

Iw x® In(x)
0 1+e*

evaluate this integral by evaluating the Gamma and Eta functions and their derivatives. We shall
show that the Gamma function is well defined, i.e., for each s > 0, I'(S) is a convergent improper

integral and that it is infinitely differentiable on positive reals by repeatedly differentiating under the

dx = A’(s) in terms of the Gamma and Eta functions and their derivatives. We may

n+l
integral sign. We prove that 7(s) = Z( Y for each s > 0 is a convergent infinite series and that
n=1
n+1

as a real valued function ons > 0, 7(s) = Z( ) is infinitely differentiable and differentiable
n=1 n

repeatedly by term- by-term differentiation.

However, it is not easy to evaluate the Gamma function, the Eta function or the Zeta function, or their
derivatives numerically. There are formulas relating the higher order derivatives of Gamma at 1 up to
the tenth order in terms of the Riemann zeta function and the Euler constant. Relatively less known
are the higher order derivatives of the Zeta function at positive integer greater or equal than 2. Some
of the integrals here do evaluate in terms of the first derivative of the Zeta function at the integer 2



and/or the Euler Mascheroni constant y, and y,. For some even more complicated integrals, we

may get the evaluation in terms of values of Gama, Zeta or Eta functions. Since these constants are
not easily computable, it is debatable whether numerical method of evaluation of these complicated
integrals with prescribed accuracy is preferred in practice than a formula. A case in point is the
evaluation of the Gamma function and its derivatives.

In section 1, we give the pertinent definitions and properties of the Gamma function, the eta function
and evaluation of the necessary Gamma and Eta functions and their derivatives at the points s = 1 and
2.

1. Definitions and Properties

Definition 1. For each real number s > 0, define the Gamma function by I'(S) = I: e *x*dx.

0 1
We shall prove that the integral _[0 e *x*'dx is convergent in two parts. We prove that 'fo e *x*tdx

is convergent if, and only if, s > 0 and that Lw e *x**dx is convergent for s > 0.

1
Part 1. IO e *x**dx is convergent if, and only if s > 0.

For 0<x<1,e*x*'<x*'fors>0.

w |

1
XS S
Now, forany 0<7 <1, jle‘xxs‘ldx < jlxs‘ldx = {—} = <= fors>0.
n n S

n

1 S S 1 ol aaa .
It follows that I e *x*tdx = lim | e*x**dx <= fors>0. Thatis, I e *x*'dx is convergent if s
0 n—0"J7n S 0

>0.

1

s dx=o0ofor s<0,
X

11 11
However, for 0<x <1, if s<0, x> =——, Since.[ =
ex Oe

1 1
IO e*x**dx=oofor s<0. Hence, IO e *x**dx is divergent if s<0.

Part 2. Lm e *x**dx is convergent for s > 0.

Creea e XTH O 2(s=1)x*? i
Fors>1, lime™"x " =lim—-:=lim . =0 by repeated use of L’Hopital’s Rule.
X—>0 X—>0 eX X—>0 ex
Fors<l, lime™*x*? <lime™?=0. Thus, fors>0, lime™*x**=0. Since e **x*is
X—>00 X—>00 X—0
continuous on [1, ») foreach sinR, € *?x*" is bounded above by some K in [1, o), that is to say,

0 0 0 1
forx>1, e *x** < Ke 2. Therefore, L e x*dx < K.[l e dx =K [—Ze"ml =2K—5. It
€

follows that J.:O e *x*dx is convergent for s > 0.



It follows from part 1 and part 2 that J.: e *x*dx is convergent if, and only if, s > 0. Hence, since
the function is non-negative, it follows that J.: e *x**dx is convergent both as improper Riemann
integral as well as Lebesgue integral. That is to say, I'(s) = I: e *x**dx is defined for s > 0.

S

Definition 2. For any real numberss > -1, let A(S) = _[:1 - < d
+e

S

X .
—dx is convergent.
l+e

We shall show that A(S) is well defined, i.e., LOO

S B Xse7X

Note that for s > -1, - = —
1+e" 1+e

<x°e™* forall x>0. Therefore, as

the dX<I x*e*dx =T'(s+1) and so I

finite.

dx is convergent since s + 1 >0and I'(s+1) is

Theorem 3. The Gamma function I'(S) is infinitely differentiable for s > 0 and

r™(s) = _[: e”*x**(In(x))" dx for integer n > 1.

Proof. Let f :(0,00)x(0,00) — R be defined by f(x,s)=x""e™. Then I'(s) = J' f(x,s)dx.

Note that lim f(x,s) = lim x*'¢™* =0 fors> 1.

x—0" x—0"
af s—1,—X - - -
Now, P f(x,5)=x"e " In(x) for (x, s) in (0,0)x (0,00) and is continuous on (0, ) x (0,).

Restrict the domain f to (0,0)x[a,b]with 0 <a <b. We shall show that I'(S) is infinitely

n

differentiable for s in [a, b]. Observe that (?3 :
S

(x,8) =x""e(In(x))" for (, s) in (0,0)x (0,)
and is continuous on (0,0) % (0, 0).

Let g(x,8) =x""e”* (In(x)) forx>0and a <s <b. We shall find a Lebesgue integrable function
h(x) such that g(x,s) <h(x) forallx>0anda<s<h.

We shall construct the function h(x) in two parts. First construct f(x) for x in [1, ) and then for x in
[0, 1].

b n
: n(x
Observe that for x> 1, 0< x** < x” and limx°e ™ (In(x))" = lim—; Ilm( () =
X—>00 X—)ooe

Therefore, there exists K >0 such that x°e™*'* (In(x))" <K for all x> 1. It follows that for all x> 1

anda<s<b,

(In(x))

s 1 x/Z(In(X))

|g(x, S)| _ —x/2 S‘Xbefx/z(In(x))ﬂ‘efxlz <Ke ™2



So, we define h(x) = Ke™? for x> 1.

Note that x°e/*(In(x))" is not defined at x = 0. Note also that lim x* (In(x))" =0 fora>0. We

x—0

deduce this as follows.

In(x) .. 1/(x) -
For n =1, XILT x* In(x) = I|rr1 ) XILWW = e ™

apply L’Hopital’s Rule repeatedly.

=0 andforn>1,

e (In(x))"|<x** (In(x))”‘ .

Now,
Exa‘l(ln(x))” dx = { (In(x)) } —"—a(ln(n))” )" dx
so that

1 a-1 n _ _E 1 a-1 n-1 :_E 1 a-1 Moy

on (In(x)) dx=0 aj'ox (In(x)) " dx aIOX (In(x))" " dx. (1)
For n =1, le“ln(x)dx={x—aln(x)} - j”‘a_l dx:—n—aln(n)—{x—z} =—’7—a|n(77)+’7—z—i2.

n a . 7 a a a , a a a

Therefore rxa’lln(x)dx: lim —n—aln( )+77—a—i __1 Hence, by induction on n using
Hdo e a’ ’

(1), we deduce that x**(In(x))" is Lebesgue integrable on (0, 1].

. ) Ke™?, ifx>1
Now, define h(x) = x*|In(x)|" for 0 <x<1. Hence, h(x) = o . Since h
x**In(x)|", if 0<x<1

is Lebesgue integrable on (0,1] and on [1, ), it is Lebesgue integrable on (0, o).
Hence, we have g(x,s)<h(x) forallx>0anda<s<h.

It follows then by repeated use of Theorem 1 part (ii) of “Integration Using Differentiation Under

The Integral Sign” that T'(s) = I:e’xxs’ldx is infinitely differentiable for a < s <b. Since aand b
are arbitrary, it follows that T'(s) = J:o e *x**dx is infinitely differentiable for s > 0 and

™ (s)= J'Ow e”x**(In(x))" dxforn> 1.

S
Theorem 4. A(S) = _[0 X —dx is infinitely differentiable for s > -1 and
+e

In(x))

A (s) = j dx.



S SA—X

Proof. Let f(X,s)= X __ — fors>-1and 0 <x<oo. Note that
1+e* 1+e™*
o f X (In(x))"  x°e*(In(x))"
—(x,8)= ( (X)) = ( 7(X ) forn>1. Observe that
0s 1+e 1+e
" X (In(x))'| [xe™*(In(x))" ;
O | = LU (00|,
0os l+e ‘ l+e ‘

x°e(In(x))"
l+e™

Let g(x,s) = forx>0anda<s<band-1<a<bh. Note that

lim x"e™/? (In(x))" =0. Hence x’e *(In(x))" is bounded above by K >0 on [1, ®). Therefore,

X—00

e (In(x))"|=|xe*(In(x))" e % <Ke™? forx>1.

l9(x,9)| <|x e? < ‘xbe’x’2 (In(x))"

1+e7™*
xee™ (In(x))"| < x*|(In(x))’

the proof of the previous Theorem that X* (In(X))" is Lebesgue integrable on (0, 1]. Therefore,

In(x x’e ™ (In(x))"
g(x,s) —&IS Lebesgue integrable on (0, 1]. It follows that g(X,S) —Mis
1+e™* 1+e™*

Lebesgue integrable on (0,) .

x/2

Since Ke “ is integrable on [1,), g(X,s) = is integrable on [1,0) for-1<a<s.

. We have shown in

Also, we have as before, for 0 <x <1, |g(x,s)|<

Ke™?, ifx>1
We define h(x) = o . Hence, |g(x,s)|<h(x) forx>0anda<s<band
x*|In(x)[", if 0<x<1

—1<a<bh. We deduce as before that h is Lebesgue integrable on (0, «). So, it follows as for the
case of Gamma function by repeated use of Theorem 1 part (ii) of “Integration Using Differentiation

LR

is infinitely differentiable at s for s > -1 and

In(x))

dx forn>1.

AO(s)=[ %

o (  \N+l
Definition 5. For any s > 0, define the Eta function 77(S) by 7(s) = Z( )S . Note that this is
= n

- - o) (_1)n+1
well defined since for any s > 0, Z S
~ n

is convergent by the Alternating Series Test.



n+1

Theorem 6. The Eta function 7(s) = Z( Y is infinitely differentiable at s for s > 0 and
n°

77(p) (S) _ i (—1)n+1+:]s(|n(n))
Proof.

n+l

We note that the series 77(S) = Z ) converges uniformly with respect to s on [a, «) for any a >
n®

n+l 1

a
2

0. Write 7(s) = Z((—l)”+l % lj By the alternating series test, the series Z(—l)
n=1 n * n? n=1 n

converges and so its sequence of partial sums is bounded and so is uniformly bounded. The function
1

_a
2

g,(s)= % on [a, ) satisfies g,.,(S) = =(,(S) and so the sequence of
n 2

1
— <
(n+1)°"*
1 1

functions (g, (s)) is monotone decreasing. Moreover, g, (s) =— <
n": n

forall s>a. It follows

ol

n+l

that g, (S) converges uniformly to 0 on [a, «). Therefore, by the Dirichlet Test, 7(S) = Z( Y
n°
n=1

converges uniformly on [a, «).

