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Suppose (X, M  ,   ) is a measure space, where X is a non-empty set, M   is a -

algebra of subsets of X and  : M  [0, ∞] is a positive measure, i.e.,  is a 

function such that  (Ø) = 0 and  is countably additive, that is, if  
1n n

E



 is 

countable disjoint collection of subsets in M  , then  
1 1

n n
n n

E E 


 

   
 

∪ .    

Suppose  
1

:n n
f X




ℝ  is a sequence of real valued functions.  Then we have 

the notion of the sequence,  
1

:n n
f X




ℝ , converging pointwise to a function 

:f X ℝ  and also the notion of the sequence,  
1

:n n
f X




ℝ , converging 

uniformly to :f X ℝ .  We said the sequence   
1

:n n
f X




ℝ  converges 

pointwise almost everywhere if there exists a measurable set E in X such that 

( ) 0E   and the sequence  ( )nf x  converges for all x in X – E.  We said the 

sequence  
1

:n n
f X




ℝ  converges uniformly almost everywhere if there exists a 

measurable set E in X such that ( ) 0E   and the sequence  
1

:n n
f X E




 ℝ   

converges uniformly on X – E.   

 

 For the case of a sequence of extended real valued functions on X, 

 
1

:n n
f X




ℝ , we have the notion of the sequence,  

1
:n n

f X



ℝ , converging 

pointwise to an extended real-valued function, :f X  ℝ .  However, examining 

the definition of uniform convergence of a sequence of functions, we do not 

have the notion of a sequence of extended real valued functions,  
1

:n n
f X




ℝ , 

converging uniformly on a subset E of X, unless each nf   is finite valued on E.  

 
1

:n n
f X




ℝ  converges pointwise almost everywhere if there exists a 

measurable set E in X such that ( ) 0E   and the sequence  ( )nf x  converges for 

all x in X – E.    
1

:n n
f X




ℝ  converges uniformly almost everywhere, if there 

exists a measurable set E in X such that ( ) 0E  , each :nf X E ℝ  is finite 
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valued and the sequence  
1

:n n
f X E




 ℝ  converges uniformly on XE.  Note 

that in this case the limiting function, f, is necessarily finite valued on XE. 

Note that for convergence in the extended real numbers, we say the sequence, 

 na  converges to an extended real number if    limsup liminfn n
nn

a a


 .  If the 

limit, that is,    lim limsup liminfn n n
n nn

a a a
 

  is finite, then this coincide with the 

usual definition of the finite limit of a sequence.   The pointwise convergence 

for a sequence of extended real valued functions  
1

:n n
f X




ℝ  is based on this 

meaning of convergence.  (For details about lim sup and lim inf see my article, 

All About Lim Sup and Lim Inf.)  Note that almost everywhere uniform 

convergence of a sequence of functions,  
1

:n n
f X




ℝ , implies almost 

everywhere pointwise convergence of the sequence but not necessarily the 

converse.  

Suppose  
1

:n n
f X




ℝ  is a sequence of   measurable functions and p is a non-

negative integer.  If each   

            ( , , ) : ;  measurable and 
pp

n
X

f L X g X g g d     ℝ ℝ , 

and ( , , )pf L X  ℝ , then we have the notion of convergence in the p-th mean, if 

 
1

0
pp

n
X

f f d  , in which case, we say nf   converges to f in the p-th mean 

with respect to .    Note that ,nf f  are necessarily finite valued almost 

everywhere with respect to the measure .   The almost everywhere equivalent 

classes of measurable functions in ( , , )pL X  ℝ  form a normed vector space with 

the p-th norm,  
1

,

pp

p X
g g d


  .   With the metric induced by the p-th norm, 

the equivalence classes of measurable functions in ( , , )pL X  ℝ  is a complete 

metric space, a Banach space.  We shall denote these equivalence classes by the 

same symbol, ( , , )pL X  ℝ . Thus, the sequence  
1

:n n
f X




ℝ  in  ( , , )pL X  ℝ  

converges in the p-th mean if, and only if,   
1

:n n
f X




ℝ  is a Cauchy sequence 

in  ,
( , , ),p

p
L X


 ℝ .   Note that if  

1
:n n

f X



ℝ  is a Cauchy sequence in  

 ,
( , , ),p

p
L X


 ℝ , then there is a function ( , , )pf L X  ℝ  such that nf   
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converges to f  in the p-th mean with respect to .  Note that a sequence 

 
1

:n n
f X




ℝ  is convergent in the p-th mean does not necessarily imply that 

 
1

:n n
f X




ℝ  is convergent almost everywhere.  Likewise,  

1
:n n

f X



ℝ  is 

convergent almost everywhere does not necessarily imply that it is convergent 

in the p-th mean.  However, it is true that if a sequence,  
1

:n n
f X




ℝ , is 

convergent in the p-th mean, then it has a subsequence,   
1

: 
kn

k
f X




 ℝ , which 

converges pointwise almost everywhere.  We can deduce this as follows.  Since 

each nf   is measurable and finite valued almost everywhere, we may assume 

that each nf  is real valued and measurable. Hence,  
n

f  is a Cauchy sequence in          

          ( , , ) : ;  measurable and 
pp

X
L X g X g g d    ℝ ℝ  . 

