Convergence In Measure

By Ng Tze Beng

Suppose (X, \mathcal{M}, μ) is a measure space, where *X* is a non-empty set, \mathcal{M} is a σ algebra of subsets of *X* and $\mu : \mathcal{M} \to [0, \infty]$ is a positive measure, i.e., μ is a
function such that $\mu(\mathcal{O}) = 0$ and μ is countably additive, that is, if $\{E_n\}_{n=1}^{\infty}$ is
countable disjoint collection of subsets in \mathcal{M} , then $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$.

Suppose $\{f_n : X \to \mathbb{R}\}_{n=1}^{\infty}$ is a sequence of real valued functions. Then we have the notion of the sequence, $\{f_n : X \to \mathbb{R}\}_{n=1}^{\infty}$, converging pointwise to a function $f : X \to \mathbb{R}$ and also the notion of the sequence, $\{f_n : X \to \mathbb{R}\}_{n=1}^{\infty}$, converging uniformly to $f : X \to \mathbb{R}$. We said the sequence $\{f_n : X \to \mathbb{R}\}_{n=1}^{\infty}$ converges pointwise almost everywhere if there exists a measurable set E in X such that $\mu(E) = 0$ and the sequence $\{f_n(x)\}$ converges for all x in X - E. We said the sequence $\{f_n : X \to \mathbb{R}\}_{n=1}^{\infty}$ converges uniformly almost everywhere if there exists a measurable set E in X such that $\mu(E) = 0$ and the sequence $\{f_n : X - E \to \mathbb{R}\}_{n=1}^{\infty}$ converges uniformly on X - E.

For the case of a sequence of extended real valued functions on X, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$, we have the notion of the sequence, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$, converging pointwise to an extended real-valued function, $f : X \to \overline{\mathbb{R}}$. However, examining the definition of uniform convergence of a sequence of functions, we do not have the notion of a sequence of extended real valued functions, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$, converging uniformly on a subset E of X, unless each f_n is finite valued on E. $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ converges pointwise almost everywhere if there exists a measurable set E in X such that $\mu(E) = 0$ and the sequence $\{f_n(x)\}$ converges for all x in X - E. $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ converges uniformly almost everywhere, if there exists a measurable set E in X such that $\mu(E) = 0$, each $f_n : X - E \to \overline{\mathbb{R}}$ is finite valued and the sequence $\{f_n : X - E \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ converges uniformly on *X*–*E*. Note that in this case the limiting function, *f*, is necessarily finite valued on *X*–*E*. Note that for convergence in the extended real numbers, we say the sequence, $\{a_n\}$ converges to an extended real number if $\limsup_{n\to\infty} \{a_n\} = \liminf_{n\to\infty} \{a_n\}$. If the limit, that is, $\lim_{n\to\infty} a_n = \limsup_{n\to\infty} \{a_n\} = \liminf_{n\to\infty} \{a_n\}$ is finite, then this coincide with the usual definition of the finite limit of a sequence. The pointwise convergence for a sequence of extended real valued functions $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is based on this meaning of convergence. (For details about lim sup and lim inf see my article, *All About Lim Sup and Lim Inf*.) Note that almost everywhere uniform convergence of a sequence of the sequence but not necessarily the converse.

Suppose $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is a sequence of μ measurable functions and p is a non-negative integer. If each

$$f_n \in L^p(X, \mu, \overline{\mathbb{R}}) = \left\{ g : X \to \overline{\mathbb{R}}; g \text{ measurable and } \int_X |g|^p d\mu < \infty \right\},$$

and $f \in L^p(X,\mu,\overline{\mathbb{R}})$, then we have the notion of convergence in the *p*-th mean, if $\left(\int_X |f_n - f|^p d\mu\right)^{\frac{1}{p}} \to 0$, in which case, we say f_n converges to f in the *p*-th mean with respect to μ . Note that f_n, f are necessarily finite valued almost everywhere with respect to the measure μ . The almost everywhere equivalent classes of measurable functions in $L^p(X,\mu,\overline{\mathbb{R}})$ form a normed vector space with the *p*-th norm, $\|g\|_{p,\mu} = \left(\int_X |g|^p d\mu\right)^{\frac{1}{p}}$. With the metric induced by the *p*-th norm, the equivalence classes of measurable functions in $L^p(X,\mu,\overline{\mathbb{R}})$ is a complete metric space, a Banach space. We shall denote these equivalence classes by the same symbol, $L^p(X,\mu,\overline{\mathbb{R}})$. Thus, the sequence $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ in $L^p(X,\mu,\overline{\mathbb{R}})$ converges in the *p*-th mean if, and only if, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is a Cauchy sequence in $(L^p(X,\mu,\overline{\mathbb{R}}), \|\|_{p,\mu})$. Note that if $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is a Cauchy sequence in $(L^p(X,\mu,\overline{\mathbb{R}}), \|\|_{p,\mu})$, then there is a function $f \in L^p(X,\mu,\overline{\mathbb{R}})$ such that f_n