1)n+1+p (In(n))P

S

o ( 1\n+l o (__
If we differentiate 7(s) = ( )S term by term we get 7" (s) = Z(
n=1 n n=1 n

n+2 0
For p =1, we write ZM Zsi( Hnmr =2 In(n) fors>a>0. Note that the series
n

n=1 n = n 2

In(n)

a
2

Z( i) g ( ) is convergent since is decreasing for n > er. Therefore, its sequence of

n=1 n n

partial sums is uniformly bounded. Hence, Z( P —-2 In(n)
n®

n=1

is uniformly convergent on [a, «) for

any a> 0.

= (—1)"¥P (In(n p
Similarly, we can show that 7" (s) = Z( ) S( (n)
n=1 n

is uniformly convergent on [a, «) for

n+1
any a>0. Therefore, we can conclude that 7(s) = Z( Y can be differentiated infinitely many
n®
n=1
( )n+l
times term by term on [a, ). Since a is arbitrary, we conclude that 7(s) = Z— is
n=1

(_1)n+1+p (In(n))P

S

differentiable infinitely many times in (0, ) and 7P () = >
n=1 n

Theorem 7. For s >—1, A(S)=n(s+1)I'(s+1).

Proof.



S S

Observe that

=x%* De™ =S (=1)"e*™Ix* . Note that each e *™x® is
1+e* 1+e* Z( e nzzc;( )

Lebesgue integrable on (0, o).

Let f (x)=e”™x*forxin [0,). Then ( f,(X))is a decreasing sequence of non-negative
functions on [0, ).

We shall deduce the theorem first for the case when s > 0.

Suppose now s > 0.
H d d -x(n+1) s —x(n+1),s-1 . S
Since, — f.(X)=—¢ X' =e X (s=x(n+1)) =0if, and only of, x =——, the absolute
dx dx n+1

S
maximum of f_(x)on [0, ) occurs at X == Therefore,
n+

sup f (x)= fn(ij:es( > j -3¢ - — 0 asn tends to infinity.
xe[0,) n+1 n+1 (n+1)

Therefore, fors >0, > (-1)"e™™Vx® =" (=1)" f, (x) converges uniformly to I X -
+e

n=0 n=0

on (0,).

Hence, for s > 0,

IO o dx = I Z( )"e X Dysdx = Z;(—l)"‘l_[o e " xdx

= r]Z;(—l)“lj'o e (%j %du = nzz;‘(—l)”’1 nil*l jo eu*du,
by a change of variable, u=nx,
=n(s+1)I'(s+1).
Suppose now —1<s<0.

Let k be any real number such that 0 <k < 0.

For —1< s <0and each positive integer n, the function f_(x) =e™™*x’ is non-negative and
d _ . §

decreasing on (0, ©), since d—e XnHys — g XM ys (s _x(n+1)) <0 for s<0. It follows that
X

f.(X)is a decreasing function of x on [k, ) and

sup f (x)= sup e*™x° = f (k) =e™"Pk® — 0 asn tends to infinity. Therefore,
xe[k,0) xe[k,0)

S

—on [k,o0) . Hence, for
e

Z:(—l)”e‘x(””)xS = Z(—l)” f (X) converges uniformly to I X
n=0 - +

Z( 1) j f (x)dx



:2(—1)“1I:°exnxsdx:2( H™t ilj e "u’du

a1
—Z( L B *)
where g, (k) = Ii e 'udu.
Now, for each —1<s<0, the function g, (k) = It e u°du is a decreasing sequence of functions on

1

[0,0) uniformly bounded by f, (0) = I: e 'u*du=I'(s+1) <oo and Z(—l)IH n% is uniformly
n=1
convergent with respect to k.

By Abel Test, the series on the right-hand side of (*) converges uniformly with respect to k for
—1<s<0. Therefore, it converges to a continuous function of k. Thus, taking limits,

lim [~ dx_an( )"t Slﬂ f (k)= Z( L 5 Jim (k)

k—0* vk 14 e* k—0*

=i(—1)”‘1 n:SL+11"(s+1) (Z( -t S+l}1‘(s+1) n(s+1)r(s+1).

=1

Therefore, for —1<s<0, A(S)= _[:1 X —dx=n(s+1)I'(s+1).
+e

It follows that for s >—1, A(S) = Z( 1)nl —[(s+1) =n(s+1I(s+1).

n=1

This completes the proof.

Remark 8.

 In(x)
1+¢€*

1. Our aim is to determine the integral I dx fors=0ands=1. Note that

J:O x® In(x) dx = A’'(s) fors>-1. Hence, for s >—1,

1+¢e*

Io x° In(x)d =n'(s+D)T(s+D)+n(s+HI'(s+1).

1+¢*

Thus, to evaluate A'(S), we need to determine 77(s+1),7'(s+1),I'(s+1) and T''(s+1).



In(

For the evaluation of J.: :Z dx=A'(0)=n'"OT'Q) +7I'(@), we shall determine

1+
n'() andT'(1) . Itis easily deduced that T'(1) =1 and 7(1) =In(2). We shall prove that
, In(2))* ,
7' () =In(2)y, —% and I'(1) = —7,.
: = xIn(x) , , : :
For the evaluation of IO Tre* dx=A'(1) =7"(2)T'(2) +1n(2)I""(2) , we shall need to determine
_l_
2
n'(2) and T'(2) . Itis easily deduced that T'(2) =1 and 77(2) = 71Z—2 :
72_2
Theorem 9. T'Q) =—y,, I"'Q) =y, e
Proof. From Theorem 3, I''(1) = Iom e *In(x)dx .
X n-1
n-1 -
1-— ifx<n
Now, (1—%) — e " asntends to infinity. Let f (X)= ( nj ' "
0, ifx>n

Then f (X)In(x) tends to e™* In(x) pointwise on (0, ).

n-1

. X _ ) _

Next, we claim that (1——) <e™? forn>2and x<n. To show this, we note that 1—-t<e™ ,
n

fort>0. This is a consequence of the fact that the derivative of 1—t—€™" is less than or equal to 0 if

X x
t>0. Therefore, for 0<x<nand n>2,1-—<e " andso
n

X m _X n-1 —X(l—l) X
1-2 s(eﬁ) —e 0 <ot
n

as 1—321 forn>2.
n 2

-x/2

Therefore, f (X)<e™? for n>2 and for x<n. Obviously, f (x)<e™? for x>n. Thus,

f,(x)<e™? for n>2 and forx>0. It follows that | f, (X) In(x)| <& *|In(x)| for n>2and for x
> 0.

X
Now, by a change of variable, U = 5

j: e 2 In(x)dx = 2 j: e In(2u)dx =2 j:e In(u)dx + 2 j:e-“ In(2)dx .



We have already shown that € In(X) is Lebesgue integrable on (0, o) and since € is also
integrable on (0, o), it follows that € /> In(X) is Lebesgue integrable on (0, ). Thus,

e 2 |In(x)|= ‘e’x’ 2 In(x)‘ is Lebesgue integrable on (0, ). Therefore, by the Lebesgue Dominated

Convergence Theorem, I: f.(X) In(x)dx — J.:e’x In(x)dx.
[ n X n-t 1
Now, jo f(x) In(x)dx = jo (1—5) In(X)dx = n jou“-l In(n(L—u))du,

X
by change of variable, U =1- o

1 1
=n Iou"’l In(n)du +n jou”’l In(1—u))du

=In(n)+ nj':u”‘1 In(1—u))du.
Ifn=1,

j:u"-l In(l—u))du = Iolln(l—u))du = lim [ In@-u)du = lim[-u—In-u)a-u)]; =-1.

Forn>1, | Su“‘lln(l—u))du=F(u”—1)ln(1—u)} + jsi(u“—nidu
0 n o “on 1-u

1 s1 & 1 1 s
==("=-DIn@=35)=| =M u"du==(s"-DInl-5)—=>">.
—(s" ~1)In(L-s) jon; —(s" ~1)In(L-s) n;k

Therefore, j:u“-l In(L—u))du = lim josu"—l In(L—u))du =
s—1

(1 1, sk 181 H
=lim| =(s"-DInl-s)—=> — |=0-=) —=—— T - 1
H[n( )In(L-s) n;kj T2 ST ®)

n

1. .
where, H, = Z— is the harmonic sum.
k=1

Therefore, j: f_(x) In(x)dx = In(n) +n jolu”-l In(l—u))du = In(n)—H.. .

Thus, Iimj: f.(x) In(x)dx = lim (In(n) = H, ) = —7, .
Now, we shall evaluate I'"(1).

From Theorem 3, T"(2) = J.: e (In(x))2 dx. As for the case of I''(1) , we can show that

_[: f, ()(In(x))*dx — I: e *(In(x))*dx.

10



Now, as above,
[ 1,00(In00) dx= [1—9” (In(x))’ dx = n[ u™* (In(n(t-u)))’ du

: X
by change of variable, u =1- -

= n'folu”*l (In(n))” du + nJ.:u”’l (In@—u))’ dx+ 2nj.:u"’1 In(n) In(1—u)dx

= (In(n))’

Lona 2 .. .
. (In(1—u))” dx, by applying identity (1).

=(In(n))’ =2In(n)H, +n jolu”-l(m(l—u))2 dx. -2

Ifn=1,
JouIn(1-u))du = [} in@—u))du = lim [7in1-u))du = lim[-u~In(-u)@-w)]; =

Forn>1,

[ (In@-u))* du = { (u" 1) (InL-u)) }4 £ - ey ”(1 “)

2 & 23
- O‘f:ﬁ;““ In(L—u)du = _E;ﬁu“ In(1—u)du

| ey

by applying identity (1).

2 .
1 11 n1g1 11 1 n1
kZ=1:k iZ_l:l i ) Z:l: 1= ) i1 IjZ=];J ';J =i
=> Z£]+ ( ij—2%=2 ( ij— lz by symmetry,
i1\ j i1\ = 1) iz | i1\ j= 1) i |

11



Therefore, Iu (In@- u)) %i%:%(anJon)- (4)

Hence, j: f.(x)(In(x))” dx = (In(n))* =2In(n)H, + H 2 +Z, = (H, - In(n))* + Z,.

Therefore, T"(L) = j: e (In(x))* dx = lim j: f.()(IN(X))"* dx = 7,2 +£(2) = 7,2 +% , since

2

!]mzn = é/(Z) =

. Lﬂln(n) =In(2)y, -

Theorem 10. (1) =In(2), #'(1)=>] @

Before we embark on the proof of Theorem 10, we shall define a series of Stieltjes constants y; for j

>0. y, =y isthe Euler Mascheroni constant. The y,’s are also known as the Euler Mascheroni
constants.

