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We shall begin by examining the properties of the image under a function f  of a set in 

which  f  has finite derivatives that are bounded by a constant.  The first property we 

examine is the relation between the measure of such a set and the measure of its 

image.  We state this property in the next theorem. 

 

This result appears in Saks monograph on the theory of the integral and there are a 

number of proofs of the result.  But I shall present a proof using some finiteness 

argument, a consequence of compactness and the triangle inequality. 

 

Theorem 1.  Suppose  f : [a, b] → R is a function.  Suppose E is a subset of [a, b] 

such that at each point x of E,  f  is differentiable and | f ' (x)|  K for some constant K 

 0.  Then if m denotes the Lebesgue outer measure, 

                                         m( f (E))  K m(E)   ----------------------  (A) 

 

Proof .   Now  E = { x  [a, b] : | f ' (x)|  K }   [a, b] and so E  has finite outer 

measure.  If  E  is finite or denumerable, then the set  f (E) is at most denumerable and 

so both  m( f (E)) and m(E) are zero and we have nothing to prove since both sides of 

the inequality are zero.  We shall now assume that E is uncountably infinite.  We may 

assume that neither a nor b is in E since adding any finite number of points to E will 

not alter the inequality (A). 

For any  > 0, by the definition of outer measure, there exists an open set U in [a, 

b] such that U  E and m(U)  m(E) + .   

Since for each e in E, | f ' (x)|  K , for  > o there exists a  e > 0 such that 

                                . 

and so 

                                . 

Thus we have, 

                                 .         --------------  (1) 

  

 Since U is open, we may choose  e > 0 such that the open interval (e −  e , e +  e)  

U.   Denote (e −  e , e +  e) by I e .  Then inequality (1) says that   

                                    -----------------  (2). 

Then the collection C  = { Ie : e   E} covers E and the union W =  {V : V   C} =  

{ I e : e   E}  U.  In particular the union W  is open and so is a disjoint union of 

countable number of open intervals, i.e.,  

                                          , 

where B the index set is a subset of the set N of  natural numbers and each Ui is an 

open interval.  We shall show next that for each i in B, 

                                     m( f (Ui  E))  (K+) m(Ui).--------------------------   (3) 

Note that  Ui = { I e : e   Ui  E }.  Observe that each Ui is a path component of W.  

0  x − e  e 
f (x) − f (e)

x − e − | f (e)|  

0  x − e  e 
f (x) − f (e)

x − e  | f (e)| +   K + 

x − e  e  f (x) − f (e)  (K+ )|x − e|

x  Ie  f (x) − f (e)  (K+ )|x − e|

W =Ui : i B
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Plainly for e   Ui  E , I e  Ui   and since I e  W and Ui is a path component of 

W,  I e  Ui.  It follows that { I e : e   Ui  E }  Ui .  For any x in Ui , x  I e for 

some e in E, since W =  { I e : e   E} and so I e  Ui   .  It follows as in the 

above argument that I e  Ui and so e  Ui  E .  Thus,  x   I e  for some e  Ui  E, 

that is, x  { I e : e   Ui  E } and so Ui   { I e : e   Ui  E }.  This proves that  

Ui = { I e : e   Ui  E }. 

Now take any x < y in Ui .  Since Ui is an open interval, the closed and bounded 

interval [x, y] is contained in Ui .  Now plainly the collection  B  = { I e : e   Ui  E } 

is an open cover for [x, y].  Since [x, y] is compact, there exists a finite subcover say 

                                          I1 , I2 ,   , In 

where Ii = (ei − (ei),  ei + (ei), for some ei in E and (ei) is as given in (1).  We 

assume that the ei
 's are ordered in an increasing order.  Hence  

                          [x, y]  I1  I2    In 

and e1 < e2 <   < en. 

We may assume that x  I1 .  This is seen as follows.  If x  I1  x must belong to I j for 

some 1   j  n  and x   Ii for  for 1  i < j.  Then [x, y]   Ii =   for 1  i < j.   It 

follows that [x, y]  I j  Ij+1    In  and so we can rename if need be I j to be I1, 

Ij+1 to be I2 and so on.   By a similar argument we may assume that y  In.  We may 

also assume that Ii  Ii +1   for 1   i  n −1 and that  Ii   Ij for j  i.  We can 

deduce this as follows.  If  Ii  I j, then the collection of the Ik 's without  Ii  still covers 

[x, y] and so we can discard Ii and rename the Ij 's.  Then starting with I1 , suppose  I1 

 I2  = .   Then since [x, y] is path connected,  I1  { Ij : 1< j  n}  implies for 

some 2 < j  n, I1  Ij   .  Then ej − (ej) < e2 − (e2)  implies that (ej)  > ej − e2 + 

(e2) > (e2) and so ej + (ej) > e2 + (e2) and so I2  Ij . This contradicts that I2  Ij .  