The existence of a subsequence  
1

: 
kn

k
f X




 ℝ , which is almost everywhere 

pointwise convergent to a function in ( , , )pL X  ℝ , is shown in the proof of  

Theorem 11, in my article, Convex Function, Lp Spaces, Space of Continuous 

Functions, Lusin’s Theorem. 

 

Definition 1. 

Now we consider the notion of convergence in measure.   Suppose (X, M  ,   ) is 

a measure space. Suppose E is a M  - measurable subset of X.   Suppose 

:nf E ℝ  ,  n =1 ,2, … , and :f E ℝ   are M  - measurable functions.  We say 

the sequence  
1

:n n
f E




ℝ  converges in measure (), with respect to , on E, to 

:f E ℝ , if given any  > 0, 

                                    lim : ( ) ( ) 0n
n

x E f x f x 


    . 

Observe that this definition makes sense only for functions :nf E ℝ  and 

:f E ℝ , which are finite almost everywhere on E. 

Note that this definition is equivalent to: 

Given any  > 0, there exists integer N such that  
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                                  : ( ) ( )nn N x E f x f x         . 

 

Remark.   When   and nf f  are random variables, convergence in measure 

is also known as convergence in probability. 

  

We note that if nf  converges in measure to f, then f is unique almost everywhere 

with respect to  in X.  That is to say, if nf  converges in measure to f and nf  

converges in measure to g, then f = g almost everywhere in X with respect to .  

We show this below. 

Firstly, observe that given any  > 0,          

       : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2

n nx f x g x x f x f x x f x g x
 

              
   

 . 

Hence,  

  : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2

n nx f x g x x f x f x x f x g x
 

   
                   
      

 . 

By definition of convergence in measure, there exists an integer N such that  

                                : ( ) ( )
2 2

nn N x E f x f x
 

        
 

  

And there exists an integer M such that 

                            : ( ) ( )
2 2

nn M x E f x g x
 

        
 

 .  

It follows that  

max( , ) : ( ) ( ) : ( ) ( )
2 2

n nn N M x f x f x x f x g x
 

  
                   
      

. 

Hence, for any  > 0,    : ( ) ( )x f x g x      .  Since  is arbitrary, we 

conclude that   : ( ) ( ) 0x f x g x     for any  > 0.  
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Now  
1

1
: ( ) ( ) 0 : ( ) ( )

n

x f x g x x f x g x
n





      
 
∪  and so by the continuity from 

below property of measure (Proposition 18, Introduction To Measure Theory), 

 : ( ) ( ) 0 0x f x g x    .  It follows that f = g almost everywhere in X with 

respect to .   

 

In general, convergence in measure does not imply convergence almost 

everywhere nor is it implied by convergence almost everywhere.  However, 

convergence in measure does imply the existence of a subsequence converging 

almost everywhere. 

Theorem 2.  Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, …  and  :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .  Suppose  nf  converges in measure to f.   Then 

there is a subsequence  
inf  converging to f almost everywhere with respect to 

. 

Proof. 

Since nf f  in measure, given j = 1,2, …, there exists an integer nj such that 

for all n ≥ nj , 

                             
1 1

: ( ) ( )
2 2

n j j
x E f x f x

       
  

 .   ---------------------  (1) 

We may assume that the sequence  jn  is monotonically increasing.  (Having 

chosen nj , we can always choose 1j jn n   .) 

For each integer j ≥1, let 
1

: ( ) ( )
2jj n j

E x E f x f x
     
 

 and for each integer m 

≥1, let m j
j m

H E



 ∪ .  Note that   1

2
j j

E  .  It follows that  

                                  1

1 1

2 2
m j j m

j m j m

H E 



 

    
 

∪  . 
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Now, for all jx E E   , 
1

( ) ( )
2jn j

f x f x  .   Thus, if  j m  , then 

                    
1

( ) ( )
2jn j

f x f x    for x in E – Hm .  

As 
1

0
2 j

 , this means that ( ) ( )
jnf x f x  for x in E – Hm .   Therefore,  

                              
1

( ) ( )
jm n

m

x E H f x f x



   ∩ . 

Since,    1
1

1

2
m j j

m

H H 





    
 
∩   for  j ≥ 1, 

1

0m
m

H




   
 
∩ .   It follows that ( )

jnf x  

converges to f(x) for x in E except perhaps for x in 
1

m
m

H



∩ , which is a set of  

measure 0.  That is,  
inf  converges to f almost everywhere on E with respect to 

 . 

 

We introduce another notion of convergence involving measure.   

Definition 3.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, … and :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .   