71:“m[zln(k) A In(x)dX]_“m(Zlni((k) 1(| (n)))

k=1 n—o\ 1=

m[k"_l(ln(:))i _Ln(ln(x))i de: Iim[kn (In(:))" . -1 (In(n))jﬂ}

X n—w = J +1

& (D™ n(n
We shall make use of y, to evaluate the series ZM
n-1 n

We shall show that y, is defined, that is, it is finite. y, can be shown in a similar way to be finite.

The proof for finiteness of y, is exemplary for 7, j> 1.

Theorem 11. ylzlim( In(k) I In(x)d ]—I [Zlnl((k) 1(In(n)) j is finite.

n—so = ka1

()

Proof. Let f :[1,00) — R be defined by f(X)=——= forx>1. For each integer n > 1, let
2 In(k) n . .
= R etd =s, —L f (x)dx. Note that f (x) is decreasing on [e, ). Therefore,
k=1

dj f(x)dx<j f (n)dx _@.

Forn=3, | f()dx>["" f(n+Ddx= '”f}”:”

12



That is, for n >3,

In(n+1) j”“ £ (x)dx < ) (1)
n+1 n n

Hence, for n >3,

lin(k +1) _ In(k)

kzzgl 1 Zj f (x)dx = j f(x)dx<z @)
Lett = y In(k) and H, :In f (x)dx for n>3.

= K 3

1
Thenforn>3, t —H_ —Z In(k) ~H, = In(3 Z In(k+1) _ In(3) <1, by inequality (2),
k=3 k k=3 k+1

n n-1
and t, —H,_ = In(k) -H,= In(n Z In(k) -H, In(n) >0, by inequality (2).
n

ok pa:
Forn>3,letc, =t —H,.
Then,

In(n+1)
n+1

C

—C :tn+l_Hn+l_(tn _Hn):t

n+l n

-t,—(H

n+1 n

“H,)= —jn”” f (x)dx

n+1

<0, by inequality (1).

It follows that the sequence (C,) for n >3 is a decreasing sequence. Moreover, 0 <c, <1.
Therefore, by the Monotone Convergence Theorem, the sequence (C,) is convergent, since the

sequence (C,) is bounded below. Letlimc, =C.

n—o0

———— Ini((k) 3 |nl(<k) _ In;Z) o
Therefore, d, =, ~ [/ £ (x)dk = 52 — [ (a-+1, ~ [ F (k=2 - (neo)' |
l n n 1 n 2 2 l n-

@2 (In@E)’
2 2

(In(x))’
X

@ (@)’
2 2

+C .

Hence, d, — +C. Thatistosay, y, =

For the function f;(x) = , we note that it is decreasing for x >e’. Let n; be the first

. O (In(k
integer greater than e’. Let t ' = Z% For n>n;, we can show similarly that
k=nj

13



(In(x))’ (In(x))’ |
X

I 4dx tends to a constant C, . Note that the antiderivative of f;(x) =

(In(x))"
j+1

n (In(k))j_jln(ln(x))j " 2 (In(k))’ _Lnj(m(x))" dx+Z":(In(k))j _Ln(m(x))j "

=i -

. We can show similarly that

X —  k X ek ¢

1

i) ()’ & o) ), ) (n0))"

ek j+1 e X o K j+1
Hence, 7. =”J'i(ln(k))1 _(In(nj))J .
&k j+1 -
Proof of Theorem 10. 7n(1) =In(2), n'() = Z( 1)~  Ink) —In(2)7/0—@

) n@=In(2).

Since 7(s) = i (_i)sm , () = Zoj: (D"

. . < 1. . 1
By the alternating series test, Y (~1)“* s convergent. Lets, = (-1)**! E and
= P
nl . .
d,=s, —L —dx=s,—In(n). Asremarked in Theorem 11, d is convergent and tends to the Euler
X

2n 1 1
Mascheroni constant y,. Consider s, =>»_(-1)**= % . Then s, tends to Z( 1)k+1 :

k=1
We shall rewrite s, in the following way:

111 1
SZn ==
1 2 3 2n

]_'+1+1+ +i_|n(2n) 1—|—1+1+ +i +|n(2l‘l)
1 2 3 2n 2 4 6 2n

I 1 I
=d,, —(i+§+---+HJ+In(n)+In(Z):dZn—dn +In(2)

Therefore, s,, — 7, -7, +In(2) =In(2) as n tends to infinity. Hence, 77(1) =In(2).

14



(i) 77(1) Z( 1) |n(k)_|n(2)7/0_@. Differentiating 77(5) Z( n)'”l formally term

n=1

by term we get 7/(s)

_ Z (—1)":5 In(n) _ i (—1); Sln(n) |

<> kln<>

By the alternating series test, Z(—l) is convergent. Let s, = Z( 1) and since
k=2 k=1

Z( 1)" In l(< ) is convergent, the limit of s, tends to Z( 1)* Inl((k)

= k=2
We shall rewrite s, in the following way:

. In(1) N In(2) In(3) - In(2n)

1 2 3 2n
In(2n))* In(2n))*
_ In(1)+ln(2)+ln(3)+m+In(2n)_( n(2n)) +2(In(Z)JrIn(4)+ln(6)+m+In(2n) _( n(2n))
1 2 3 2n 2 2 4 6 2n 2

——d, +2('”(2) FLLC I '”(”)j+2(ln(2) @ In(2)]_(ln(2n))2
4 6 2n 2 4 n 2

=—d,, +(@+@+---+m]+|n(2)(1+1+l...+3]_(In(zn))z
2 3 n 24 n 2

=-d,, +5, +In(2)(1+l+l...+1j_
2 4 n

(In(n)) _('”(22)) ~In(2)In(n)

2

=—d2n+sn—M+|n(2)(1+1+1--.+1—|n(n)j_('”(2))

2 2 4 n 2

:—d2n+dn+ln(2)(1+%+% ~In(n )] (In(22))

Therefore, 52n_>_7/1+71+|n(2)7/0_—(|n(22)) =|n(2)70_—(|n(22)) as n tends to infinity.
2

It follows that Z( 1)* In(k)_l n(2)y, (In(22)) :

Theorem 12. Recall 1P (s) =

. Forp=>2,

i (_1)n+l+:ls(|n(n))l’

n=1

o =3 T OO) s gy (0O g

15



Z 1’ In(k))

_ __1(|n(2))"*1 +(In@)’ 7, +[1pj @y, , J{Sj(ln(Z))Z - +---+[ E _J(ln(Z))"‘l :

p+
p n P
Proof. Let f(X) =M. Forintegers n, p>1, let s” :Z(_l)k (In(:))

k=1

. Note that

(n(X)) 1 p+l
j f (x)dx _j = p+1(ln(n)) . Let

AN (n) 1 -
ay =sp - [ 1) dx:é(”(k)) - L (ny

Then

| k
St = Z( gy i )" $

In(k) In(2k)

%

k=1

~ [&(nk)” 1 o | (In2K)" 1 "
- Lkz_ll ” p+1(In(2n)) +k:1 ” erl(In(2n))
:—dp +zn:(ln(2k))p - 1 (ln(Zn))p+l _________________________ (1)

S S p+1 '

Now,

(In(2k))® = (In(2) +In(k) )’

—(In(2))” +(In(k))? +(1pj In(2)(In(k))""* +[§](In(2))2(ln(k)) p-1 +...+( E _J (In(2))**(In(k))

)

and

(In(2n))"™ = (In(2))"" +(In(n))*"* {f”jm(z)(ln(n))p

+G +1j (In(2))*(In(n))™* +---+[ E +1j (In(2))” In(n). @)
Hence,

= ap ¢ (oY

16



DS 215y (0

1 p+1
—m(ln(Z)) —

p+1
1

l p+1
—+1(|n(n))

1 p+1) 1 ) .
}—In(len(n»p —[ ]—(In@» (In(n))’ —---—(
p+1 2 p+1 p

(p JZ(I ()7 1)

p”Ji(In(z»p(ln(n»
p+1

1

k=1

P\ (In(k)™* (Pp+1) 1 ,,
””‘2)(@27‘[1 Jp—u““‘””J

0 (In(k))® 1 o1 0 (In(2))"
szpn=—d;n+(k§_1:(”(k)) () }[Z(”(k)) _

) p nlkpf?. p+1 1 o1
+(In(2)) [{2};%[2 jp—ﬂ(ln(n)) j+---+

L 1
+(In(2»p‘{[g_JZ$ (o)t }

k=1 p-1)p+1

Thus,

s =—d? +d? +(In(2))" (Z%— |n(n)j—pi+1

k=1

(In(2))™"

)
+|n(z)[lp] > 02 iy
m(pﬂ)

)
+(In(2))? ( j Z(ln(k))p 2 () |+

‘ @(pu)

o)
+(ln(2»"-1(g_1j 3000 AP (ingryy

k (P
[p_lj(ml)

n

=—d?, +d” +(In(2))" (Z%— |n(n)j—pi+1(|n(2))‘”1

k=1

17
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+'n(2)(1pj(2('”(k»p Ly’ j+ (In(2)) ( J[Z(In(k))pz 11(In(n»plj+,_+

+(In(2»“(g_1j(2$—1(l o |

k=1

Y

(o 7

Therefore,

since

k=1

sp=—df +d?+(In(2))’ (Zn:%— In(n)j—loiﬂ(ln(z))p+1

n In(Z) (1pj dnp—l + (In(Z))2 (;J dnp—Z +eeet (In(Z)) p-1 ( E _1J di

Thus,

lims, =y, +7,+(In(2))" 7 —(Inéz—j)1+ ln(Z)(lpjyp_l+(|n(2))2 [gyp_z oot (ln(Z))"‘l(E_J%
ey, In@)" (P

=(In(2))" 7, - ErrEEt |n(2) (|n(2)) Vo2 g (In(2)™ 7.

Hence,

Z( N In(k))

:(|n(2))p (Inéz—_')_l [1]"](2)}/“ ( j(ln(Z))zyP2+'”+{E_1j(ln(2))p_171'

© 1\ 2
Theorem 13. 7'(2) =Z( Y 2In(n) =%§’(2)+71[—2In(2) , Where £'(S) is the Riemann Zeta
n=1

function.