We can repeat the same argument to show that Ii  Ii +1   for i > 1. 

Thus, in this way we may assume that we have a sequence of points x1, x2, , xn - 1 

such that 

                                   e1 < x1 < e2 < x2 <   < en - 1 < xn - 1 < en  

and xi  Ii  Ii +1 for 1   i  n −1.  Therefore, by (2) and the triangle inequality. 

  

 

  

            

  
  (K+) m( I1  I2    In )  (K+) m( Ui). 

 

Hence the diameter of  f (Ui)  (K+) m( Ui).  It follows that m( f (Ui  E))  (K+) 

m(Ui).  This proves (3). 

Then using (3), we see that         

                 

                 

                . 

Since  is arbitrary, we conclude that  . 

 

Theorem 2.  Suppose  f : [a, b] → R is a measurable function.  Suppose E is any   

measurable subset such that  f ' (x) exists finitely for every x in E.  Then 

f (x) − f (y)  f (x) − f (e1) + f (e1) − f (x1) + f (x1) − f (e2) + f (e2) − f (x2)
++ f (xn−2) − f (en−1) + f (en−1) − f (xn−1) + f (xn−1) − f (en) + f (en) − f (y)

 (K+ ) x − e1 + e1 − x1 + x1 − e2 + e2 − x2 +
+ xn−2 − en− + en−1 − xn−1 + xn−1 − en + en − y 

 (K+ ) x − e1 + e1 − en + en − y 

m( f (E)) = m( f (Ui  E) : i  B) 
iB

m( f (Ui  E))


iB

(K + )m(Ui) = (K + )m(W)  (K + )m(U)

 (K + )(m(E) + )

m( f (E)) Km(E)
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 , 

where m is the Lebesgue outer measure. 

 

Proof.   Since f  is measurable and finite on [a, b], its Dini derivatives are measurable. 

(Banach Theorem).  Consequently,  f '  is measurable on E  and so | f ' | is 

measurable on E.  Suppose now g = | f ' | is bounded on E, by a positive integer K, i.e., 

| f ' (x)| < K for each x in E.  For any positive integer n and integer i =1,2, ,2n K, let  

.    Define   for each positive integer n.  

Then ( gn ) is a sequence of simple functions converging pointwise to g on E.  In 

particular,  

                                                 .  

By Theorem 1,   for integer i =1,2, ,2n K,  Thus, 

               

                                                         

                                                        .   -----------------------  (1) 

Therefore,   .  Since,  and  , 

we conclude that  

                                              . 

We now consider the case when g is unbounded.  For each integer k > 1, let  

   
Then it is obvious that E is a disjoint union of the Ek's.  Note that on E k ,  g is 

bounded by k.   Hence, by what we have just shown, for each integer k > 0,  

.  Therefore, 

                             . 

This completes the proof of Theorem 2.   

 

We have some easy consequences of the above theorems. 

 

Theorem 3.  Suppose  f  is defined and finite on [a, b].  Suppose E = {x  [a, b]:  f  is 

differentiable at x and  f ' (x) = 0}.  Then m( f (E)) = 0.   

 

Proof.  By Theorem 1 m( f (E))  1/n m(E)  for any positive integer n.   Therefore,          

m( f (E)) = 0.   

 

Recall a set is called a null set if its measure is zero. 

 

Theorem 4.  Suppose  f : [a, b] → R has a finite derivative at every point of [a, b].  

Then  f  maps null sets onto null sets. 

 

Proof.  Suppose E is a null set in [a, b].  Then by Theorem 2,  

                           . 

m( f (E))  
E

f 

En, i = g−1 i − 1
2n ,

i
2n E gn = 

i = 1

2n K
i − 1
2n En, i


E

gn  E
g

m( f (En, i)) 
i

2n m(En, i)

m( f (E)) = m( f (
i = 1

2nK

En, i)  
i = 1

2nK
i

2n m(En, i)

= 
i = 1

2nK
i − 1
2n m(En, i) +

1
2n 

i = 1

2nK

m(En, i)

= 
E

gn +
1
2n m(E)

m( f (E)) 
n  
lim (

E
gn +

1
2n m(E)) 

E
gn  E

g
1
2n m(E)  0

m( f (E))  
E

g

Ek = g−1([k − 1,k))E.

m( f (Ek))  Ek
g

m( f (E))  
k = 1



m( f (Ek)  
k = 1




Ek

g = 
E

g = 
E

f 

m( f (E))  
E

f  = 0



 4 

Hence m( f (E)) = 0.  This proves the theorem. 