We say fn converges almost uniformly to f on E if given  > 0, there is a 

measurable subset A E  with ( )A   such that nf f  uniformly on E – A. 

 nf  is a Cauchy sequence almost uniformly, if given  > 0, there is a 

measurable subset A E  with ( )A   such that  nf  is uniformly Cauchy on E 

– A.  

 nf  is a Cauchy sequence in measure, if given  > 0,  > 0, there is an integer N 

such that    , : ( ) ( )n mn m N x f x f x       . 

We have immediately, 
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Proposition 4.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, … and :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .  Then 

nf  converges to f in measure implies that  nf  is a Cauchy sequence in measure. 

Proof.  

By definition of convergence in measure, given any  > 0,  > 0, there exists an 

integer N such that  

                                : ( ) ( )
2 2

nn N x E f x f x
 

        
 

 . 

Next, observe that given any  > 0,       

 : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2

n m n mx f x f x x f x f x x f x f x
 

              
   

. 

Hence, for n, m ≥ N,

  : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2

n m n mx f x f x x f x f x x f x f x
 

   
                   
      

  

                                      
2 2

 
   .  

Thus,  nf  is a Cauchy sequence in measure. 

Proposition 5.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, …  are M  - measurable 

functions, which are defined and finite almost everywhere on E, with respect to 

the measure  .   

If nf  is a Cauchy sequence in measure, then  nf  has a subsequence,  
inf , 

which is a Cauchy sequence almost uniformly. 

Proof. 

Since  nf is a Cauchy sequence in measure, for each integer k ≥ 1, there exists 

an integer kn  such that  
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2 2

: ( ) ( )
2 2

k k

k nn n x E f x f x
   

       
  

.  --------------  (1) 

We may assume that 1k kn n  .   Then since 

   2 2
: ( ) ( ) 2 : ( ) ( ) : ( ) ( )

2 2

k k
k

n m n mx f x f x x f x f x x f x f x
 

    
          

   
 , 

it follows that      

   2 2
, : ( ) ( ) 2 : ( ) ( ) : ( ) ( )

2 2

k k
k

k n m n mn m n x f x f x x f x f x x f x f x  
 

       
               

      
                                                         2 k  . 

For each integer k ≥ 1, let   
1

: ( ) ( ) 2
k k

k

k n nE x f x f x


   .  Then   2 k

kE  . 

For each integer m ≥ 1, let m i
i m

H E



 ∪ .  Then  

                            1

1 1

2 2
m i i i m

i m i m i m

H E E  
 


  

     
 

 ∪ .        

Thus, given any  > 0, we can choose an integer M such that 
1

1

2M



 .  Then 

( )MH   .  Note that as  M i i
i M i M

E H E E E E
 

 
    ∪ ∩ , Mx E H    mx E H   

implies that ix E E   for integer i ≥ M.  Hence, for all Mx E H  , 

                           
1

1
( ) ( )

2i in n i
f x f x


   , for i ≥ M.   

It follows that for i j M   and for all Mx E H  ,   

                  
1

1 1

1

1 1
( ) ( ) ( ) ( )

2 2j i m m

m i m i

n n n n m j
m j m j

f x f x f x f x


   


 

      . 

Now, given any   > 0, choose integer N ≥ M such that 
1

1

2N



 . Then   

                     
1 1

1 1
( ) ( )

2 2j in n j N
i j N f x f x 

 
        for all Mx E H  . 
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Thus,  
inf  is uniformly Cauchy on ME H and ( )MH  .  That is,  

inf  is a 

Cauchy sequence almost uniformly. 

 

Proposition 6.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, …  and :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .   

If nf  converges to f almost uniformly, then  nf  converges to f in measure. 

Proof. 

If  nf  converges to f almost uniformly, then by definition, given  > 0,  > 0, 

there exists a measurable set A in E such that ( )A   and nf f  uniformly on 

EA.  It follows that there is an integer N such that 

           ( ) ( )nn N f x f x      for all x in EA. 

Hence, for n ≥ N, the set  : ( ) ( )nx E f x f x A     and so 

                 : ( ) ( )nx E f x f x A          for n ≥ N. 

This means nf f  in measure.  

 

It is to be expected that almost uniformly convergence implies convergence 

almost everywhere. 

Proposition 7.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, … and :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .   

If nf  converges to f almost uniformly, then  nf  converges to f almost 

everywhere in E. 

Proof. 



10 

 

If  nf  converges to f almost uniformly, then by definition, given any integer m 

≥ 1, there exists a measurable set Am in E such that 
1

( )mA
m

    and nf f  

uniformly on E Am . Let  
1

m
m

H E A



 ∪ .  Then for any x H,  x  E Am  for 

some integer m so that ( ) ( )nf x f x .  Therefore,  nf f  pointwise on H.  Now   

1
m

m

E H A



  ∩ .  Therefore,  

1

1
( ) m n

m

E H A A
n

  




     
 
∩  for each integer n ≥ 1. 

Since 
1

0
n
  ,    0E H   .  It follows that nf f  pointwise almost 

everywhere in E. 

 

Proposition 8.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, …  are M  - measurable 

functions, which are defined and finite almost everywhere on E, with respect to 

the measure  .   