()

Proof. From Theorem 12, 1'(2) = zL!n(n) t f(x)= forx>0. Then
n

n=1

f'(x)= is (1-2In(x)) forx>0andso f'(x)<0 if x>+/e . Hence, f(X) is non-negative and
X

In(x)+1} 1 In(n) +1 and so
1

X
strictly decreasing on [2, ). Note that J. ( ) dx —[
X n

18



= In(x >
J- (2 ) dx=1. It follows that Z In(zn) is convergent. Note that this is just the negative of the
1

X = n
derivative of the Riemann Zeta function £(S) ats=2. Thatis, {'(2) =— 3 Inn(zn). Let
S, _Z( Pk —=2 In(k) . Then since Z( 1)nln( ) is convergent, lims,, Z(—l):]zln(n) .
e In(2) N In(2) In(3) N In(4) . In(2n)
1 2° 3 4° (2n)®
_ In(1)+ln(2)+In(3)+ln(4)+m+ln(2n) 9 In(2) In(4)+m+ln(2n)
Sl 22 3 g (2n)? 27 g (2n)?

o In(1)+In(2)+ln(3)+ln(4)+m+In(2n) L2 (In(Z) In(4) .+In(2n)j
Sl 22 @ g @en? ) a4l 1 22 n’

o In(1)+ln(2)+.__+ln(2n) +In(2)[ 1 +“+ij+ [In(Z) . In(n)j
Sl 2 (2n)? 2 (1 22 n?) 2\ 2 n )

In(2) 1 7? 7

Hence, lims,, =~(-¢'(2)+ 126 () -2 @) =3¢ @)+ @) a8 £ @)=

Thus, 7'(2) = iw =%g’(2) +’1[—2 In(2) .

2. Evaluation of some integrals

(1) Theintegral '[ ( )d x=A'(0)=- @

*(In(x))" = X* In(X) = In(x)
(n) S\ _ A A\ dy — A’
Since A (S) = j e dx, IO T dx =A’(s). It follows that jo Lio* dx=A’(0).

By Theorem 7, for s >—1, A(S) =n(s+1)I'(s+1) and so

A(S) =7 (s+DI(s+1) + (s +DI'(s+1) .

(In(2))’ |

Hence, A’(0) =7'()I'(L) +7()I'(1) . By Theorem 10, 7'(1) = Z( 1)* >

By Theorem 9, T"'(1) =—y, . Now, (1) =In(2)and I'(2) =1.

29 in(ayy, -

(In2))’ |

Therefore, I ( ))d =In(2)y, — 5

—In(2)y, =-

(In)’
2
(2) The integral j (X) ——dx= (In(2))2.

19



r In(xz) dx = » In(3 )dx by a change of variable u =2x,

0 1+e™ 2001y

1 In(2) 1 = In(u) :_l 2_1 2=_§ 2
= 2 0 L1 +2 0 Tig du 2(In(2)) 4(In(2)) 4(In(2)) :
(3) The integral [ XIE()(())d ~In(2) - (In(2))

ra xlngx) dx=4ijln(x2)e2: dx=4[— xln(>§) T“‘F In(x)erl i

0 cosh“(x) o0 (1+e7") 2(1+e%) |, 0 2(1+e)

= 4x0+2; '”(X)d 01+1e“ X = (—%(In(Z))ZjJrz[@T

—E(In(Z)) 24 1n(2) .

Before we evaluate the subsequent integrals, we state the following formulae or properties concerning
the Gamma function. We list also the approximate values of '(2),"(2), 7, and y, .

i) TQ=1, T'(2=1.

@)= j: edx=[-e] =1. T(2= j:’ e xdx=[-e"x ] + j: edx=0+1=1.
(ii) T'(s+1) =sI(s) fors>0.

I(s+1) = .[: e "xdx = - 7%’ }: + s_[: e x> Ydx = 0+5I'(s) = sT(s).

(iii) ['(n)=(n-1)! forintegern>1.

This follows from (ii) above.

(iv) I'(M) = -

2

" _ 2 ”_
WM T'Q) =y + 6

i) T (n)——r(n)[ P« %j |

n ( 1)k+1
= (n-k)!

(viii) (1-2"°)¢(s) =7(s) fors>1.

(vii) TP (1) =—p,I™ (@) +n! C(k+)Ir (1) , for integer n>0 .

20



(x) £'(2) ~—0.93754825431584375370257409456786497789786028861482...
(xi) £"(2) ~1.9892802342989010234208586874215163814944...

(xii) 7, ~0.577215664901532860606512090082402431042...

(xiii) 7, ~ —0.0728158454836767248605863758749...

(xiv) ¢ (3)~1.2020569031595942853...

(xv) ¢'(3) ~—0.19812624288563685333...

In(x))

(4) The integral I
+e*

I , o
IO % dx =A"(0) = (In(2)) —2In(2)y, —In(2)y, +%In(2)

Using A(S) =n(s+1DI'(s+1) and differentiating twice, we get for s > -1,

A"(S) = n"(s +DI(s+D) +7(s + DI (s +1) + 27" (s + DT (s +1) .

())

Therefore, I dx=A"(0)=n"OT'Q) +27'OQT"'Q) +nOI"Q).

1
By Theorem 12, 1"(1) = §(|n(2))3 ~(In(2))* 7, —2In(2)y,. By Theorem 10,

 In(k)

(1) = Z( 1) —In(2)7/0—(|n(22)) and 7(1) =In(2). T'(1) =1, by Theorem 9,

2

' " T
O =70, "0 =7+

Thus, A"(0)=n"QIr'Q) +27"OQT'Q) +n@OT"Q)

(In(2))*
2

= (%(m(z)f ~(In(2))" 7, -2 |n(2);/1jl"(l) + Z(In(Z)y/O - j(—%) +n@Qr'Q),

= %(m(z))"' —(INQ))’ 7, —2In(2)7, = 2I(2) 7,2 +(IN(2) )’ 7, +INQ)T" (D)

_ %(m(z))s _2In(2)7, - 2In(2)y + |n(2)(702 +%2] ,

2

_ %(|n(2))3 ~2In(2)7, ~In(2)75" +7-In(2).

(5) The integral [ ’;'fix) dx:A’(l):%g’(2)+71r—22(ln(2)+1—7/0).
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Proof. Since A'(S)=n'(s+D)I'(s+1)+n(s+DI"(s+1) for s> -1,
AN @D =n"r2)+nIr'Q).
Now, 77'(2) = i% = %4”(2) +;T—22 In(2) by Theorem 13, I'(2) =1,

n+l 2
n(2) = Z( L) = 71[—2 and I'"(2) =1+T"(1) =1—y,. We may deduce the last identity as follows.

') = jexln(x)dx [xln(x) X) X +I (xIn(x)—x)e™dx = O+I (xIn(x) —x)e™*dx

= _[:x In(x)e *dx — j: xe *dx =T"(2)—T'(2) =I"(2) —1. Therefore, I"(2) =1+T"(1) =1—y,.

2

Thus, A'(L) = 7'(2)T(2) + n(2T'(2) = (% £'(2) +f—2 |n(2)Jx1+f—2(1— 7o)

2

1 1
=§§(2)+’1’—2(In(2)+1—70)-

In(x))

It follows that I C(Z)+ (In(2)+1 %)

2 n+1 2
Remark. Giventhat £(2) = ? we can deduce easily that 77(2) = Z( Y 71Z—2 . There are

many methods of evaluating £'(2). ¢'(2) can be expressed in terms of less familiar or computable

2
constants, £'(2) = %(70 +1In(27)—-12In(A)) , where A is the Glaisher-Kinkelin constant, which is

approximately equal to 1.282427129100622636 87... . ¢{'(2) ~—0.93754825431584375370...

It was shown by using a series representation of the Riemann Zeta function of Helmut Hasse that

In (A)————Z Z( 1) ( j(k+1)zln(k+1).

r1( ))

(6) The integral J. dx=A"(Q1).

We have A"(1) = 7"(2)T(2) + n(2)T"(2) + 21 (2)T'(2)

2

2
We have I'(2) =1, I'(2) =1-y,, n(2) = 71T—2 and 7'(2) = %Q"(Z) +71[—2 In(2) . It remains to

2

determine I'"(2) and 7"(2). Starting with T"(2) = 3,* +% , We have
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r'@=["e*(In(x))’ dx=[e-X(x(|n(x)) —2x|n(x)+2x)} +[ e (x(In(x))* —2xIn(x) + 2x)lx
—0+ j:e-X(x(ln(x))2 —2xIn(x) +2x)dx

= J': e‘xx(ln(x))2 dx— ZJ’:) e *xIn(x)dx + ZI: e xdx

=T"(2)—2I"(2) + 20'(2) = ["(2) — 21— y,) + 2 = T"(2) + 27,.

2

Therefore, I"(2) =T"() =2y, =y, + % —2%,.

Now, since 77(s) = (1-2"°)(s) fors>1, 7'(s) =2"°In(2)¢(s) +(@—-2"°)¢'(s) for s > 1.
Differentiating again, we get for s > 1,

7"(s) =2 (In(2))" £ (5) +27° IN(2)¢"(5) + 2 In(2)¢ () + (L 27°)¢ " (s)
=2 (In(2))* £(5) + 22 IN)¢(8) + 1 —2")¢"(5) .

Thus, 7(2) :—%(m(z)) £(2)+IN2)C(2)++ >

= —71[—2(|n(2))2 +In(2)¢"(2) +%§ "(2).

Therefore,

2

"W =—" (@) @Q+Lo@+ Q@r
A'(D = o (In(2))" +In(2)¢ (2)+2§’ (2)+12F (2)+27'(2)T'(2)

=——(|n(2)) +In(2)"(2) +5 § (2)+—(70 —270)+2( §(Z)+—|ﬂ(2))r (2

2 2 2

=T @) + 7 =270+ 5 +In(2)§’(2)+%§”(2)+(§’(2)+%In(2)}1“’(2)

2 (@) 47 -2+ T |+ @@+ 5¢7@) +[c'(2) e In(z)j(l_%)

- n@) 7 2+ 2 +§'(2)(In(2)+1—yo)+§:"(2)+(%In(2)](1—70)

) 71T_22 2In(2)=(In(2))" =217, + 75" = 27 +%2j+§'(2)(ln(2) +l—7o)+%é’"(2) _
7’ ,

=—1|2In(2) —(In(2))2 —2(In(2) + D)y, + 1’ +%j+§'(2)(ln(2) +1—;/0)+%§”(2) :
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(7 Thelntegralj n(X)d = (2)+—(1 7o) -

s-1
1dx, fors>1. We may show in the same fashion as for

Property (ix) states that ¢ (S)['(s) = J': X
e
the relation for A(S) that this relation holds for s > 1. Differentiating the relation with respect to s

gives j ”(X) dx = £'(S)T(S) + £ (S)[(s) for s > 1.
Therefore,

[ X e c@re)+c@re

=;’(2)-1+%r'(2) =4’<2)-1+%(1—m =§'(2)+%(1—m.

2
(8) The integrals, I %dx,j X > ax j In(xx)zdx I de and
0 (1+e%) 0 (1+€") ° (1+e”) (1+¢e*)?
= x(IN(X))’
I ( (X)Z d
1+e")
For this set of integrals, we shall make use of the integral J‘wx—zdx : Since
0 (1+€")
J.w X desj dx and > dx is
0 (1+e") 1+e” 0 (1+e")
convergent for all s > —1. We can prove that IO —dx is infinitely differentiable with respect to

(1+e*)°
s for all s > —1 in the same way as proving the same for the function A(X).