 

Theorem 5.  Suppose  f : [a, b] → R has a finite derivative at every point of [a, b] and 

f '  is Lebesgue integrable on [a, b].  Then for every closed and bounded interval [c, d] 

in [a, b], 

                                 . 

 

Proof.  Since  f  is continuous on [a, b], | f (d) − f (c)|  m( f ([c, d])).  Since  f  is 

differentiable at every point of [c, d],  by Theorem 2, 

                          . 

It follows that   . 

 

We can apply Theorem 5 to the next result. 

 

Theorem 6.  Suppose  f : [a, b] → R has a finite derivative at every point of [a, b] and 

f '  is Lebesgue integrable on [a, b].  Then  f  is absolutely continuous.        

 

Proof.  Since  f ' is Lebesgue integrable, | f ' | is also Lebesgue integrable on [a, b].   

For each positive integer n, let gn = min( | f ' |, n).  Then each gn is Lebesgue 

integrable on [a, b] and the sequence ( gn ) converges pointwise to | f ' |.   In particular, 

for each n, |gn |= gn  | f ' |  and so by the Lebesgue Dominated Convergence 

Theorem, 

                                                  . 

Hence, given any  > 0, there exists a positive integer N such that  

                      .       

 It follows that 

                        .         -------------------------- (1) 

Now take .  Suppose [ai , bi], i = 1, 2, , k are non-overlapping intervals in [a, 

b].   If  , then 

               by Theorem 5, 

                                            

                                         

                                         

                                                    by (1) , 

This shows that  f  is absolutely continuous on [a, b]. 

 

Remark.  Theorem  6 is Theorem 8.21 in Rudin's Real and Complex Analysis in an 

equivalent formulation. 

 


c

d
f   | f (d) − f (c)|

m( f (c, d))  
c,d

f  = 
c

d
f 

| f (d) − f (c)|  
c

d
f 


a

b
gn  a

b
f 

n  N  
a

b
f  − 

a

b
gn 


2

n  N  0  
a

b
( f  − gn ) 


2

 =


2N


i = 1

k

|bi − ai|  


i = 1

k

| f (bi) − f (ai)|  
i = 1

k


ai

bi

f 

= 
i = 1

k


ai

bi
( f  − gN ) + 

i = 1

k


ai

bi

gN

 
a

b
( f  − gN ) + 

i = 1

k


ai

bi

N

= 
a

b
( f  − gN ) + N 

i = 1

k

|bi − ai|



2

+ N =

2

+

2

= 
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More generally we may relax the requirement of everywhere differentiability but we 

need to impose the requirement that  f  maps null sets to null sets.  This is a necessary 

condition for absolute continuity. 

 

Theorem 7. Suppose  f : [a, b] → R is continuous and f '  exists almost everywhere 

and is Lebesgue integrable on [a, b].  Suppose  f  maps null sets to null sets.  Then  f  

is absolutely continuous.        

 

Proof.   Let E   [a, b] be the subset where f ' exists at each point so that the measure 

of [a, b] − E is zero.  Then |  f '  | = g almost everywhere, where g(x) = | f ' (x)| for x in 

E and g(x) = 0 for x outside E.   Then there exists an increasing sequence of simple 

functions (gn) converging pointwise to g almost everywhere and  

                                           . 

Thus, given any  > 0, there exists a positive integer N such that  

                      .      ----------------  (1) 

 

Suppose [ai , bi], i = 1, 2, , k are non-overlapping intervals in [a, b].  Let  

Ei ={x  [ai , bi]:  f ' (x) exists.}.  Then since  f  maps null sets to null sets and m([ai , 

bi]−Ei) = 0, m( f ([ai , bi]) = m( f (Ei)).   By Theorem 2,   and so for 

each i,   

                                     .       ------------------------  (2) 

Since  f  is continuous,  f  is also continuous on [ai , bi] and so by continuity, 

                | f (bi ) − f (ai )|  m( f  ([ai , bi]) )for each i = 1, 2, , k.   

Therefore, by (2) we have    

                             

                                                      since m([ai , bi]−Ei) = 0 

                                                     

                                                      
                                                                  where K > 0 is an upper bound for g N.. 

                                                      
                                                                                  ------------------------------- (3). 

Take ,   It follows from (3) that if   , then 

                                 . 

This shows that f  is absolutely continuous. 