If nf  is a Cauchy sequence almost uniformly, then  nf  is a Cauchy sequence 

in measure. 

Proof. 

If  nf  is a Cauchy sequence almost uniformly, then by definition, given  > 0,  

> 0, there exists a measurable set A in E such that ( )A   and   nf  is a Cauchy 

sequence uniformly on EA.  It follows that there is an integer N such that 

           , ( ) ( )n mn m N f x f x       for all x in EA. 

Hence, for n, m ≥ N, the set  : ( ) ( )n mx E f x f x A    and so 

                 : ( ) ( )n mx E f x f x A         for n ≥ N. 

This means  nf  is a Cauchy sequence in measure. 
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Proposition 9.   Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, …  are M  - measurable 

functions, which are defined and finite almost everywhere on E, with respect to 

the measure  .   

If nf  is a Cauchy sequence in measure, then there exists a measurable function, 

g, finite almost everywhere on E, such that fn converges to g in measure.  

 

Proof.   

If nf  is a Cauchy sequence in measure, then by Proposition 5,  nf  has a 

subsequence,  
inf , which is a Cauchy sequence almost uniformly. 

As in the proof of Proposition 5,  

 
inf  is uniformly Cauchy on kE H  and 

1

1
( )

2
k k

H


  .  Thus,  
inf  converges 

uniformly to a function g on kE H  and so it converges pointwise to g on kE H

.  Let  
1

k
k

H H



 ∩ .  Then H is measurable and  

1 1
k k

k k

E H E H E H
 

 
    ∩ ∪ .   

Therefore, g is defined and finite on E – H.  Moreover, ( ) 0H  .  Thus, g is 

defined and measurable on E – H.   Define g(x ) = 0 for x in H.  Then g is 

measurable on E.  It follows that  
inf  converges almost uniformly to g on E. 

Now, take  > 0. Observe that  

           : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2k kn n n nx f x g x x f x f x x f x g x
 

              
   

 . ----- (1) 

Since  nf  is a Cauchy sequence in measure, given  > 0,  > 0, there is an 

integer N such that  

                           , : ( ) ( )
2 2

n mn m N x f x f x
 


        
  

 .  -------- (2) 

Since  
inf  converges almost uniformly to g on E, there exists an integer M  and 

a measurable subset set E  in E such that  
2

E


   and 
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              ( ) ( )
2knf x g x


    for all k ≥ M and for all x in E E  . 

From (2), if  , kn n N , then : ( ) ( )
2 2kn nx f x f x
 


      
  

.   

Thus if max( , )k N M  , then by (1), 

  : ( ) ( ) : ( ) ( ) : ( ) ( )
2 2k kk k n nx f x g x x f x f x x f x g x
 

   
                   
      

  

                                     : ( ) ( )
2 2 2kk nx f x f x E

  
  
          
  

 . 

It follows that fn converges to g in measure.  

 

Remark.   The term Cauchy sequence in measure does live up to its 

name.  By Proposition 4, if fn converges to f in measure, then nf  is a 

Cauchy sequence in measure.  Proposition 9 says that if  nf is a Cauchy 

sequence in measure, then there is a measurable function g such that fn 

converges to g in measure.  Hence f = g almost everywhere on E.  Thus, 

with the hypothesis of Proposition 9,  nf  is convergent in measure if, 

and only if,  nf  is a Cauchy sequence in measure. 

 

Now we state a relation between convergence in the pth mean and convergence 

in measure. 

Theorem 10.  Suppose (X, M  ,   ) is a measure space.  Let ( , , )pL X  ℝ  be the 

collection of all M   measurable extended real valued functions :g X ℝ   , 

which are finite almost everywhere on X and 
p

X
g d   .   

If  nf  is a Cauchy sequence in the ( , , )pL X  ℝ  norm, then  nf  is a Cauchy 

sequence in measure.  Suppose f is a measurable extended real valued function, 

which is finite almost everywhere.  If  nf f   in the p-th mean, i.e., in the 

( , , )pL X  ℝ  norm, then nf f  in measure. 
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Proof. Recall that the ( , , )pL X  ℝ  norm is given by,  
1
pp

p X
g g d   for g in 

( , , )pL X  ℝ .   Suppose  nf is a Cauchy sequence in the ( , , )pL X  ℝ  norm.  Then 

given any  > 0, there exists an integer N such that  

                     
1

,
pp

n m n mp X
n m N f f f f         ------------------------ (1) 

For any  > 0,  > 0, let  , : ( ) ( )n m n mE x f x f x    . Then ,n mE  is measurable and 

                       
, ,

,
n m n m

p
p p

n m n m
E E

f f d d E          ----------------------  (2) 

Choose  > 0 such that p p  .  It follows then from (1) and (2) that for n, m ≥ 

N,   
,

,
n m

p p
p p

n m n m n m
E X

E f f d f f d           implying that 

                       
,

,
n m

p
p p

n m n m n m pE X
E f f d f f d


   


       . 

Hence, for any  > 0,  > 0, there exists an integer N such that     

                         , : ( ) ( )n mn m N x f x f x       . 