converges to f in the p-th mean with respect to μ . Note that a sequence $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is convergent in the p-th mean does not necessarily imply that $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is convergent almost everywhere. Likewise, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ is convergent almost everywhere does not necessarily imply that it is convergent in the p-th mean. However, it is true that if a sequence, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$, is convergent in the p-th mean, then it has a subsequence, $\{f_n : X \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$, which converges pointwise almost everywhere. We can deduce this as follows. Since each f_n is measurable and finite valued almost everywhere, we may assume that each f_n is real valued and measurable. Hence, $\{f\}_n$ is a Cauchy sequence in

$$L^{p}(X,\mu,\mathbb{R}) = \left\{ g: X \to \mathbb{R}; g \text{ measurable and } \int_{X} |g|^{p} d\mu < \infty \right\}.$$

The existence of a subsequence $\{f_{n_k}: X \to \mathbb{R}\}_{k=1}^{\infty}$, which is almost everywhere pointwise convergent to a function in $L^p(X, \mu, \mathbb{R})$, is shown in the proof of Theorem 11, in my article, *Convex Function*, L^p Spaces, Space of Continuous Functions, Lusin's Theorem.

Definition 1.

Now we consider the notion of convergence in measure. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} - measurable subset of *X*. Suppose $f_n: E \to \overline{\mathbb{R}}$, n = 1, 2, ..., and $f: E \to \overline{\mathbb{R}}$ are \mathcal{M} - measurable functions. We say the sequence $\{f_n: E \to \overline{\mathbb{R}}\}_{n=1}^{\infty}$ converges in measure (μ), with respect to μ , on *E*, to $f: E \to \overline{\mathbb{R}}$, if given any $\varepsilon > 0$,

$$\lim_{n\to\infty}\mu\left\{x\in E: \left|f_n(x)-f(x)\right|\geq\varepsilon\right\}=0.$$

Observe that this definition makes sense only for functions $f_n: E \to \overline{\mathbb{R}}$ and $f: E \to \overline{\mathbb{R}}$, which are finite almost everywhere on *E*.

Note that this definition is equivalent to:

Given any $\delta > 0$, there exists integer N such that

$$n \ge N \Longrightarrow \mu \{ x \in E : |f(x) - f_n(x)| \ge \varepsilon \} < \delta$$
.

Remark. When f_n and f are random variables, convergence in measure is also known as convergence in probability.

We note that if f_n converges in measure to f, then f is unique almost everywhere with respect to μ in X. That is to say, if f_n converges in measure to f and f_n converges in measure to g, then f = g almost everywhere in X with respect to μ . We show this below.

Firstly, observe that given any $\varepsilon > 0$,

$$\left\{x: \left|f(x)-g(x)\right| > \varepsilon\right\} \subseteq \left\{x: \left|f_n(x)-f(x)\right| > \frac{\varepsilon}{2}\right\} \cup \left\{x: \left|f_n(x)-g(x)\right| > \frac{\varepsilon}{2}\right\}.$$

Hence,

$$\mu\left(\left\{x: |f(x)-g(x)| > \varepsilon\right\}\right) \le \mu\left(\left\{x: |f_n(x)-f(x)| > \frac{\varepsilon}{2}\right\}\right) + \mu\left(\left\{x: |f_n(x)-g(x)| > \frac{\varepsilon}{2}\right\}\right).$$

By definition of convergence in measure, there exists an integer N such that

$$n \ge N \Longrightarrow \mu \left\{ x \in E : \left| f_n(x) - f(x) \right| \ge \frac{\varepsilon}{2} \right\} < \frac{\delta}{2}$$

And there exists an integer M such that

$$n \ge M \Longrightarrow \mu \left\{ x \in E : \left| f_n(x) - g(x) \right| \ge \frac{\varepsilon}{2} \right\} < \frac{\delta}{2}$$
.