 

As a corollary we have the Banach Zarecki Theorem. 

 

Theorem 8 (Banach Zarecki) .  Suppose  f : [a, b] → R is continuous and is a 

function of bounded variation.  Suppose  f  maps null sets to null sets.  Then  f  is 

absolutely continuous.        


a

b
gn  a

b
f  = 

a

b
g

n  N  
a

b
g − 

a

b
gn = 

a

b
(g − gn ) 


2

m( f (Ei))  Ei
f 

m( f (ai, bi))  Ei
f 


i = 1

k

| f (bi) − f (ai)|  
i = 1

k


Ei

f  = 
i = 1

k


Ei

g

= 
i = 1

k


ai

bi

g

= 
i = 1

k


ai

bi
(g − gN ) + 

i = 1

k


ai

bi

gN

 
a

b
(g − gN ) + 

i = 1

k


ai

bi

K,



2

+ K 
i = 1

k

|bi − ai|

 =


2K

i = 1

k

|bi − ai|  


i = 1

k

| f (bi) − f (ai)| 

2

+ K


2K
= 
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Proof.  Since  f  is of bounded variation,  f  is differentiable almost everywhere and  f ' 

is Lebesgue integrable.  Therefore, by Theorem 7,  f  is absolutely continuous.     

            

Remark.  It is easy to see that if  f  is absolutely continuous on [a, b], then  f  is 

continuous and of bounded variation on [a, b].  Any function of bounded variation on     

[a, b] is the difference of two increasing functions (see for instance Theorem 13 of  

"Monotone functions, function of bounded variation , fundamental theorem of 

Calculus").  Since any increasing function on [a, b] is differentiable almost 

everywhere on [a, b] and its derived function is Lebesgue integrable on [a, b], any 

function of bounded variation is therefore, differentiable almost everywhere on [a, b] 

and its derivative is Lebesgue integrable on [a, b].  So  if  f  is absolutely continuous 

on [a, b], then  f  is differentiable almost everywhere on [a, b] and  f '  is Lebesgue 

integrable on [a, b].  If  f  is absolutely continuous on [a, b], then  f  maps null sets in 

[a, b] to null sets (see for instance Proposition 9 of my article "Change of variable or 

substitution in Riemann and Lebesgue Integration"). Thus the converse of Theorem 7 

and Theorem 8 are also true. 

 

With a little thought we shall derive the following theorem. 

 

Theorem 9.  Suppose  f : [a, b] → R is absolutely continuous and  f ' (x) = 0 almost 

everywhere  on [a, b].  Then  f  is a constant function. 

 

Proof.  It is enough to show that the range of  f  has measure zero.  Let E = {x  [a, b] 

 f ' (x) = 0}.  Then m( [a, b] − E) = 0.  By Theorem 3, m( f (E)) = 0.  Since  f  is 

absolutely continuous, it maps null sets to null sets (see Proposition 9 of my article 

"Change of variable or substitution in Riemann and Lebesgue Integration").  It 

follows that m( f ([a, b] − E)) = 0.   Therefore,  m ( f ([a, b]))   m( f (E)) + m( f ([a, b] 

− E)) = 0.  It follows that m ( f ([a, b])) = 0.  Since  f  is continuous and [a, b] is 

compact and connected,  f ([a, b])) is compact and connected and so is either a non-

trivial closed and bounded interval or a single point. Since a non-trivial closed and 

bounded interval has non-zero measure, f ([a, b])) must be a single point, 

consequently  f  is a constant function. 

 

The next result is a consequence of a function having the property of being a 

continuous N function.  In particular the result applies to an absolutely continuous 

function on [a, b]. 

 

Theorem 10.  Suppose  f : [a, b] → R is continuous and maps null sets to null sets, 

i.e.,  f  is a continuous N function.  Then  f  maps measurable sets to measurable sets.  

 

Proof.   Since the Lebesgue measure is a regular measure, for any measurable set  E 

there is a subset, a F set, K in [a, b] such that  K  E  and m(E − K) = 0.  By a F set 

K, we mean K is a countable union of closed sets in [a, b].   Thus  

                                                      , 

where each Kn is a closed subset in [a, b].   

Each Kn is closed and bounded and so by the Heine Borel Theorem, is compact.  

Since  f  is continuous,  each f (Kn ) is compact and so is closed and bounded by the 

Heine Borel Theorem.  Since f (Kn ) is closed, it is measurable. 

K = 
n=1

Kn
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Therefore, 

                                      
being a countable union of measurable sets, is measurable.   