This means that  nf is a Cauchy sequence in measure. 

Suppose nf f   in the ( , , )pL X  ℝ  norm.  Then given any  > 0, there exists an 

integer N such that  

                     
1
pp

n np X
n N f f f f       .   ------------------------ (3) 

 

For any  > 0,  > 0, let  : ( ) ( )
n n

H x f x f x     . Then nH  is measurable and 

                        
n n

p
p p

n n
H H

f f d d H        .  ----------------------  (4) 

Thus, taking any  > 0 such that p p  , we have that  

     1 1
: ( ) ( )

n

p
p p

n n np k pH X
n N x f x f x f f d f f d


    

  
           . 
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This proves that nf f  in measure. 

 

Theorem 11 (Egoroff’s Theorem). Suppose (X, M  ,   ) is a measure space. 

Suppose E is a M  - measurable subset of X and ( )E   .  Suppose :nf E ℝ  ,  

n =1 ,2, … , and  :f E ℝ   are M  - measurable functions, which are defined 

and finite almost everywhere on E, with respect to the measure  .   

If nf  converges to f almost everywhere on E, then  nf  converges to f almost 

uniformly in E. 

Proof.  

By omitting a subset of zero measure, we may assume that fn and f are finite on 

E and that ( ) ( )nf x f x  for all x in E. 

For integers, m, n ≥ 1, let 

                      
1

: ( ) ( )m

n i
i n

E x f x f x
m





    
 
∩  . 

Then plainly, for each integer m ≥ 1,  1 2

m m m

n n nE E E   ⋯   is an increasing 

sequence of measurable sets.  Since ( ) ( )nf x f x  for all x in E, this sequence 

converges to E.  That is to say, 
1

m

i
i

E E



∪ .  Hence, by continuity from below 

property of positive measure,  lim ( )m

i
i

E E 


  (see Proposition 18, Introduction 

to Measure Theory).  Therefore, since ( )E   , there exists an integer, Nm, 

depending on m such that 

               ( )
2 2

m m

m i im m
i N E E E E

 
         . 

Let  
1

m

m

N
m

F E E




 ∪ .  Then      

1 1 1 2m m

m m

N N m
m m m

F E E E E


   

 

  

       
 

 ∪ . 

Observe that  
1 1

m m

m m

N N
m m

E F E E E E

 

 
    ∪ ∩ .  Therefore, for all x in E F  ,  

m

m

Nx E  for all integer m ≥ 1.  Given any  > 0, choose integer M such that 

1

M
 .   Hence, for all integer Mi N , 

1
( ) ( )if x f x

M
    for all x in E F  as 



15 

 

M

M

NE F E  .  It follows that nf f  uniformly on E F .  Hence,  nf  converges 

to f almost uniformly in E. 

 

Remark.  If (X, M  ,   ) is a finite measure space, i.e., ( )X   , then by 

Theorem 11,  nf  converges to f almost everywhere on E, implies that 

 nf  converges to f almost uniformly in E and by Proposition 7,  nf  

converges to f almost uniformly in E implies that  nf  converges to f 

almost everywhere on E. 

 

Thus, when ( )E   , under the hypothesis of Egoroff’s Theorem, convergence 

almost uniformly in E is equivalent to convergence almost everywhere in E.  

Thus, for a probability measure, these two notions coincide. 

 

Corollary 12.  Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X and ( )E   .  Suppose :nf E ℝ  ,  n =1 ,2, … , and  

:f E ℝ   are M  - measurable functions, which are defined and finite almost 

everywhere on E, with respect to the measure  .   

If nf  converges to f almost everywhere on E, then  nf  converges to f  in 

measure in E. 

Proof.   This is a consequence of Theorem 11 and Proposition 6. 

 

Theorem 13.  Suppose (X, M  ,   ) is a measure space.  Suppose E is a 

measurable set and  :nf E  ℝ is a sequence of measurable functions defined on 

E. Suppose nf  converges almost everywhere to a measurable function :f E ℝ

.  Suppose there exists a Lebesgue integrable function : [0, )g E    such that, 

( ) ( )nf x g x   for all integer n ≥1 and for almost all x in E. Then nf  and f are 

Lebesgue integrable, and fn converges almost uniformly to f.  Consequently, fn 

converges in measure to f. 

Proof. 
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By omitting a subset of zero measure, we may assume that fn and f are finite on 

E,  ( ) ( )nf x f x  almost everywhere in E, ( ) ( )nf x g x  for almost all x in E. 

Therefore, f g  almost everywhere in E.  Hence,  nf  and f are Lebesgue 

integrable, 

For integers, m, n ≥ 1, let 

                      
1

: ( ) ( )m

n i
i n

E x f x f x
m





    
 
∩  . 