S

Theorem 14. The function G(s) = Iow a > dx is finite for all s > 1. G(s) is infinitely

differentiable on (—1,00) . The derivatives G (s) is given successively by differentiating under the
integration sign and is given by

()"

(p)
GP(s) = J Loy

The proof of Theorem 14 is almost exactly the same as for the function A(X) in Theorem 4 and is
omitted.
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Thus, J.OO In(x )2 dx is the derivative of G(s)ats =0 and is equal to G'(0), J. xln(x) dx is the
(1+e%) e")’
derivative of G(s) ats =1, i.e., I xIn(x)) dx=G'(1) and I n(x))) dx=G"(1).

We seek to find a relation of G(s) with the Gamma and Eta functions similar to that of A(S).

x° x°e L, e e .
=x%e™* . We want to express ——— as a series.
@+e™)

, = =xe*——
(1+e*)* (Q+e7)? (L+e™)?

Now

1 —X
Differentiating ———, we get i 1 = € > Now, forx >0,
e dx1+e™ ([@+e™)
n =Y (-e™)" =) (-1)"e™. Notethat > (-1)"e™ converges uniformly on [k, o) for
+e7 = n=0 n=0

any k > 0. And for k > 0, the differentiated series Z:(—l)”*lne’nx is uniformly convergent on [k, «)
n=0

since ‘(—1)”*1ne ™

<ne™ and ) ne™ is convergent by the Weierstrass M-test. Therefore, we
n=0

o0

: : 1 >,
can differentiate Trer = Z(—e " = Z( 1)"e ™ term by term for x in [k, ). Hence, for all x >
+€ n=0 n=0

—X

e

k, ——— = (=D)""'ne ™ . It follows that for all x > k,
ey &Y
XSX - Xse:ZXX . Xse—xi(_l)nﬂne—nx — i(_l)nﬂxsne—(m—l)x — i(_l)n+lnxse—(n+l)x _Since
(1+e ) (1+e ) n=0 n=0 n=1
0 S
this is true for any k>0, > (=1)"™*nx*e ™ converges pointwise to TR for x > 0 and for any
n=1 +€e

s>-1.

Now nx*e ™% is Lebesgue integrable on (0, «) and

? 1 n 1 1
nxse ("DXdx = e’ dy = e Vdy = - I'(s+1
-[ -[ (n+1j nel ) (n+ 1)5*1-[ yerd ((n+1)S (n+1)5*1j (s+1)

and I'(s+1) is finite for s >-1.

o) © 1
Note that IO x’e*dx =I'(s+1) <o fors>-1, IO x**e*dx =T'(2s +1) < oo for s > - and

_[w x**e?*dx < Jm x**e7*dx =I"(2s +1) < o for s > -1
0 0 2

25

S
% 1
Therefore, I dx < IO x**e*dx =T'(2s+1) < fors > - Similarly,

dx< [
(1+¢€*)? -[0 1+e”

2s

|
0 (1+€%)

© 25

dx=T(25+1) < oo fors > —1.
0 1+e" 2
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Recall previously we have shown that

= i(—l)"e‘x("”’xs =x%e "+ i(—l)”e—x(”ﬂ)xs .
n=0

n=1

X - _x(ned) .
Recall that ————=>"(~1)""nx°e ""*. Note that each nx’e™™™ is Lebesgue integrable on

)’ =
(0, 0). Let the p-th partial sum of Z( D™ nx*e ™ be given by g, (x) = Z( 1)"nx’e X"

n=1
S

+e)?

—g,(0= Y (- Xne 0 = (-1)Pe ™Y (1) n+ p)xe O
(l+ ) n=p+1 el

Then g,(x) converges pointwise to

S

= (_1)De—po(_l)lesne—x(ml) 4 p(_l)pe—xpz(_1)n+1xse—x(n+1)

n=1 n=1

:(_1)pe—xp2( 1)n+1Xsne x(n+1)+ p( 1)p po( l)n+l S x(n+1)+ p(_l)pe—xpxse—x
Therefore, for k > 0 and for s > —%

< +

J. (p( 1)P XDZ( 1)n+lx ne—x(n+1)jdx

J' (( l)p —po( 1)n+lx ne—x(n+1)]dx

0 XS
———¢,(x) [dx
Ik[(ue*)z 9! )]
+p U: ex"xsexdx‘

S 2 o 2
J. ‘e‘zx" x\/J.kw [(erX)zJ dx + p«”kw‘e‘“p dx\/jj‘nz_;(—l)”“xse‘x(””)

+p\/ J.: e_zxpdx\/_[:o x2*e 2dx , by the Holder inequality,

2s S 2
@ —2Xp @ X ® —2Xp * X © -2 |25 42X
Sﬂuk e “Pdx “k —(1+ex)4 dx + p,”k e “®dx “k e dx + p\/jk e pdx\/jk ‘x e “*|dx
—2kp - 2s —2kp » 2s —2kp =
< |£ _[ X —dx+ p € I X ~dX + p € JJ‘ x* e ?*dx
2p \’x (1+€) 2p \’x (1+¢€%) 2p VUK

\/ (1+e) Ifezp\/ (1e) Ifezpj I oo

ffj(ue) gl s gyl e

dx
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Zs 2s
© o 1
Note that I [—jdx ,_[0 (X—)dx and L x2e 2dx are finite for s >—§ .

1+¢%)* (1+€*)?
lim & i Jpe? = X dx|=0 L
Since for any k > 0, IIm =lim e X) |ax|=0 for s >——.
y p—ow ’ p—w p~)oo .[ (1 ) g ( ) 2

1 (=
_- —x(n+1)
Therefore, for s > 5 ,jk gp(x)dx 2 ( " I nx’e dx—>I

n=

(1+e )

That is, for s > —% and k>0,

.[w—(“;) —Z( )" I nx*e ™" dx = Z( 1)"”( )M J.:ﬂ)k y'e dy,

n e(n+l)xd y d
since [“mée = [ (_Mj Loy

Hence, fors > —%and k>0,

J. (1 +e%)? _Z( 1)”+1 )S+1 J.(n+1)k yedy. (1)

n=1

Now, for each s > 0, the function f (k)= I:: " y*e Ydy is a decreasing sequence of functions on
+

[0,0) uniformly bounded by f, (0) = J': y’eYdy and

Z( 1)n+1—s+1_2( )n+1{ 1

is uniformly convergent with respect to k.

1 J
(n+ (n+1)" (n+1)™

By Abel Test, the series on the right-hand side of (1) converges uniformly with respect to k for s > 0.
Therefore, it converges to a continuous function of k. Thus, taking limits,

o0

L'L@Z<—1>””( Joyedy =3 b 1)s+1'kmg yelly=3 v MI y'e'dy
nel D™ & (™
_le( b ((n+1) (n+1)5*ljr( (Z(n-Fl) nz_ll(n+1)s+1]1“(s+1)

n+1 ( n+1

+1+Z

{25

—1]1“(3 +1) =—(n(s)—n(s+1))I'(s+1) .

Thatis, G(s) = J.w

0 ﬁdx:(n(s+l)_77(3))r(8+l) fOr s> 0, —mmmmmmmmmmmmmee (1)
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Since 77(s) as a complex function can be analytically continued over the whole complex plane to an
entire function and I"(S) can be extended over the complex plane with a countable number of poles at

{O, -1,-2,-3,-- } , We can extend the relation (1) to s >—1. For the extended 7(S), we have
n(0) = lim ;(s) . This means (1) is also valid for s = 0 if we define 7(0) to be its right hand limit at
s—0"

0.
. 1
We shall show later that 77(0) = Ilrp+ n(s) = 7"

Hence, we have proved:

Theorem 15. Fors>0,

G(s)= j X=(n(s+1)-n(s))I(s+1). )

Since 77(8) is infinitely differentiable for s >0 and T'(S) is infinitely differentiable for s > 0, both
sides of (2) are infinitely differentiable for s > 0.

Differentiating (2) for s > 0, we get,

G'(s) = j X '”(X) Ldx = (17'(s+1) —7'(8)) T (s +1) +(17(5 +1) ~7(8)) (5 +1) . —— (3)

In(x)

+e")?
determine 77(0) and 7'(0).

It follows that, I

dx=G'(0) = (7'M —7'(0)) T () +(17(1) —7(0))T'(@) . It remains to

We claim that 77(0) =%.

< 1 : .
It is well known that 77(0) is the Abel sum of the series Z:(—l)n+1 , which is 5 We shall derive this

n=1
as follows.

For 0<x<1, (1+X)Zw:(—x) B ni_l+2( x)" 1(F_(n—11)5J .

2 1

Then, (1+X) Z( X)" _1——1+2X—_+Z( )_1(5_(n_1)5+(n—2)5j

X = 1 2 1
=1+2X——+ Y X"(-)"*| =- +
DI [ (n-1y (n—Z)Sj

n

This series converges uniformly for 0 < x <1 and s €[0,1] by Abel’s Test since

2 2 1 i . . n
Z —_ = + is convergent (uniformly with respect to x) and X" is
= ns (n-1)° (n-2)°
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monotone decreasing for all 0 < x <1 and uniformly bounded. Therefore, we can interchange the
order of the limits.

Thus, 47(0) = lim lim(1+ X)ZZ(_X)H% — lim lim (L+ X)ZZ(_X)n—lis
s—0" x—>1" n 0 ~ n

- +
=1 Xx—1" s—

=lim@l+x)=2.

x—1"

Therefore, 17(0) = % .
Lemma 16. 7'(0) = 1 In (EJ
. n 5 > |

Proof. To determine 7'(0) , we shall use the following series representation for 7(S)

77(5):i(_l)mlnis:%"'%i(_l)”ﬂ(%_(nj__l)sj |

forinteger n>1 and for —1<s. Note that the derivative of

1 1
Let 9,(8) = 15— (n+1)°

is - — s X P (x+2) Ps(x* - (x+1)**) and is negative for s >0 and x > 0. Itis

y (y+1)

positive for —1<s<0. We can thus conclude that g, (s) = is — (1) is a decreasing sequence
n n+

of non-negative function for s >0, i.e., g,.,(S) < g,(S) converging to the zero function. Moreover,

g,(0)=0foralln>1. Thus, g,(s) is a decreasing sequence of non-negative function for s > 0.