Since  f   maps null sets to null sets,  m( f (E − K)) = 0.  It then follows that  f (E − K) 

is measurable.  Hence, 

                                  f (E ) =  f (K )  f (E − K)) 

is a union of two measurable sets and so is measurable. 

 

Corollary 11.  Suppose  f : [a, b] → R is absolutely continuous.  Then  f  maps 

measurable sets to measurable sets. 

 

Proof.   Since  f  is absolutely continuous on [a, b],  f  maps null sets in [a, b] to null 

sets (see for instance Proposition 9 of my article "Change of variable or substitution 

in Riemann and Lebesgue Integration").  Thus  f  is a continuous N function and so by 

Theorem 10, f  maps measurable sets to measurable sets. 

 

For functions that are strictly increasing (or strictly decreasing) we have the following 

useful result for absolute continuity. 

 

Theorem 12 (Zarecki).  Suppose  f : [a, b] → R is strictly increasing and continuous. 

(a)  f   is absolutely continuous if and only if  m( f ({x  [a, b]:  f ' (x) = })) = 0. 

(b)  The inverse function  f  −1 is absolutely continuous if and only if  

        m( {x  [a, b]:  f ' (x) =0}) = 0 

 

Proof.   

(a)  By Theorem 8,  f  is absolutely continuous if and only if  f  maps null sets to null 

sets.  Since  f  is increasing,  f  is differentiable (finitely) almost everywhere on [a, b].   

Hence m({x  [a, b]: f ' (x) = }) = 0.  If  f  maps null sets to null sets, then m( f ({x  

[a, b]: f ' (x) = })) = 0.   

Conversely, suppose m( f ({x  [a, b]: f ' (x) = })) = 0.  Let  E  be a set of measure 0 

in [a, b].  Let  A = {x  [a, b]: f ' (x) = },  B = {x  [a, b]:  f ' (x) does not exists and  

f ' (x)  }.  By the Theorem of De La Vallee Poussin, m( f (B)) = 0.  Write E = 

(E  A)  (E  B)  (E − (AB)).  Then m(E) = 0 implies that m(E − (AB)) = 0.  

By the Theorem of  De La Vallee Poussin we may assume  that  f ' (x) exists finitely 

on  E − (AB).  Therefore, by Theorem 2,  

                                . 

Hence .  Since  f ( E  B)   f (B) and m( f (B)) = 0, m( f (E 

B) ) = 0.  Since E  A  A and m( f (A)) = 0, m( f (E A)) = 0.  Thus, 

             . 

It follows that m( f (E ) = 0.  This means  f  maps null sets to null sets and it follows 

that    f  is absolutely continuous.       

 

(b) Suppose f  −1 is absolutely continuous.  Let C = {x  [a, b]:  f ' (x) =0}.   Then by 

Theorem 3,  m ( f (C)) = 0.  Then since   f  −1 is absolutely continuous, 

                                       
As in part (a), note that f  −1 is absolutely continuous if and only if  f  maps null sets to 

null sets. 

Now assume that m( C) = 0.  

f (K) =
n=1

f (Kn),

m( f (E − (AB)))  
E−(AB)

f  = 0

m( f (E− (AB))) = 0

m( f (E)) m( f (E− (AB))) + m( f (EA)) +m( f (EB) = 0

m(C) = m( f −1( f (C ))) = 0.
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Let E be a subset of  f  ([a, b]) = [c, d] of measure 0.  Then E = f (A), where A = f  
−1(E).  We shall show that m(A) = 0. 

By Theorem 15 of "Functions of Bounded Variation and Johnson's Indicatrix", 

f ' = 0 almost everywhere on A.  

Write A = (A C )  (A − C).  Since f ' = 0 almost everywhere on A, m(A − C) =0. 

But A C  C and m( C) = 0 and so m(A C ) = 0.  Hence m(A) = m( f  −1(E) ) = 0. 

This completes the proof. 

 

The proof of  Theorem 12 (a) word for word with minor modification changing 

"increasing" to "of bounded variation" and "" to  " " gives the following theorem. 

 

Theorem 13.   Suppose  f : [a, b] → R is continuous and of bounded variation. 

Then  f   is absolutely continuous if and only if  m( f ({x  [a, b]:  f ' (x) = })) = 0. 

 

We shall now give a proof of the Theorem of De La Vallée Poussin. 

 

Theorem 14  (De La Vallée Poussin).  Suppose  f : [a, b] → R is a function of 

bounded variation.  Then there is a subset N of [a, b] such that  

                          m(v f (N)) = m ( f (N) ) = m(N) = 0, 

where v f  is the total variation function of  f,  and for each x in [a, b] − N,   f ' (x) and   

v f ' ( x ) exist (finite or infinite) and that  

                                   v f ' ( x ) =  | f ' (x) |. 