It follows that

$$n \ge \max(N, M) \Longrightarrow \mu\left(\left\{x: \left|f_n(x) - f(x)\right| > \frac{\varepsilon}{2}\right\}\right) + \mu\left(\left\{x: \left|f_n(x) - g(x)\right| > \frac{\varepsilon}{2}\right\}\right) < \delta.$$

Hence, for any $\delta > 0$, $\mu(\{x: |f(x) - g(x)| > \varepsilon\}) < \delta$. Since δ is arbitrary, we conclude that $\mu(\{x: |f(x) - g(x)| > \varepsilon\}) = 0$ for any $\varepsilon > 0$.

Now $\{x: |f(x) - g(x)| > 0\} = \bigcup_{n=1}^{\infty} \{x: |f(x) - g(x)| > \frac{1}{n}\}$ and so by the continuity from below property of measure (Proposition 18, *Introduction To Measure Theory*), $\mu\{x: |f(x) - g(x)| > 0\} = 0$. It follows that f = g almost everywhere in X with

respect to μ .

In general, convergence in measure does not imply convergence almost everywhere nor is it implied by convergence almost everywhere. However, convergence in measure does imply the existence of a subsequence converging almost everywhere.

Theorem 2. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n : E \to \mathbb{R}$, n = 1, 2, ... and $f : E \to \mathbb{R}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ . Suppose $\{f_n\}$ converges in measure to *f*. Then there is a subsequence $\{f_{n_i}\}$ converging to *f* almost everywhere with respect to

μ.

Proof.

Since $f_n \to f$ in measure, given j = 1, 2, ..., there exists an integer n_j such that for all $n \ge n_j$,

$$\mu\left(\left\{x \in E : \left|f_{n}(x) - f(x)\right| \ge \frac{1}{2^{j}}\right\}\right) < \frac{1}{2^{j}} \quad \dots \quad (1)$$

We may assume that the sequence $\{n_j\}$ is monotonically increasing. (Having chosen n_j , we can always choose $n_{j+1} > n_j$.)

For each integer $j \ge 1$, let $E_j = \left\{ x \in E : \left| f_{n_j}(x) - f(x) \right| \ge \frac{1}{2^j} \right\}$ and for each integer m ≥ 1 , let $H_m = \bigcup_{j=m}^{\infty} E_j$. Note that $\mu(E_j) < \frac{1}{2^j}$. It follows that

$$\mu(H_m) = \mu\left(\bigcup_{j=m}^{\infty} E_j\right) \leq \sum_{j=m}^{\infty} \frac{1}{2^j} = \frac{1}{2^{m-1}} \quad .$$

Now, for all $x \in E - E_j$, $\left| f_{n_j}(x) - f(x) \right| < \frac{1}{2^j}$. Thus, if $j \ge m$, then

$$|f_{n_j}(x) - f(x)| < \frac{1}{2^j}$$
 for x in $E - H_m$.

As $\frac{1}{2^{j}} \to 0$, this means that $f_{n_{j}}(x) \to f(x)$ for x in $E - H_{m}$. Therefore,

$$x \in E - \bigcap_{m=1}^{\infty} H_m \Longrightarrow f_{n_j}(x) \to f(x).$$

Since, $\mu\left(\bigcap_{m=1}^{\infty}H_{m}\right) \leq \mu\left(H_{j}\right) < \frac{1}{2^{j-1}}$ for $j \geq 1$, $\mu\left(\bigcap_{m=1}^{\infty}H_{m}\right) = 0$. It follows that $f_{n_{j}}(x)$ converges to f(x) for x in E except perhaps for x in $\bigcap_{m=1}^{\infty}H_{m}$, which is a set of μ measure 0. That is, $\{f_{n_{i}}\}$ converges to f almost everywhere on E with respect to μ .

We introduce another notion of convergence involving measure.

Definition 3. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n : E \to \overline{\mathbb{R}}$, n = 1, 2, ... and $f : E \to \overline{\mathbb{R}}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

We say f_n converges almost uniformly to f on E if given $\varepsilon > 0$, there is a measurable subset $A \subseteq E$ with $\mu(A) < \varepsilon$ such that $f_n \to f$ uniformly on E - A.