Then plainly, for each integer m ≥ 1,  1 2

m m m

n n nE E E   ⋯   is an increasing 

sequence of measurable sets.   Now, the set 

                          
1

: lim ( ) ( ) m

i n
i n

x E f x f x E


 
   ∪   

for each integer m ≥ 1.   Since nf  converges almost everywhere to f  and 

   
1 1

: lim ( ) ( )m m

n n i
in n

E E E E E x E f x f x
 

 
      ∪ ∩   , 

                  
1

: lim ( ) ( ) 0m

n i
in

E E E x E f x f x 




       
 
∩  implies that 

 
1

0m

n
n

E E




   
 
∩ .   

Now, 2nf f g   almost everywhere in E for all integer n ≥ 1. Let A be a 

measurable subset of E such ( ) 0A   and that on E – A, 2nf f g  .  Then 

                  1 1
: ( ) ( ) : ( )

2

m

n i
i n

E A E x E A f x f x x E A g x
m m





                
   
∪ .  

Since g is integrable,
1 1

: ( ) : ( )
2 2

x E A g x x E g x
m m

 
                   
      

.  It 

follows that  m

n
E E    . Therefore, by the continuity from above property of 

positive measure,  , (see Proposition 18, Introduction to Measure Theory),  

   
1

0m m

n n
n

E E E E 




     
 
∩  as n  .  Hence, there exists an integer, Nm, 

depending on m such that  
2

m

m n m
n N E E


    .           
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Let  
1

m

m

N
m

F E E




 ∪ .  Then      

1 1 1 2m m

m m

N N m
m m m

F E E E E


   

 

  

       
 

 ∪ . 

Observe that  
1 1

m m

m m

N N
m m

E F E E E E

 

 
    ∪ ∩ .  Therefore, for all x in E F  ,  

m

m

Nx E  for all integer m ≥ 1.  Given any  > 0, choose integer M such that 

1

M
 .   Hence, for all integer Mi N , 

1
( ) ( )if x f x

M
    for all x in E F  as 

M

M

NE F E  .  It follows that nf f  uniformly on E F .  Hence,  nf  converges 

to f almost uniformly in E. 

 

Remark.  Suppose (X, M  ,   ) is a measure space.  Suppose E is a 

measurable set and  :nf E  ℝ is a sequence of measurable functions 

defined on E and dominated by an integrable non-negative function in E. 

Suppose :f E ℝ is measurable.    Then by Theorem 13 and Proposition 

7,  nf  converges to f almost uniformly in E if, and only if,  nf  

converges to f almost everywhere in E. 

 

Theorem 14.  Suppose (X, M  ,   ) is a measure space.   Suppose  : [0, ]nf X    

is an increasing sequence of non-negative measurable functions defined and 

finite almost everywhere with respect to  on X.  Suppose  nf  converges in 

measure to a measurable non-negative function f defined and finite almost 

everywhere in X with respect to the measure  .  Then 

                                    n
X X

f d f d   . 

Proof.    

Since  nf  converges in measure to f, by Theorem 2, Then there is a 

subsequence  
inf  converging to f almost everywhere with respect to .  

Therefore, by the Lebesgue Monotone Convergence Theorem,  

                         
jn

X X
f d f d   . 
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Since  nf  is an increasing sequence of non-negative measurable functions,  

lim lim
jn n

X Xn j
f d f d 

 
   and so n

X X
f d f d   . 

 

Theorem 15. (Bounded Convergence) 

Suppose (X, M  ,   ) is a measure space.  Suppose E is a measurable set of finite 

measure and  :nf E  ℝ is a sequence of measurable functions defined on E. 

Suppose there exists M ≥ 0 such that ( )nf x M  for all integer n ≥1 and for x in 

E, i.e.,  nf  is uniformly bounded on E. If  nf  converges in measure to a 

measurable function :f E ℝ , then n
E E

f d f d   . 

Proof.   

Since  
nf M and ( )E   , nf  is Lebesgue integrable for all integer n ≥ 1.  

Since nf  converges in measure to a measurable function :f E ℝ , by Theorem 

2, there is a subsequence  
inf  converging to f pointwise almost everywhere 

with respect to .  Therefore, by the Lebesgue Dominated Convergence 

Theorem (See Theorem 33, Introduction to Measure Theory and remark after 

the theorem), 
in

E E
f d f d    < ∞.   

Now there exists a set subset K of measure zero in E such that ( ) ( )
jn

f x f x  for 

every x in E – K.  As ( )
jnf x M  for all x in E,  ( )f x M  for all x in E – K.  

Therefore, ( )
E E

f d Md M E       .  Hence,  nf f   is Lebesgue integrable 

for each integer n ≥ 1.  Note that  

              n n n
E E E E

f d f d f f d f f d           . 

For  > 0, let  : ( ) ( )
n n

K x E f x f x      for each integer n ≥ 1.  Since 
n

f  

converges in measure to f, there exists an integer N such that  

                       nn N K     . 

It follows that for n ≥ N, 

                   2
n n

n n n n n
E E K K

f f d f f d f f d E K M K    
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                                        2 ( ( ) 2 )nE K M E M        .  

Since this is true for any   > 0, 0  as  
n

E
f f d n   .  Hence 

0n
E E

f d f d     and so 
n

E E
f d f d   . 