 

The following elementary proof is due to F. S.  Cater. 

 

The following technical lemma is the key to the proof. 

 

Lemma 15.  Suppose  f : [a, b] → R is a function of bounded variation.  Let  h and k 

be positive numbers such that h < k.  Suppose E = { x  [a, b]: there is a derived 

number of v f  at x greater than  k and a derived number of f  at x, whose absolute 

value is less than h.}.  Suppose S = { x  [a, b]: there is a positive derived number and 

a negative derived number of  f  at x}. 

Then  

                 m(v f ( E  S  )) = m ( f (E  S) ) = m(E  S) = 0. 

 

Proof. We assume that E  S is non-denumerable, otherwise trivially all three sets 

have measure zero. 

The first step is to choose some anchor partition for [a, b] to approximate the total 

variation of  f.   Recall the definition of  a function of bounded variation, 

            

                               . 

Then given any  > 0, there exists a partition   such that  

                  .  i.e., 

                        .   ------------------------------  (A) 

Then for any partition   containing all the points of the 

partition P, 

vf(b) = sup 
i=1

n

f (xi) − f (xi−1) :

(P : a = x0  x1    xn = b) is a partition for a, b

P : a = u0  u1  un = b

v f(b) −   
i=1

n

f (ui) − f (ui−1)  v f(b)

vf(b)  
i=1

n

f (ui) − f (ui−1) + 

Q : a = z0  z1  zt = b
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                           . ----------- (1) 

Let P denote also the set of points of the partition. . 

We may assume also that  f  is continuous at every point of E  S.  Then  v f  is also 

continuous at every point of  E  S.  Since  f  is of bounded variation the set of 

discontinuity of   f  is denumerable and so we may remove these points of 

discontinuity from E  S without affecting the conclusion of the lemma. 

Let  U be an open set containing the image  v f ( E ) such that m(U) < m(v f (E)) + .  

Since U is open and  v f  is continuous at e for each e in E, there exists an  > 0 so that 

( v f (e) −  ,  v f (e) +  )  U and corresponding to this  > 0 there exists  > 0 such 

that  

                      x  (e − , e + )   v f (x)  ( v f (e) −  ,  v f (e) +  ). 

Thus we can find arbitrary small non trivial intervals [x, y] with x  e  y such that  

 v f (e)  [ v f (x), v f (y)]   ( v f (e) −  ,  v f (e) +  ).   In particular, since v f  has a 

positive derived number > k at e we can find arbitrary such small intervals [x,  y] such 

that 

                                           . 

 (Note that since v f  has a positive derived number at e, the interval [ v f (x), v f (y)] is 

never degenerate.)  Thus we can cover  v f ( E )  by arbitrary such small closed 

intervals.  Therefore, by the Vitali Covering Theorem, we can cover v f (E) almost 

every where by countable mutually disjoint closed interval  

                                               

such that    and  for each i. 

Therefore, the intervals  are also mutually disjoint and 

                      
and so      

                                 .  -----------------------------    (2) 

Without loss of generality we may assume that the set of points of the partition .

 does not contain any points of  E.  If P contains a point 

in E we may just remove this point from E.  We may thus remove all the points in P 

that are in E from E without affecting the conclusion of the lemma as only a finite 

number of points is removed from E.  We may take  = 1/N  then by passing to the 

limit as N tends to infinity only at most a denumerable number of points are removed 

from E.   Consequently as the measure of a set of denumerable number of points and 

its image under f  or  v f is of measure zero, the conclusion of the lemma remains 

valid.   

Now since at each point e of E − {ai , bi : i = 1,2,  }  , there is a derived number of  f  

whose absolute value is less than  h , we may pick arbitrary small interval  such 

that e is either one of the end points of the interval,  

                                           , 

 and that P [c, d] = .   Note that  {ai , bi : i = 1,2,  } is 

countable and so its image under v f  is also countable and so is of measure zero.  