However, for -1<s<0, g,(s) = is — (1) is an increasing sequence of non-positive function.
n n+
Fors>0,andn>2, g,'(s) = In(n+3) _ In(n) =0<s=lIn In(n) In[ " . Thus, for
(n+2)° n° In(n+1) n+1

each integer n>2, sup{g,(s):s>0}=g, [In( In(n) j/ln (nlj] and is positive and occurs

In(n+1) n+

at the point a, = In( In(n) ]/In(nj . Note that a, = In( In(n) ]/In (nj—>0,
In(n+1) n+1 In(n+1) n+1

limsup{g,(s):s>0}=limg,(a,). Now,

limg, (a,)=Ilim In(n)l — — |nl(n) — |=e™ —e" =0, since

i o n'"[mmu))/'”(m] (n +1)In[|n(n+1)j/ln(n+1)

!m In(n)l — = e’ = rl]m I:('n) — by applying L’Hopital’s Rule.
n'”(ln(nﬂ)j/m(ﬁ) (n +1)In[ln(n+l)J/ln(n+1)
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Hence, limsup{g,(s):s>0}=0.

1 1 1 1
Therefore, 7(s n+l +_ )M
79)= 2D AT [ns o

[0,0). Therefore, we may mterchange the limit and the summation and

] is uniformly convergent on

n+1 1 _1
|Im77(S)——+ Z( 1) slao*[ns (n+1)S]_2'

The term by term differentiated series of 77(S) =%+%Z(—1)”+1(i— 1 j is

i n° (n+1°
1<, _In(n) In(n+1) In(n) In(n+1)
2;( & [ n’ (n+1)5j ZZ( D' { n  (n+1° J
In(n) In(n+1) . o
We shall show that 2;( n" ( e (1) j converges uniformly on [0,0). Let
h,(s) = In(n) _ In(n+1) . Note that h,(s) is not a nonnegative function on [0,o0). Now, for n
n® (n+2)°
2, h'(s)=(|n(n+1)) _UnM))” _ 5 for s> 0if, and only if, s:2ln( In(n) j/ln(nj.
" (n+1)° n® In(n+1) n+1

Therefore, IQE h.(s)= Iirgl h(s) = In(n) —In(n+1) <0andh,(s) > O for

s>1In In(n) In (nj forn>2. Thus, forn>2 and for s> 0,
In(n+1) n+1

In(n) In(n+1)
n® (n+1)°
that f (S) is a monotonic decreasing sequence of functions for n>3 on s>0.

f.(s)=h,(s)—In(n)+In(n+1) =

1+n). .
+ In( j is non-negative. We shall show
n

() _In(M+D _ 1 i¢ and only if, s=|n( In(n) ]/In(nj -
n° (n+1)° In(n+1) n+1

We shall show that suph_ (s) 0 .

$>0

h,'(s) = (In(n+1))2 _(In(n))2 =0 if, and only if, s :2In( In(n) J/In(nj and the
! (n+1)° n® In(n+1) n+1

Observe that forn > 2, h, (s) =

In*(n n
absolute maximum of h, occursat b, =1In 27() In| —— |. We shall show that
In“(n+1) n+1

h (b,) \v 0.
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In(n) In(n+1)
h” (b”) - I (n ny In?(n n
nln(|n2(r(1+)1)J/ln(n+l)s (n+1)ln(|n2(r(1+)1)]/ln(n+lj

In(n)/(In(n)—In(n+1)
In*(n+1
In(n)( ( )j

(In(n+1)-In(n))

In?(n)
In(n+1)
2 In(n)/(In(n)—In(n+1)
Since lim (%j =e ™ by applying L’Hépital’s rule, limh_ (b )=0.
n—w n n n—oo

That is, suph,(s) — 0.

s>0

Then it follows that T (s) = h (s)—In(n) + In(n +1) = 1) _ I+ In(“ njtends to the
n’® (n+1)° n

zero function uniformly. Next, we claim that f_(S) is monotonic decreasing for n >2.

In(x) In(x+1) +In(lJr_xj

X (x+2)° X

Consider the function, g(X) =

Then g'(x) = sin(x) 1 N 1 N 1 _Sln(x+1)
Xs+1 Xs+l X(X+1) (X+1 s+1 (X+1 s+1

o (sln(x)_iﬁ}_ Sln(x+1)_ 1 . 1
- xS+t 7 x (X+l)s+1 (X+1)s+l X+1

sin(x) 1 1. L
We show that 551) ——7 +— is decreasing with respect to x .
X X X
1 (siIn(x 1 1
Observe that —( sfl )_ — +—] =X (xS +s(s+1)In(x)—2s —1) and note that
dx\ x X X

sin(x) 1 _,_lj <0 for x> 3. Therefore,
X

s+1 s+1

for x>3, xX°+s(s+21)In(x) >2s+1. Hence, i(
dx\ X X

sin(x) 1
XS+1 X

function for x> 3. It follows that f_(S)is monotonic decreasing for n >2. Note that

S+1

1. . . .
+ = is decreasing for x> 3. Hence, g'(x) <0 forx>3. Thus, g(X) is a decreasing
X

sup f_(s) = sug)(hn (s)—In(n)+In(n+1)) =suph,(s)+In (1+Tn] — 0 as n tends to infinity.

s>0 s> s=0

Therefore, Z[(—l)” (hn (s)+In (“—nDj converges uniformly for s > 0. Hence,
n

n=1

EZ (=1)" f,(s) converges uniformly on [0,0) . Since %Z (-D"In (n—ﬂj converges uniformly
n

2 n=1 n=1
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on [0,0). It follows that = Z( )"h (s)== Z( )" [In(n) I?rfrl;)l)}converges uniformly on

[0,00).

We may thus differentiate 77(S) term by term to give:

’ 1$ n+1 I I 1 1& n+1 ns n+1)"s
76)=53(D (— an?)+(nr$T£)s)J=§nZ_;(—l) (- )+ (142 )) - (0

= %[—In(lls)—i- In(227$)+ |n(227$)_ In(3375)_ In(33’s) n In(44*5) n In(44fs) L :|

1, 12272274 476 6 8 8
-hl———+—————---| foranys>0.
2 |13 ¥ 7T

2 [13355779 2

since we may interchange the limit operation with the summation as the series on the right of (4) is
uniformly convergent.

Thus, '(0) = Iir(r)] n'(s) = 1 In [Egﬂﬂgggg . } = 1 In (%) , by Wallis’s product formula,

We list the values of the relevant eta function, gamma function and their derivatives.

2 2

' " ! " T
FrQY)=1,Tr@2)=1TQ==y, I (1)=702+%, @) =1-y,, I (2):702+F_270’

n(0) =

2 I 2 2
,n'(O)zgln(gj, n@) =In2), n(2) = 2,77(1) |n(2)70_(n(2)) |

Wl NP

(n@)' ~(n@) 70 -2, 7@ =30 L@ Zne,

2

n'(2)= —7{—2("1(2))2 +In(2)¢"(2) +§§"(2) :

n'(1) =

Recall that for s >0, G(S):I: a X 0%
e

~dx =(7'(s+1)—7'(s)) (s +1) +(n(s+1) —n(s))I'(s+1) .

dx =(n(s+1)—n(s))I'(s+1) and

x® In(x)

G()j

Differentiating again gives,

x® In? (x)

G"(s) = j dx=(7"(s+1) —7"(s))T(s +1) +(77'(s +1) —17(5)) (s +1)

+(7'(s+1) —17'(8)) (s +1) +(m(s+1) —17(s) ) ["(s+1)

= (n”(s +1) - 77”(3))1"(3 +1)+2(r'(s+1) - 77’(3))1"’(3 +1D+ (77(8 +1) - n(s))F”(s +1).

Therefore,

32



© X 7[2 72_2
.[o (1+€*)? dx=G(1) = (77(2) —ﬂ(l))F(Z) = (E— In(2)J><l= o In(2).

2

j(1)

dx=G(2) = (7(3) - ()T R) = (n(3)—7lr—2j><2=277(3)—%-

2

Now, by formula (x), 7(3) = (1-272)¢(3) = %g(s) ,and so j:%ex)zdx =gg(3)—%2.

Iw(llz(eX)) dx=G'(0) =(7' () -7'(0) T (V) +(7®) —7(0))T"(R)

In(2 ? 1 1
= |n(2)7/o—@—E|n(%j}<1+(ln(2)—§j(—%)

= _lln(EJ_MJXJ’Fl}%
2 2 2 2

:%(}/0 —|n(9—(|n(2))2j.

o X| ’ ’ ’
I (I ne(x)) dx=G'(1) =(7'(2) -7’ )T (2) +(7(2) —n())I'(2)

_ ( @+ In(Z)] [In(zm@le{gm(m)}a%)

n2) |
_ [ £ uz)] (@) }f—z(l—yo)—ln@

_ %(g'(z) +(In(2))* -2In(2) +%2(In(2) +1-7, )J.

o Z(llne())() dx=G"(1) =(17"(2)~1" )T () +2(7'(2) 7' V) T'() +(n(2) ~n@®)T"(2)

:H_’l’_ZUn(z))2 + |n(2)z;'(2)+%;”(2)j—[%(ln(2)) ~(In())’ 7, 2In(2)71n

1, z° (In(2))2
+2[£§§(2)+E|n(2)]—[|n(2)70—TJJ@_?’O)
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. , .
+(E—ln<2)j[yo +g—2yoJ

_ In(2)§’(2)+%§"(2) +£'(2) (1—7/0)+f—2(2(1—7/0)|n(2) -(In2))’)

3 2 | 2
_(%(In(Z)) —(In(2))" 7, —2|n(2)7lj— 2[|n(2)70 _@J(l_%)

2

o , ) Vs
+E(70 +€_270j_|n(2)(70 _270)_?"](2)

2

= %C"(Z) +S'Q (=7 + |n(2))+f—22[2(1—70)'n(2) -(IN@)" +7’ +%—270 —2|n(2)j

—%(In(Z)f +(In(2))" 75+ 2InQ)7; +(1-7,) ()" =2(I(2)7,) (1= 7,) - In(2) (7,° — 27, )

= %5"(2) +¢'(2)(1-p, + In(2))+71[—2(—2In(2)7/0 —(In(2))2 +7, —l—%—Z}/Oj

—%(m(z))?’ +2In(2)7, +(In(2)) +In(2)7,*

=%§"(2>+4'(2>(1—%+In(2))+f—2(%—(ln(2))z+y02—270—2|n(2)70J

1

+(In(2))’ 3(In(2))3+ln(2)7/02+2In(2)71.

The integrals IwX—de and Jm X In(xz dx for s>0 .
0 (1+¢€") 0 (1+¢€")
x° X
(L+e*)? (1+e)®
that as a function of s, it is infinitely differentiable for s >—1 by repeated us of differentiation under

dx is convergent for all s >—1and

We can show as for the case of .[: dx, that I:

S

X

(1+e)?

dx for s> —1.

the integral sign. Let H(s)=j§o
For s>0,

£d Xs 0 Xse%x s 2% 1 : *® 1 s—1,-2x S 4—2X
0 (1+€") 0 (1+e™) 2(1+e™)" |, 0 2(1+e™)

s—1.,-2x SA—2X s—1,-2Xx S A—2X
J-oo SX™ e S o

o XTTe
==~ _dx+| ———dx=—| ———dx+| ———dx
0 2(l+e ) +, L+e ") 2 (L+e ) v, (L+e ")
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S

X
Z"I (L+e)’ j(1 %

dx =—§G(s—1)+G(s)

=_%(n(s)—n(s—l))l“(s)+(n(s +1)-7(s))T(s+1) , if s>1

= (1(s=D =)+ (7(s+D)-7($) F(s+D)
Thus, for s>1,

H(s)= (77(5 1)—n(s))T(s+1) +(n(s+1D) —7(s))I(s+1).