 

The following is a special form of Fatou’s Lemma for convergence in measure. 

Theorem 16.  Suppose (X, M  ,   ) is a measure space.   Suppose E is a 

measurable subset of X and  : [0, ]nf E    is a sequence of non-negative 

measurable functions defined and finite almost everywhere with respect to  on 

X.  Suppose  nf  converges in measure to a measurable non-negative function f 

defined and finite almost everywhere in E with respect to the measure  .  Then 

                                     liminf n
E En

f d f d 


  .   

Proof:  

Suppose that  
E

f d    and liminf n
E En

f d f d 


  .  Then there exists a   > 0 

and a sequence { }
i

n  such that 
in

E E
f d f d      for all integer i ≥ 1.  (See 

Theorem 6, All About Lim Sup and Lim Inf.)  Since  nf  converges in measure 

to f,  
in

f  also converges in measure to f .  By Theorem 2,  
in

f  has a 

subsequence,  i j
nf , that converges pointwise almost everywhere to f.  Note that 

 i j
nf  is also a subsequence of  nf .  Therefore, by Fatou’s Lemma, 

              liminf
i j

n
E E Ej

f d f d f d   


     , 

giving a contradiction.  Therefore, liminf n
E En

f d f d 


  , 

Suppose now 
E

f d    and that lim inf n
En

f d


  .  Then by definition of lim 

inf, there exists a number J > 0 and a sub sequence,  
in

f , such that 
in

E
f d J  .    

As above, we can find a subsequence  i j
nf  of  

in
f  such that  i j

nf  converges 

almost everywhere to f.  It follows by Fatou’s Lemma that liminf
i j

n
Ej

f d


   

and so  n
E

f d  is unbounded above contradicting liminf
i j

n
Ej

f d


  .   
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Theorem 17 (Dominated Convergence Theorem).  

Suppose (X, M  ,   ) is a measure space.  Suppose E is a measurable set and 

 :nf E  ℝ is a sequence of measurable functions defined on E. Suppose 
n

f  

converges in measure to a measurable function :f E ℝ .  Suppose there exists 

a Lebesgue integrable function : [0, )g E    such that ( ) ( )f x g x , ( ) ( )nf x g x   

for all integer n ≥1 and for almost all x in E. Then 
n

f  and f are Lebesgue 

integrable, 
n

E E
f d f d    and fn converges in the mean to f, i.e.,  

lim 0n
En

f f d


  .  

Proof. 

Since 
n

f  converges in measure to a measurable function :f E ℝ , by Theorem 

2, there is a subsequence  
in

f  converging to f pointwise almost everywhere 

with respect to .  Moreover, for each integer i ≥ 1, ( ) ( )
in

f x g x .  Therefore, 

( ) ( )f x g x  for almost all x in E.  Hence, f is Lebesgue integrable on E.  Note 

that for each integer n ≥ 1, ( ) ( ) 0
n

f x g x   almost everywhere in E.  Furthermore, 

as 
n

f  converges in measure to f,  
n

f g  converges in measure to f g .  

Therefore, by Theorem 16, 

                          liminf n
E E En

f d gd f g d  


     .  

It follows that  

                                             liminf n
E En

f d f d 


  .   --------------------  (1) 

We also have that for each integer n ≥ 1, ( ) ( ) 0
n

g x f x   almost everywhere in E 

and 
n

g f  converges in measure to g – f.  Therefore, by Theorem 16, 

                         lim inf n
E E En

gd f d g f d  


     . 

It follows that  

                                        limsup
n

E En

f d f d 


  .   -------------------- (2) 



21 

 

Therefore, lim inf lim sup
n n

E E E En n

f d f d f d f d   
 

       which implies that 

                              lim n
E En

f d f d 


  . 

By definition of convergence in measure, 
n

f  converges in measure to f  implies 

that 
nf f  converges in measure to 0.  Moreover, for each integer n ≥ 1, 

2nf f g   almost everywhere in E.  Therefore, applying the previous 

conclusion to the sequence,  n
f f , we have 

                               lim 0 0n
E En

f f d d 


    .  

Remark.  Suppose (X, M  ,   ) is a measure space.  Suppose E is a 

measurable set and  :nf E  ℝ is a sequence of measurable functions 

defined on E and dominated by an integrable non-negative function in E. 

Suppose :f E ℝ is measurable.    Then by Theorem 10 and Theorem 17, 

 nf  converges to f in the mean in E if, and only if,  nf  converges in 

measure to f  in E. 

 

For a sequence of measurable functions, convergence almost uniformly in a 

measurable set E, does imply that after subtracting a set of measure zero, we can 

consider E as a countable union of measurable sets, where, in each of these sets, 

the sequence converges uniformly. We state this more precisely as follows:  

Proposition 18.  Suppose (X, M  ,   ) is a measure space. Suppose E is a M  - 

measurable subset of X.   Suppose :nf E ℝ  ,  n =1 ,2, … and :f E ℝ   are M  

- measurable functions, which are defined and finite almost everywhere on E, 

with respect to the measure  .   