Hence again by the Vitali Covering Theorem we can cover v f (E) almost every where 

with countable mutually disjoint closed intervals    such that P [ci , 

di ] =  , 

vf(b) =
i=1

t

(vf (zi) − vf (zi−1)  
i=1

t

f (zi) − f (zi−1) + 

P : a = u0  u1  un = b

vf(y) − vf (x)
y − x  k

vf(ai),vf (bi)

vf(ai),vf (bi) U vf(bi) − vf (ai)  k(bi − ai)

ai,bi

m(vf (E)) +   m(U) 
i

(v f (bi) − vf (ai))  k
i

(bi − ai)


i

(bi − ai)  (m(vf (E)) + )/k

P : a = u0  u1  un = b

c,d

f (d) − f (c)
d − c

 h

c,diai,bi

vf(ci),vf (di)

ci,diiai,bi
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for each i and 

                                .          -------------------  (3) 

But using (1) and the fact that for any x < y,  , we can show 

that 

                         .  ---------------- (4) 

(Show this for finite number of the intervals and pass to the limit.) 

Since ,  

                                           .   ------------------------- (5) 

Then from (3) and (4), we arrive at 

                            
 

                                          
 

Thus,                        

and using (2) we get   

                                 .   

Since  = 1/N is arbitrary by passing N to infinity we deduce that,   

.  But since h < k.  This is only possible if m(v f ( E )) =0. 

 

Now we proceed to show that m(v f ( S )) =0.  Using the fact that at each e in S, there 

is a positive derived number of  f , and as before, we may pick arbitrary small interval 

 such that e is either one of the end points of the interval,  

                                            

and .  Hence we may cover v f (e) by arbitrary small intervals          

  Therefore, by the Vitali Covering Theorem we may cover v f (S) almost 

everywhere by countable mutually disjoint closed intervals   such that 

P [ri , si ] =      for each i and  

             ,  ----------------- (6) 

where the last inequality is deduced using (1). 

Similarly as before using the negative derived number of  f  at each of  the point e of 

S, we may cover  v f (E) almost every where with countable mutually disjoint closed 

intervals    such that P [pi , qi ] =    

 for each i and  

            -------------------- (7) 

Since    

                , 

               ,       

where N f and Pf  are the negative and positive variations of  f.  Therefore, because v f 

=N f + Pf , 

f (di) − f (ci)  h(di − ci)

m(vf (E)) 
i

(v f (di) − vf (ci))

|f (y) − f (x)|  vf(y) − vf (x)


i

(v f (di) − vf (ci))  
i

f (di) − f (ci) + 

ci,di

ici,di iai, bi


i

(di − ci) 
i

(bi − ai)

m(vf (E)) 
i

(v f (di) − vf (ci))  
i

f (di) − f (ci) + 

 h
i

(di − ci) +   h
i

(bi − ai) + 

(m(vf (E)) − )/h 
i

(bi − ai)

(m(vf (E)) − )/h  (m(vf (E)) + )/k

m(vf (E))/h m(vf (E))/k

r, s
f (s) − f (r)

s − r  0

P r,s =

vf (r),vf (s).

vf (ri),vf (si)

f (si) − f (ri)  0

m(vf (S)) 
i

(v f (si) − vf (ri))  
i

f (si) − f (ri) + 

vf (pi),vf (qi) pi,qiiri, si

f (pi)  f (qi)

m(vf (S)) 
i

(v f (qi) − vf (pi))  
i

f (pi) − f (qi) + 

ipi,qiiri,si,


i

f (pi) − f (qi) 
i

(N f (si) − Nf (ri))


i

f (si) − f (ri) 
i

(P f (si) − Pf (r i))
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              . 

This combining with (6) and (7) yields, 

               
and so  

                                           . 

Hence,  .  Since  = 1/N by passing to the limit as N tends  to infinity,  

m(v f ( S )) = 0. 

Therefore,  

                         

and so  .   

Now for any  > 0, take an open set U such that  E  S  U and  m(U)   .  Since U 

is open, U is a countable  union of mutually disjoint non-trivial intervals  I i . Then the 

collection {  v f 
-1 ( I i )} covers  E  S.  Therefore, 

      . 

We have used the fact that  for each i.  We deduce this as 

follows. For any point x, y in ,  .  

Therefore, the diameter of    diameter of I i = length of  I i = m(I i ) That 

means .  Since  was arbitrary,  m(f (E  S  )) = 0. 

It remains now to show that m(E  S  ) = 0. 

Since  f  is of bounded variation,  f  is differentiable almost everywhere.  So we may 

assume that  f  has finite derivative at every point of  E  S.    f  is  obviously not 

differentiable at every point of S since each point of S has a positive and negative 

derived numbers.  Note that since | f ' | = v f '  almost every where, we may look only 

at points x in E where the derived number for f  at  x has the same absolute value as 

the only derived number of  v f  at x.  So since points in E do not have this property, E 

must have measure 0.  It follows that m(E  S) = 0.  We may alternatively prove 

directly that  m(E  S) = 0 by using a Vitali covering argument.  