 $\{f_n\}$ is a *Cauchy sequence almost uniformly*, if given $\varepsilon > 0$, there is a measurable subset $A \subseteq E$ with $\mu(A) < \varepsilon$ such that $\{f_n\}$ is uniformly Cauchy on E - A.

 $\{f_n\}$ is a *Cauchy sequence in measure*, if given $\varepsilon > 0$, $\delta > 0$, there is an integer N such that $n, m \ge N \Rightarrow \mu(\{x: |f_n(x) - f_m(x)| > \varepsilon\}) < \delta$.

We have immediately,

Proposition 4. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n : E \to \mathbb{R}$, n = 1, 2, ... and $f : E \to \mathbb{R}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ . Then

 f_n converges to f in measure implies that $\{f_n\}$ is a Cauchy sequence in measure.

Proof.

By definition of convergence in measure, given any $\varepsilon > 0$, $\delta > 0$, there exists an integer N such that

$$n \ge N \Longrightarrow \mu \left\{ x \in E : \left| f_n(x) - f(x) \right| \ge \frac{\varepsilon}{2} \right\} < \frac{\delta}{2}$$

Next, observe that given any $\varepsilon > 0$,

$$\left\{x: \left|f_n(x)-f_m(x)\right| > \varepsilon\right\} \subseteq \left\{x: \left|f_n(x)-f(x)\right| > \frac{\varepsilon}{2}\right\} \cup \left\{x: \left|f_m(x)-f(x)\right| > \frac{\varepsilon}{2}\right\}.$$

Hence, for $n, m \ge N$,

$$\mu\left(\left\{x: |f(x_n) - f_m(x)| > \varepsilon\right\}\right) \le \mu\left(\left\{x: |f_n(x) - f(x)| > \frac{\varepsilon}{2}\right\}\right) + \mu\left(\left\{x: |f_m(x) - f(x)| > \frac{\varepsilon}{2}\right\}\right)$$
$$< \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Thus, $\{f_n\}$ is a Cauchy sequence in measure.

Proposition 5. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n: E \to \mathbb{R}$, n = 1, 2, ... are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ is a Cauchy sequence in measure, then $\{f_n\}$ has a subsequence, $\{f_{n_i}\}$, which is a Cauchy sequence almost uniformly.

Proof.

Since $\{f_n\}$ is a Cauchy sequence in measure, for each integer $k \ge 1$, there exists an integer n_k such that

$$n \ge n_k \Longrightarrow \mu\left(\left\{x \in E : \left|f_n(x) - f(x)\right| \ge \frac{2^{-k}}{2}\right\}\right) < \frac{2^{-k}}{2}. \quad (1)$$

We may assume that $n_{k+1} > n_k$. Then since

$$\left\{x: |f_n(x) - f_m(x)| \ge 2^{-k}\right\} \subseteq \left\{x: |f_n(x) - f(x)| \ge \frac{2^{-k}}{2}\right\} \cup \left\{x: |f_m(x) - f(x)| > \frac{2^{-k}}{2}\right\},$$

it follows that

$$n, m \ge n_k \Rightarrow \mu\left(\left\{x : |f_n(x) - f_m(x)| \ge 2^{-k}\right\}\right) \le \mu\left(\left\{x : |f_n(x) - f(x)| \ge \frac{2^{-k}}{2}\right\}\right) + \mu\left(\left\{x : |f_m(x) - f(x)| > \frac{2^{-k}}{2}\right\}\right) \le 2^{-k}.$$

For each integer $k \ge 1$, let $E_k = \{x : |f_{n_k}(x) - f_{n_{k+1}}(x)| \ge 2^{-k}\}$. Then $\mu(E_k) \le 2^{-k}$.

For each integer $m \ge 1$, let $H_m = \bigcup_{i=m}^{\infty} E_i$. Then

$$\mu(H_m) = \mu\left(\bigcup_{i=m}^{\infty} E_i\right) \leq \sum_{i=m}^{\infty} \mu(E_i) \leq \sum_{i=m}^{\infty} \frac{1}{2^i} = \frac{1}{2^{m-1}}.$$

Thus, given any $\varepsilon > 0$, we can choose an integer *M* such that $\frac{1}{2^{M-1}} < \varepsilon$. Then

 $\mu(H_M) < \varepsilon \quad \text{Note that as } E - H_M = E - \bigcup_{i=M}^{\infty} E_i = \bigcap_{i=M}^{\infty} (E - E_i), \ x \in E - H_M \quad x \in E - H_m$ implies that $x \in E - E_i$ for integer $i \ge M$. Hence, for all $x \in E - H_M$,

$$|f_{n_i}(x) - f_{n_{i+1}}(x)| < \frac{1}{2^i}$$
, for $i \ge M$.