If nf  converges to f almost uniformly, then there exists a sequence of 

measurable sets,  iE  in E, such that 
1

0i
i

E E




   
 

∪  and  nf  converges 

uniformly to f on Ei for each integer i ≥ 1. 

Proof. 
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If  nf  converges to f almost uniformly, then by definition, given any integer i ≥ 

1, there exists a measurable set Ai in E such that 
1

( )
i

A
i

    and 
n

f f  uniformly 

on E Ai.  For each integer i ≥ 1, let 
i i

E E A  .  Let  
1 1

i i
i i

H E E A
 

 
  ∪ ∪ .  Then 

( ) ( )
n

f x f x  uniformly on each Ei , i ≥ 1.  Now  
1

m
m

E H A



  ∩ .  Therefore, 

 
1

1
( ) m n

m

E H A A
n

  




     
 
∩  for each integer n ≥ 1. Since 

1
0

n
  ,  

  0E H   .   

 

If E is of -finite measure, convergence almost everywhere in E does imply 

uniform convergence in some measurable subsets of E as in Proposition 18.  

Proposition 19.   Suppose (X, M  ,   ) is a measure space.  Let E be a M  -

measurable subset of X.  Suppose f, fn , n = 1, 2, …, are measurable and finite 

almost everywhere on E.  Suppose E is of -finite measure and 
n

f f  almost 

everywhere on E.   Then there exists a sequence of measurable sets  iE  such 

that 
1

0
i

i

E E




 
  

 
∪  and 

n
f f  uniformly on each Ei .  

Proof. 

Since E is of -finite measure, we may assume that 
1

i
i

E F



 ∪  , where Fi is 

measurable and  iF   for integer i ≥ 1. Therefore, as 
n

f f  almost 

everywhere on E,  
n

f f  almost everywhere on each Fi . Hence, by Theorem 

11 (Egoroff’s Theorem),  nf  converges to f almost uniformly in each Fi .  It 

follows then by Proposition 18, that for each integer i ≥ 1, there exists 

measurable sets  
1

i

j j
E




 such that 

n
f f  uniformly on each i

jE  for j =1,2, … 

and 
1

0i i

j
j

F E




   
 

∪ .  Note that 
, 1 1 1

0i i

j i j
i j i j

E E F E 
  

  

               
∪ ∪ ∪ and  

n
f f  

uniformly on each i

jE  for j =1,2, …, i = 1,2,….   The required sequence of 

measurable sets is  ijE .  Since it is countable, we may re-enumerate the 

sequence as  iE .   
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The Lebesgue measure on ℝ  is -finite.  We have the following interesting 

generalization of the integral of a non-negative measurable function. 

 

Proposition 20.   Suppose (X, M  ,   ) is a measure space.  Let E be a M  -

measurable subset of X.  Suppose : [0, ]f E    be a non-negative measurable 

function.  Let ( , )B f E  denote the set of all bounded measurable functions 

: E ℝ  satisfying f   and  1( {0})     ℝ .  If E is of -finite measure, 

then  sup : ( , )
E E

f d d B f E      .     

Proof. 

Recall that for a non-negative measurable function, : [0, ]f E   , its Lebesgue 

integral is given by 

         sup :  is a measurable simple function and 0
E E

f d s d s s f     . 

 

By Theorem 16 of Introduction to Measure Theory, there exists a monotone 

increasing sequence of (non-negative) measurable simple functions 

: [0, )
n

s E    converging pointwise to f.  By Theorem 23 (Lebesgue Monotone 

Convergence Theorem) of Introduction to Measure Theory, 

                                          
n

E E
s d f d  ր   . 

Since E is -finite, we may assume that 
1

i
i

E K



 ∪ , where 

1i i
K K  , Ki is 

measurable and  iK   for each integer i ≥ 1. 

Then by Proposition 21 of Introduction to Measure Theory,                                            

( )
nS n

A
A s d   for any measurable A, defines a positive measure on M .  

Therefore, by the continuity from below property of positive measure, 

                       
1

lim
n n nn S S i S i

E ii

s d E K K   




    
  ∪  
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                                             lim
in K

Ei
s d 


  . 

Note that 0
in Ks f   and 

in Ks   is a bounded measurable function with 

                            1

( {0})
in K is K


 ℝ .  

Hence,     
1

( {0})
in K i

s K  


   ℝ .   It follows that for each integer i ≥ 1,    

             ( , ) : |  is bounded and measurable,
in Ks B f E E f      ℝ . 

Therefore,  sup : ( , )n
E E

s d hd h B f E     for each integer n ≥ 1.  It follows that 

                     lim sup : ( , )n
E E En

f d s d hd h B f E  


     . 

But for each ( , )h B f E , h f  so that 
E E

hd f d   . Hence,  

                          sup : ( , )
E E

hd h B f E f d    . 

Therefore,   sup : ( , )
E E

f d hd h B f E    .       

  

                              

 