 

 

 

16.  Proof of  de La Vallée Poussin Theorem (Theorem 14) 

 

Let Eh, k = { x  [a, b]: there is a derived number of v f  at x greater than  k and a 

derived number of f  at x, whose absolute value is less than h, h < k.}. 

Let  Let N = E S.  We have already shown in 

the proof of Lemma 15 that m(S) = m( f (S )) = m(v f (S )) =0.. 

By Lemma 15,  m(Eh, k) = 0 for each pair (h, k), h < k.  Thus E is a countable union of  

sets of measure zero and so m(N) = m(E S ) = 0.  Note that                               

                                      

since the set is a countable union of sets          

f ( Eh, k ) each of measure zero by Lemma 15.  Thus m( f (E)) = 0.  It follows that             

m( f (N )) = 0.   Similarly, we show that m( v f  (N)) = 0.  

We now prove the property of N as stated in the theorem.  Take any x in [a, b] − N.   

Then x is not in S and not in any Eh, k .  Hence  f  does not have a positive and a 


i

f (pi) − f (qi) +
i

f (si) − f (ri) 
i

(v f (si) − vf (ri))


i

(v f (s i) − vf (ri)) −  +
i

(v f (qi) − vf (pi)) −  
i

(v f (si) − vf (r i))


i

(v f (qi) − vf (pi))  2

m(vf (S))  2

m(vf (SE)) m(vf (E)) + m(vf (S)) = 0

m(vf (SE)) = 0

m( f (S E))  m(f (vf
−1( Ii))) =

i
m( f (v f

−1( Ii))) 
i

m( Ii) = m(U)  

m( f (vf
−1( Ii))) m(Ii)

v f
−1( Ii) | f (x) − f (y)|  |v f (x) − vf (y)|  diameter(Ii)

f (vf
−1( Ii))

m( f (vf
−1( Ii))) m(Ii)

E =Eh,k : h,k rational and h  k.

m( f (E))  
0 h  k, h and k rational

m( f (Eh,k)) = 0

f (E) = f (Eh,k) : h,k rational and h  k.
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negative derived numbers at x.  Moreover for any finite derived number  DV of  v f  at 

x,  

                 DV    | D f |  for any derived number D f  of  f  at x. 

Therefore, for any derived number DV  of v f  at x, we have 

                     DV  inf{ |D f | : D f  is a derived number of  f  at x.}. 

Note that if  DV is a derived number of  v f  at x, then there is a sequence ( hn ) such 

that hn  0 , hn → 0 and 

                                      . 

Therefore, the sequence      is bounded.  Since we have for each n, 

, the sequence  is also 

bounded.  Hence by the Bolzano Weierstrass Theorem,   has a 

convergent subsequence,   and  

                                      

is a derived number of  f  at x.  Moreover the subsequence   

converges to the same value DV and so we have 

                                                 | D f 1 |   DV 

But DV    | D f 1 | and so  DV  =  | D f 1 |.  It follows that any derived number of  v f  at 

x is equal to  .  Consequently there can be 

only one derived number of  v f  at x and so v f  is differentiable at x.  It follows that 

for any derived number  Df  of  f  at x, 

                                    | D f |   v f '(x) 

and v f '(x)  | D f |  because v f '(x) is the infimum of all absolute values of  the derived 

numbers of  f  at x.  Thus | D f | =  v f '(x) for any derived number D f of  f   at x.  

Therefore, any derived number of  f  has one unique absolute value.  Since  f  has no 

derived number of opposite sign at x, it can have only one unique derived number at x.  

That is to say,  f  is differentiable at x.  

Suppose now that v f  has an infinite derived number at x, then since x is in [a, b] − N, 

any derived number Df  of  f  at x must have |Df | =  .  Consequently there is only 

one derived number of v f  at x, namely +.  Since  f  does not have derived number of 

opposite signs at x, it can have only one derived number at x either + or −. 

We have thus proved that  f  is differentiable (finite or infinite) at every point of [a, b] 

− N.   

 

 

 

Ng Tze Beng 

 

                   

                         

 

 

 

DV =
n
lim

vf(x + hn) − vf(x)

hn

vf(x + hn) − vf(x)

hn

f (x + hn) − f (x)

hn


vf(x + hn) − vf(x)

hn

f (x + hn) − f (x)

hn

f (x + hn) − f (x)

hn

f (x + hnk) − f (x)

hnk

D f 1 =
k 
lim

f (x + hnk
) − f (x)

hnk

vf(x + hnk
) − vf(x)

hnk

inf|D f | : Df is a derived number of f at x.
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