It follows that for $i \ge j \ge M$ and for all $x \in E - H_M$,

$$\left|f_{n_{j}}(x)-f_{n_{i}}(x)\right| \leq \sum_{m=j}^{m=i-1} \left|f_{n_{m}}(x)-f_{n_{m+1}}(x)\right| < \sum_{m=j}^{m=i-1} \frac{1}{2^{m}} < \frac{1}{2^{j-1}}.$$

Now, given any $\delta > 0$, choose integer $N \ge M$ such that $\frac{1}{2^{N-1}} < \delta$. Then

$$i \ge j \ge N \Longrightarrow \left| f_{n_j}(x) - f_{n_i}(x) \right| \le \frac{1}{2^{j-1}} \le \frac{1}{2^{N-1}} < \delta \text{ for all } x \in E - H_M.$$

Thus, $\{f_{n_i}\}$ is uniformly Cauchy on $E - H_M$ and $\mu(H_M) < \varepsilon$. That is, $\{f_{n_i}\}$ is a Cauchy sequence almost uniformly.

Proposition 6. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n : E \to \overline{\mathbb{R}}$, n = 1, 2, ... and $f : E \to \overline{\mathbb{R}}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ converges to f almost uniformly, then $\{f_n\}$ converges to f in measure.

Proof.

If $\{f_n\}$ converges to *f* almost uniformly, then by definition, given $\varepsilon > 0$, $\delta > 0$, there exists a measurable set *A* in *E* such that $\mu(A) < \delta$ and $f_n \to f$ uniformly on *E*-*A*. It follows that there is an integer *N* such that

$$n \ge N \Rightarrow |f_n(x) - f(x)| < \varepsilon$$
 for all x in $E - A$.

Hence, for $n \ge N$, the set $\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\} \subseteq A$ and so

$$\mu(\{x \in E : |f_n(x) - f(x)| \ge \varepsilon\}) \le \mu(A) < \delta \text{ for } n \ge N.$$

This means $f_n \to f$ in measure.

It is to be expected that almost uniformly convergence implies convergence almost everywhere.

Proposition 7. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n : E \to \mathbb{R}$, n = 1, 2, ... and $f : E \to \mathbb{R}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ converges to f almost uniformly, then $\{f_n\}$ converges to f almost everywhere in E.

Proof.

If $\{f_n\}$ converges to f almost uniformly, then by definition, given any integer $m \ge 1$, there exists a measurable set A_m in E such that $\mu(A_m) < \frac{1}{m}$ and $f_n \to f$ uniformly on $E - A_m$. Let $H = \bigcup_{m=1}^{\infty} (E - A_m)$. Then for any $x \in H$, $x \in E - A_m$ for some integer m so that $f_n(x) \to f(x)$. Therefore, $f_n \to f$ pointwise on H. Now $E - H = \bigcap_{m=1}^{\infty} A_m$. Therefore, $\mu(E - H) = \mu \left(\bigcap_{m=1}^{\infty} A_m\right) \le \mu(A_n) < \frac{1}{n}$ for each integer $n \ge 1$. Since $\frac{1}{n} \to 0$, $\mu(E - H) = 0$. It follows that $f_n \to f$ pointwise almost everywhere in E.

Proposition 8. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n: E \to \mathbb{R}$, n = 1, 2, ... are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ is a Cauchy sequence almost uniformly, then $\{f_n\}$ is a Cauchy sequence in measure.

Proof.

If $\{f_n\}$ is a Cauchy sequence almost uniformly, then by definition, given $\varepsilon > 0$, $\delta > 0$, there exists a measurable set *A* in *E* such that $\mu(A) < \delta$ and $\{f_n\}$ is a Cauchy sequence uniformly on *E*-*A*. It follows that there is an integer *N* such that

 $n, m \ge N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon$ for all x in E - A.

Hence, for $n, m \ge N$, the set $\{x \in E : |f_n(x) - f_m(x)| \ge \varepsilon\} \subseteq A$ and so

$$\mu(\{x \in E : |f_n(x) - f_m(x)| \ge \varepsilon\}) \le \mu(A) < \delta \text{ for } n \ge N.$$

This means $\{f_n\}$ is a Cauchy sequence in measure.