_ %(77(5 1)+ 2(s+1) ~37(8)) (s +1).

By the analyticity of the Eta function, we can extend the above relationtos > —1 .

Therefore, for s > -1,

xIn(x)
H'(s) = j(l oy

= %(n'(s —1)+27'(s+1)—37'(s)) T (s +1) +%(7](s—1) +2n(s+1) = 3n(s))T'(s+1) .

[ & e) ——adx=HO= (77(0)+277(2) D))
1(1 »« 1(1 7
:E[E F—3|n(2)}x1—§(§—3|n(2)j+ﬁ .
Now,
HO) =[] S 0= (7(0)+ 27 @)~ 3 D))+ 5 (1(0) +20(2) ~3n()) "D

(1 (7)) (1, A ()’
1(1
+E[§+%—3In(2)}(1—70)

= %{1— 7In(2) + 3(In(2))2 +In(7) + %2 A+In(2)—yo) =70 + 2;'(2)} _

I ) _

Loy X =H0O=5 (’7 (=1)+27'() =37 (0) T W)+ ('7(—1)+277(1)—377(0))r'(1)
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21 _1_'”(2) (In(2)) 3 [Zj
_2£3In(A) R { In(2) - ] “in| 2
1(1 1
+E(Z+2ln(2)—3§j(—]/0),
1 In(2)

In(2))*
since 77'(1) =, In(2) —@, n'(0) =%In(%) n'(-1) =3In(A) 1 3

PD=3 . 70 = and o =In2),

3In(A)_£_In(2) (In(2)) 3 (zj (_}_ Ej
s g - NS 5@+

3In(A) 1 In@) (In@2))’ —Eln(fj+[§j

"2 8 6 > 4 \2)\8g)™

3. Integrals Connected with the Riemann Zeta Function

the Gamma function. We note that it is finite and infinitely differentiable for s > 0.

S

Theorem 17. W(s) = f: X

1 dx is infinitely differentiable for s > 0 and

PO(s) = J- In(x)) d

Proof. That W(s) =

is a consequence of the Lebesgue Monotone Convergence

Theorem as asserted in the next theorem.

S SA—X

Let f(x,s)= X __ — fors>0and 0 <x<oo. Note that
e*-1 1-e™*

o f x*(In(x))"  xe™*(In(x))"

—(X,8) = (X( )) = ( _(X )) forn>1. Observe that
oS e’ -1 1-e

" x¢ (In(x))" In(x ;
ﬂ(x,s) = (In() e _( ) |s x°e”*|In(x)|" for x>1.
os" e -1 ‘ 1-e™* ‘ e-1

In(x xse‘ In(x

Let g(x,s) = X ()) ( ()) forx>0anda<s<band 0<a<b. Note that

e’ -1 1-e™*
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lim x"e™/? (In(x))" =0. Hence x’e *(In(x))" is bounded above by K >0 on [1, ®). Therefore,
X—>00

e n e n e n e
X,8)| <|—xe* (In(x))" | = —|xe ™ (In(x))"|e *'? S—‘xbe‘x’2 In(x ‘e‘x’z <K—e™?
x| e ()| =S e (mo) Je o <2 e () e s
Ke x’e™* (In(x))"
for x> 1. Since —1e’X’2 is integrable on [1,), g(x,s) =%is integrable on [1,0)
e-— —e
for0<a<s.
ForO<x<1,
xse‘x(ln(x))”| xae‘x(ln(x))”| I n
X,8)| < < < X*(In(x)) |.
909l o e e
Note that Lo is continuous on (0,1]. Moreover,
—e
lim —=lim— =I|m%=1
x—0"]1—e x—0" " — x—0" @
1 xe™ “(x=1)+1
Note that ——— is differentiable on (0,1] and its derivative, — € — __¢ (X )2
e -1 dx1-e (" -1

Since €*(x—1)+1 cannot have zero in (0, 1]. It follows that has no stationary point in (0,1].

X

. . . . . X .1 1
Since — is non-negative, its supremum in (0, I mustbe 1as lim ——=lim —=1>—.
e" -1 x>0t et =1 x-0" e e-1
. . . ) e .
That is, supremum of on (0,1] is 1. Thus, —— <1 for xin (0,1]. In particular, —isa

e* -1 e’ -1 1-e
decreasing function on (0,1].

— n —
<xaex(|n(x))|S e e

- . < Xa—l
l-e ‘ 1-e

(In(x))" (In(x))"

lg(x,s)| <

x°e™* (In(x))"
1

—e ¥

We have shown in the proof of Theorem 3 that x** (In(x))" is Lebesgue integrable on (0, 1].

x*e™ (In(x))"

—X

Therefore, g(x,s) = is Lebesgue integrable on (0, 1]. It follows that

x*e™ (In(x))"

is Lebesgue integrable on (0, ) .
1l+e

g(x,8) =

ﬁe‘”z, if x>1
We define h(x)=4€-1 . Hence, |g(x,s)|<h(x) forx>0anda<s<band
x(In())’'|, if 0<x<1

0<a<Db. Notethath is Lebesgue integrable on (0, «). So, it follows as for the case of Gamma
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function by repeated use of Theorem 1 part (ii) of “Integration Using Differentiation Under The

2

is infinitely differentiable at s for a < s < b. Since a and b are

In X
P (s) = _[ —())dx forn>1.
-1
Proof. Now X _ Xe” —xse‘xi“e‘nX —i:xse‘(””)X
' -1 1l-e '

.[ dX ZI e (DX _ Z 0 n+1(n+1j evdy

S [~ S —y 1 ©sa-y
-2, (n+1)s+ly dy—[ZWJLye dy =¢(s+D(s+1),

n= n=0

by the Lebesgue Monotone Convergence Theorem.
S

. ) X
Now we turn our attention to the integral 17 fors>1.

Theorem 19. For s > 1,

1) j dx T(s+1)({(s)-<(s+D), (2 j ) — 2= dx=T(s+1)c(s).
Proof.
Xs Xse—2x s e—2x —2X )
ow, ——— = —— =X — . We want to express ———— as a series.
(e"-1)° (1-e7) @-e) @-e)
Differentiatin L d 1 ___ & > , , 17 =>e™
1-e™* dxl e @-e™) l-e* =

Note that Ze’”X converges uniformly on [k, o) for any k > 0. And for k > 0, the differentiated series
n=0

> —ne™™ is uniformly convergent on [k, %) since ‘ne’nX <ne™ and ) ne™ is convergent by

n=0

o0

=" e ™ term by term for x in [k, o).

the Weierstrass M-test. Therefore, we can differentiate s
—€ n=0

That is, for x in [k, o), d 1 S 2=—Z:ne‘”’(.
dx1-e™ @-e™) =
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It follows that for all x > Kk,

S

—2X 0 o0
X x°e . . . . -
= — =x%e) ne™ =>"nxe ™" Since this is true for any k > 0,
(e'-1)° (@-¢e7) P =
N _ N x°
> nx*e ™ converges pointwise to (X—lzfor x >0 and for any s > 1.

n=1 -

) 1 n ®
N nxse (MY*dx = -2 |eY—dy= seVdy = I'(s+1
o I -[ (n+1) e (n+1)5+lJ‘0 yerdy (n+1)5+l (5+D).

Therefore, for s >1, by the Lebesgue Monotone Convergence Theorem,

” —(n+1)x = n B il n
Io @ 1) dx = ZJ. nxe " dx =" n+1)s+1F(s+1)_(2—n+1)5+1]1“(s+1)

n=0 n=0

1
- F(S’“Ll)zﬂ(n ) (n +1)S+1J

=T(s+D(L(s)-<(s+1)).

In a similar way, we have,

J-: (ex el) dx = zj‘ nx’e ™ dx = 2:3 [(s+1)=TI(s +1)§1:n_]; =I'(s+1)Z(s)-

Example of application.

S

00 X B oo— 1
Io COSh(X)—ldX_Jo 2sinh? (( J) .[ [ J

2

N\X
N\x

———dx=2 j ~dx = 20(s+1)£(S) -

2. [ @ 1) =T (¢(@)-¢@)= [E—§(3)],

& )dx P (@) -¢(4)=6(,3)-¢@®)

w(s) =] X X'”Ol‘) dX = (s +D)T(s+1) + £ (S +DT (s +1).

Differentiate again gives,
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J, - (Infxl))-d =P7(5) = ¢"(S+YT(s +1) + ¢S+ DT (S+1) + S+ YT (s+D + ¢ (s+ )T (s+D)

="(s+DI(s+D)+ 24" (s+DI'(s+D)+ L (s+DI"(s+1).

n(x)

Therefore, j dx = W'(1) = £'(QT(Q2) + £ (2T (2) = g(2)+—(1 7,) and
J; XU 40— oy = £ 2) + 20 AT + CQTR)

=4"(2)+25'(2)(1—y0)+%(7£ +%—270]-

S AX S A X S 2 ® S 4—kX
4, Morelntegralsofthetypej Xe€ > X I xe—ln()2<)dx .[ L(Xz)dx I LZ
0 (1+e%) 0 (1+e) 0 (1+e) 0 (1+€e)
- xSp » X7 (In(x))’
[ gy e xe ZI0I) gy,
0 (1+¢€%) o (1+¢€")

S AX s o—kx

. ©  Xe
We can show that the integrals IO (1—
+

dx and | ———
eX)Z -[O (1+e>()2
and infinite differentiable with respect to s in the same way that we show in Theorem 4 that
0 XS

A(S) =
®) IO l+e

the integration sign repeatedly.

dx fork >0 and s > —1are finite

—dx is infinitely differentiable for s > —1 and that we can apply differentiation under

S

X
Using the expansion for =" (=D nxse (DX
J P (1+€*)? (1+e )? nzll( )

In the proof of Theorem 14, we get for s >0and k>0,

xSk _ i(_l)nﬂ nxSe (MHEDX
(1+e><)2 =1
0 5] s 1 n ©
Note that | nxSe "*DXdx=| n y eV dy = seVd
'[0 -[0 n+k+1 nrkel (n+k+1)s+1'[0y y
n
=——TJ(s+1) .
(n+k+1)** (s:+1)
s A—kx

As in the proof of Theorem 14, we can integrate W term by term.
+e

* X567 n+1
,[0 (1+eX) (Z( 1) (niks 1)MJF(S+1) for s>0

n=1
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u el 1 k+1
B [nz_;(_l) [(n Tk+1)® (ntk+1)" DF(S”)

k+1

:(i(_l)r”k(__(k 1) s+1j Z(_l)nJrk(__(k 1) s+l)]r(s+1)

= (-1 (7(s)—(k+Dn(s+1))I'(s+1)— i (-1"* ( —(k+1)— P )]‘(s +1)

= (-1 (n(s) - (K +Dn(s+1))I(s+1) - (—1)‘”12 - (F —(k+1) nil )1‘(5 +1).

n=1

With k = 0, we recover Theorem 15, for s > 0,

(Z( )”+l )sﬂ]r(s +1)

= (D) (7(8) - (s +D)T(s+1) = (m(5+1) ~7($)) T (5+D).