Proposition 9. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n: E \to \mathbb{R}$, n = 1, 2, ... are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ is a Cauchy sequence in measure, then there exists a measurable function, g, finite almost everywhere on E, such that f_n converges to g in measure.

Proof.

If $\{f_n\}$ is a Cauchy sequence in measure, then by Proposition 5, $\{f_n\}$ has a subsequence, $\{f_{n_i}\}$, which is a Cauchy sequence almost uniformly.

As in the proof of Proposition 5,

 $\{f_{n_i}\}$ is uniformly Cauchy on $E - H_k$ and $\mu(H_k) < \frac{1}{2^{k-1}}$. Thus, $\{f_{n_i}\}$ converges uniformly to a function g on $E - H_k$ and so it converges pointwise to g on $E - H_k$. . Let $H = \bigcap_{k=1}^{\infty} H_k$. Then H is measurable and $E - H = E - \bigcap_{k=1}^{\infty} H_k = \bigcup_{k=1}^{\infty} (E - H_k)$. Therefore, g is defined and finite on E - H. Moreover, $\mu(H) = 0$. Thus, g is defined and measurable on E - H. Define g(x) = 0 for x in H. Then g is measurable on E. It follows that $\{f_{n_i}\}$ converges almost uniformly to g on E.

Now, take $\varepsilon > 0$. Observe that

$$\left\{x:\left|f_{n}(x)-g(x)\right|\geq\varepsilon\right\}\subseteq\left\{x:\left|f_{n}(x)-f_{n_{k}}(x)\right|\geq\frac{\varepsilon}{2}\right\}\cup\left\{x:\left|f_{n_{k}}(x)-g(x)\right|\geq\frac{\varepsilon}{2}\right\}.$$
(1)

Since $\{f_n\}$ is a Cauchy sequence in measure, given $\varepsilon > 0$, $\delta > 0$, there is an integer *N* such that

Since $\{f_{n_i}\}$ converges almost uniformly to g on E, there exists an integer M and a measurable subset set E_{δ} in E such that $\mu(E_{\delta}) < \frac{\delta}{2}$ and $|f_{n_k}(x) - g(x)| < \frac{\varepsilon}{2}$ for all $k \ge M$ and for all x in $E - E_{\delta}$.

From (2), if $n, n_k \ge N$, then $\mu\left(\left\{x: \left|f_n(x) - f_{n_k}(x)\right| \ge \frac{\varepsilon}{2}\right\}\right) < \frac{\delta}{2}$.

Thus if $k \ge \max(N, M)$, then by (1),

$$\mu\left(\left\{x:\left|f_{k}(x)-g(x)\right|\geq\varepsilon\right\}\right)\leq\mu\left(\left\{x:\left|f_{k}(x)-f_{n_{k}}(x)\right|\geq\frac{\varepsilon}{2}\right\}\right)+\mu\left(\left\{x:\left|f_{n_{k}}(x)-g(x)\right|\geq\frac{\varepsilon}{2}\right\}\right) \right)$$
$$\leq\mu\left(\left\{x:\left|f_{k}(x)-f_{n_{k}}(x)\right|\geq\frac{\varepsilon}{2}\right\}\right)+\mu\left(E_{\delta}\right)<\frac{\delta}{2}+\frac{\delta}{2}=\delta .$$

It follows that f_n converges to g in measure.

Remark. The term *Cauchy sequence in measure* does live up to its name. By Proposition 4, if f_n converges to f in measure, then $\{f_n\}$ is a Cauchy sequence in measure. Proposition 9 says that if $\{f_n\}$ is a Cauchy sequence in measure, then there is a measurable function g such that f_n converges to g in measure. Hence f = g almost everywhere on E. Thus, with the hypothesis of Proposition 9, $\{f_n\}$ is convergent in measure if, and only if, $\{f_n\}$ is a Cauchy sequence in measure.

Now we state a relation between convergence in the *p*th mean and convergence in measure.

Theorem 10. Suppose (X, \mathcal{M}, μ) is a measure space. Let $L^p(X, \mu, \overline{\mathbb{R}})$ be the collection of all \mathcal{M} measurable extended real valued functions $g: X \to \overline{\mathbb{R}}$, which are finite almost everywhere on X and $\int_X |g|^p d\mu < \infty$.