I (1+e)

By continuity of 7 ats =0, we can extend this relation to s = 0.

Hence, for s >0,

o x5
AN V. _ . L o
I (1+eX)2 dx (77(5_'_1) U(S))F(S +1) ( )
With k = 1, we get for s > 0,

[ [Z( D )s+1jr<s+1>

d+e" )

=(n(s)-2n(s+1))(s+1)— (ZZ: 1)“*1( - %))F(sﬂ)

=1

=(n(s)-2n(s+D)I'(s +1)—(1—2—i+2 23*1)”5 +1)

=(n(s)—-2n(s+D+1)I(s+1).

Again, by continuity, we have for s>0 ,

j:%dx =(n(s)-2n(s+D+1)I(s+1). (2)

With k =2, we get for s >0,

w Xse—2x o
J.o (1+e ) (Z( 1) 3)S+1)F(S+l)
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=—(n(s)-3n(s+1)I(s +1)+Z( 1)”*1( S+l]]‘(s +1)

=(3n(s+D) —n(s)) I (s+D)+(@1-3) - (i—?, 11 l—3 11j1“(s+1)
25 25+ 35 3S+
1
= 377(s+1)—77(s)—2+25+1 I'(s+1).
By continuity, we have, for s >0,
[ xe™ dx=[377(s+1)—77(s)—2+ 1ljr(s+1). ------------------ 3)
0 (1+e><)2 25+
Now, _xe = i(—l)n+1 nx°e™™ and for s > 0, we get
1+e*)’ &

o xe* _ n+l nx i [ Xs—yl
j(l+e)d Z( 1) jnxe dx = (1) _[On(nje ~dy

—Z( - j ~yedy = (Z(—l)"” nij J, ey dy=n(s)rs+D).

Again, by continuity, we get for s>0,

SAX

[ (11 :X)Z dx = 7(S)T(5+1). ——nr @)

kx

Note that for s>0 and k>2, .f dx is divergent.

(1+e")*

Therefore, for s>0,

[ (1e Ien()x) dx =7/ (S)L(S+D) +7(S)I'(S+1) | =-emrmmemmememeees ()

J-O x(<19 In)(x)dx (7'(s)—217'(s+D))T(s+1) +(7(s) —2n(s+1) +1)T"(s+1) . ------ (6)

»x°e™ (In(x))’
J- X'e (

o (1+e)? dx =(n"(s)—2n"(s+1))T(s+1) +(n'(s)— 217’ (s +1))T" (s +1)

+(17'(8) =27 (s+1)) T (s +1) +(17(s) —2n(s +D) +1)I"(s +1)

=(n"(s)—2n"(s+1))T(s+1)+2(7'(s) —277'(s+1) )T (s +1) +(77(s) —2n(s +1) +1)I"(s +1).
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Application.
Using (2),

w

dx — (7(0) - 27() +1)T'(1) = (%—2In(2)+1]-1=——2|n(2),

I(1e) 2

2 2

J'OO xe 2 dx — (77(1) _277(2) +1)1—~(2) — (|n(2) —% +1]'1= |n(2) _%—Fl.

0 (1+¢€%)

Using (3),
dx:£377(1) 7(0)—2+= jl“(l) 3|n(2)———2+1_3|n(2) 2,
(1 e)’ 2
oo xe™ i 7
(1+e) dx:(377(2) (1) - 2+—)r(2) 3—2—|n(2)__:7—| (2)——,
[ X'e dx=(3n(3) n(2)—2+— jr(s) 2[3(1 2> )5(3)—”—2—§J
(1+e) 8
P 72 15 _9 _ﬂ_Z_E
(3(1 2 )4(3)—E—§j— 4€) 7
From (6),
[, St = (10~ 20 )+ (10) -2+ T’

e In(x) 7 (In(2))2 1
j(1+e) dx (Zln(gjz(ln(Z)yo > J]+[§2In(2)+lj(yo)

%m(gj-zm(zm +(In(2))’ +(2ln(2)—gj7o

1 V4 2 3
:Eln(gj‘l‘(ln(Z)) —Ej/o.

Xe~ In(x)d
I (1+e*)’

= (7 ©-27/(2))T@)+(7(1) - 27 +)T'(D)

~ _(In(2))2 (1. A 7
—uln(Z)yo > 2 2;(2)+12 In(2) | |+| In@2)-2 2+1 (1-7,)
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—In()y, - (”(2)) _2)- In(2)+In(2)—%2+1—[ln(2)—%2+1}/0

- -2 ) )1 4(2)+[F2-1]
Using (4),

.[o (1+e) ——z X=70)Q) =

©  Xe

.[o deZU(l)F(Z) =In(2),

2 X 2

»  x% T 7’
dx=nQr@) ="2="_
J ey XA =15-2="

3

[/ = ire )dx (T4 =6(1-27)¢(3) = —;(3)

From (5),

| 1 1
[ (el S = O 1 Or = —In(zj 5(%):5(!{%)—%}

In(2))*
[ tle_'”(;()d ,7'(1)r(2)+77(1)r'(2)={In(2)70—(n(7))}'n(2)(1—7o)

@) (In(2))

2

x’e* In(X) , 7 T
I o) dx=71"(2TR)+n(2r'(3) = { 5(2)+Eln(2)]o2+ﬁl“(3)

2 2 2 2

_ oy L T LAWY & z
=S+ @+ 5 (3-2) =@+ @+ =70

1 3.1 1 3
since ') =-T'R)| =+y,— ) — |=-TQ)| =+y,-1-=—-= |=2| =-— =3-2y,.
3) ()[3 Yo ;kj ()(3 7-1-3 3j (2 %j Yo
We can differentiate (4) and (5) repeatedly to obtain relation of the derivatives,
= x%e* (In(x))" = xe”* (In(x))"
J‘ &dx j &dx

o (1+e")? Cdo (14e)?

forn>2.
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For instance:

Recall from (7),

rww

o (1+e%)

=(1"(s) = 27"(s +1)) T (s +1) + 2(17(8) — 277'(s + 1)) (s +1) + (17(5) — 217(s + 1) + ) (s +1) .
Thus,

OO —X I 2

J %dx=(77"(0)—277"(1))r(1)+2(n'(0)—277'(1))rr(1)+(,7(0)_277(1) ).

We shall need to determine 7"(0) . From the identity 7(s) = (1—2"°)£(s) , we can express 7"(0)
in terms of the Zeta function.

By analyticity for s < 1, we can differentiate the above identity twice to give,
7'(s)=2""In(2)¢(s) + (L-27°)¢"(s)
and 7"(s)=-2"" (In(2))2 C(8)+27°In(2)L'(s) + (L—2"°)C"(s) .

Therefore,

7"(0) =-2(In(2))* £ (0) + 22 In(2)¢"(0) — £ "(0)
=(In(2))* +2° In(Z)(—%In(Zn)j—g”(O), since £ (0) =—% and £'(0) =—%In(27z),

=—(In(2))’ -2In(2) In(z) - £"(0).

By Apostol’s formula,

2

- (0)———(|n(2 )’ +ﬂ_§§(2)+ Yo+

2

1 7 1
:_E(m(zﬂ))z —£+§y02 T — ®)

Therefore,

77”(0)=—(In(2)) —2In(2)|n(7z)—[——(ln(2 )) —§+;yo +}/1j

2

=—(In(2) )’ —2In(2) In(z) + = (In(2)) (In(ﬂ))z+In(2)|n(7r)+%—%y02—y1

2

1 2 1 2 z~ 1 ,
=—§(In(2)) +§(|n(7z')) —|n(2)|n(7z)+£—§7/0 -7, - 9
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where y; is the Euler Mascheroni or Stieltjes constant.

Thus,

w e ¥ | 2
J %dx=(77"(0)—277"(1))F(1)+2(77’(0)—277'(1))r'(1)+(,7(0)_277(1) I

2

= _%(m(z))2 +%(In(7z))2 =In(2) In(z) +%—%%2 N

—2(%(In(2))3 ~(In(2))’ 7, —2'”(2)71)

27, (%ln(%j—Z(ln(Z)% _%(In(Z))ZD

+(%—2In(2) +1j[;/02 +%2}

—- 2@ + 2 () - @I+ 2 -2 7,

2 2

2 3 T 3 n°
—Z(In)Y +4In(2)y, —In| = |y, +2In(Q)r 2 +=y.> +——"—In(2
3( (2)) 2, (Zj% 2)7, 270 13 (2)

2

:_%(m(z)) (| (z )) ——(In(2)) —In(2)|n(7z)—?|n(2)+72—4+7o ~N

+4In(2)y, - In(%) 7o +2In(2)7,”.

» (In(X ?
Similarly, we can evaluate _[0 El ( 2;2 dx as follows.
+e

x® In?(x)
+e%)?

Recall that j

=(7"+D—=71"(s))T(s+1) +2(7' (s +D)—7'(s)) T (s+D) +(n(s+D) —7(s) ) I"(s +1).

Therefore,
I, o = (-7 @) @+2(7 -7 O) O+ ()1 0) ')
:77"(1)—77"(0)—270(ln(Z)yo —%(In(Z))Z _%m(%n{m(a_ %j[%z +%J
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- %(m(z))"’ ~(In(2))* 7, - 2In(2)7,
—(—%(In(Z))z +%(In(7r))2 ~In(2) In(7) +% —%}/02 —ylj

2 T 1 7l T
—2In(2)702 +(In(2)) Vot In(Ejyo + In(2);/02 —E)/OZ +E In(2)—E

_ %(m(z))3 ~(In2)) 7, -2In(2)y,

+%(In(2))2 —%(In(n))z +In(2) In() —Z—;+%702 +7

2 T 1 7l 7t
—2In(2)7/02 +(In(2)) Yo+ In(Ejyo + In(2)7/02 _5702 +€ In(2)—E

2 2 2

1 2 1 3 1 2 /4 T
:E(In(z)) +§(In(2)) —E(m(ﬂ')) +|n(2)|r1(72')—£+gln(2)—E+7/1—2|r1(2)}/1

~In(2)y,’ +In(%]y0.
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