If $\{f_n\}$ is a Cauchy sequence in the $L^p(X, \mu, \overline{\mathbb{R}})$ norm, then $\{f_n\}$ is a Cauchy sequence in measure. Suppose *f* is a measurable extended real valued function, which is finite almost everywhere. If $f_n \to f$ in the *p*-th mean, i.e., in the $L^p(X, \mu, \overline{\mathbb{R}})$ norm, then $f_n \to f$ in measure.

Proof. Recall that the $L^p(X,\mu,\overline{\mathbb{R}})$ norm is given by, $||g||_p = \left(\int_X |g|^p d\mu\right)^{\frac{1}{p}}$ for g in $L^p(X,\mu,\overline{\mathbb{R}})$. Suppose $\{f_n\}$ is a Cauchy sequence in the $L^p(X,\mu,\overline{\mathbb{R}})$ norm. Then given any $\eta > 0$, there exists an integer N such that

$$n, m \ge N \Longrightarrow \left\| f_n - f_m \right\|_p = \left(\int_X \left| f_n - f_m \right|^p \right)^{\frac{1}{p}} < \eta \quad ------ (1)$$

For any $\varepsilon > 0$, $\delta > 0$, let $E_{n,m} = \{x : |f_n(x) - f_m(x)| \ge \varepsilon\}$. Then $E_{n,m}$ is measurable and

$$\int_{E_{n,m}} \left| f_n - f_m \right|^p d\mu \ge \int_{E_{n,m}} \varepsilon^p d\mu = \varepsilon^p \mu \left(E_{n,m} \right) \quad \dots \quad (2)$$

Choose $\eta > 0$ such that $\eta^p < \delta \varepsilon^p$. It follows then from (1) and (2) that for $n, m \ge N$, $\varepsilon^p \mu(E_{n,m}) \le \int_{E_{n,m}} |f_n - f_m|^p d\mu \le \int_X |f_n - f_m|^p d\mu < \eta^p$ implying that

$$\mu(E_{n,m}) < \int_{E_{n,m}} \left| f_n - f_m \right|^p d\mu \leq \int_X \left| f_n - f_m \right|^p d\mu < \frac{\eta^p}{\varepsilon^p} < \delta.$$

Hence, for any $\varepsilon > 0$, $\delta > 0$, there exists an integer N such that

$$n,m \ge N \Longrightarrow \mu(\{x: |f_n(x) - f_m(x)| \ge \varepsilon\}) < \delta.$$

This means that $\{f_n\}$ is a Cauchy sequence in measure.

Suppose $f_n \to f$ in the $L^p(X, \mu, \overline{\mathbb{R}})$ norm. Then given any $\eta > 0$, there exists an integer *N* such that

For any $\varepsilon > 0$, $\delta > 0$, let $H_n = \{x: |f_n(x) - f(x)| \ge \varepsilon\}$. Then H_n is measurable and

$$\int_{H_n} \left| f_n - f \right|^p d\mu \ge \int_{H_n} \varepsilon^p d\mu = \varepsilon^p \mu(H_n). \quad (4)$$

Thus, taking any $\eta > 0$ such that $\eta^{p} < \delta \varepsilon^{p}$, we have that

$$n \ge N \Longrightarrow \mu\left(\left\{x: \left|f_n(x) - f(x)\right| \ge \varepsilon\right\}\right) \le \frac{1}{\varepsilon^p} \int_{H_n} \left|f_n - f\right|^p d\mu \le \frac{1}{\varepsilon^k} \int_X \left|f_n - f\right|^p d\mu < \frac{\eta^p}{\varepsilon^p} < \delta.$$

This proves that $f_n \to f$ in measure.

Theorem 11 (Egoroff's Theorem). Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} - measurable subset of *X* and $\mu(E) < \infty$. Suppose $f_n : E \to \mathbb{R}$, $n = 1, 2, ..., \text{ and } f: E \to \mathbb{R}$ are \mathcal{M} - measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ converges to f almost everywhere on E, then $\{f_n\}$ converges to f almost uniformly in E.

Proof.

By omitting a subset of zero measure, we may assume that f_n and f are finite on E and that $f_n(x) \rightarrow f(x)$ for all x in E.

For integers, $m, n \ge 1$, let

$$E_n^m = \bigcap_{i=n}^{\infty} \left\{ x : \left| f_i(x) - f(x) \right| < \frac{1}{m} \right\} .$$

Then plainly, for each integer $m \ge 1$, $E_n^m \subseteq E_{n+1}^m \subseteq E_{n+2}^m \subseteq \cdots$ is an increasing sequence of measurable sets. Since $f_n(x) \to f(x)$ for all x in E, this sequence converges to E. That is to say, $\bigcup_{i=1}^{\infty} E_i^m = E$. Hence, by continuity from below property of positive measure, $\lim_{i\to\infty} \mu(E_i^m) = \mu(E)$ (see Proposition 18, *Introduction to Measure Theory*). Therefore, since $\mu(E) < \infty$, there exists an integer, N_m , depending on m such that

$$i \ge N_m \Longrightarrow \mu(E) - \mu(E_i^m) < \frac{\varepsilon}{2^m} \Longrightarrow \mu(E - E_i^m) < \frac{\varepsilon}{2^m}.$$

Let $F_{\varepsilon} = \bigcup_{m=1}^{\infty} (E - E_{N_m}^m)$. Then $\mu(F_{\varepsilon}) = \mu(\bigcup_{m=1}^{\infty} (E - E_{N_m}^m)) \le \sum_{m=1}^{\infty} \mu(E - E_{N_m}^m) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon.$

Observe that $E - F_{\varepsilon} = E - \bigcup_{m=1}^{\infty} \left(E - E_{N_m}^m \right) = \bigcap_{m=1}^{\infty} E_{N_m}^m$. Therefore, for all x in $E - F_{\varepsilon}$, $x \in E_{N_m}^m$ for all integer $m \ge 1$. Given any $\delta > 0$, choose integer M such that $\frac{1}{M} < \delta$. Hence, for all integer $i \ge N_M$, $|f_i(x) - f(x)| < \frac{1}{M} < \delta$ for all x in $E - F_{\varepsilon}$ as $E - F_{\varepsilon} \subseteq E_{N_M}^M$. It follows that $f_n \to f$ uniformly on $E - F_{\varepsilon}$. Hence, $\{f_n\}$ converges to *f* almost uniformly in *E*.

Remark. If (X, \mathcal{M}, μ) is a finite measure space, i.e., $\mu(X) < \infty$, then by Theorem 11, $\{f_n\}$ converges to *f* almost everywhere on *E*, implies that $\{f_n\}$ converges to *f* almost uniformly in *E* and by Proposition 7, $\{f_n\}$ converges to *f* almost uniformly in *E* implies that $\{f_n\}$ converges to *f* almost everywhere on *E*.

Thus, when $\mu(E) < \infty$, under the hypothesis of Egoroff's Theorem, convergence almost uniformly in *E* is equivalent to convergence almost everywhere in *E*. Thus, for a probability measure, these two notions coincide.

Corollary 12. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X* and $\mu(E) < \infty$. Suppose $f_n : E \to \mathbb{R}$, n = 1, 2, ..., and $f : E \to \mathbb{R}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ converges to f almost everywhere on E, then $\{f_n\}$ converges to f in measure in E.

Proof. This is a consequence of Theorem 11 and Proposition 6.

Theorem 13. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable set and $\{f_n : E \to \mathbb{R}\}$ is a sequence of measurable functions defined on *E*. Suppose f_n converges almost everywhere to a measurable function $f : E \to \mathbb{R}$. Suppose there exists a Lebesgue integrable function $g : E \to [0, \infty)$ such that, $|f_n(x)| \le g(x)$ for all integer $n \ge 1$ and for almost all x in *E*. Then f_n and f are Lebesgue integrable, and f_n converges almost uniformly to f. Consequently, f_n converges in measure to f.

Proof.

By omitting a subset of zero measure, we may assume that f_n and f are finite on E, $f_n(x) \rightarrow f(x)$ almost everywhere in E, $|f_n(x)| \le g(x)$ for almost all x in E. Therefore, $|f| \le g$ almost everywhere in E. Hence, f_n and f are Lebesgue integrable,

For integers, $m, n \ge 1$, let

$$E_n^m = \bigcap_{i=n}^{\infty} \left\{ x : \left| f_i(x) - f(x) \right| < \frac{1}{m} \right\}$$

Then plainly, for each integer $m \ge 1$, $E_n^m \subseteq E_{n+1}^m \subseteq E_{n+2}^m \subseteq \cdots$ is an increasing sequence of measurable sets. Now, the set

$$\left\{x \in E : \lim_{i \to \infty} f_i(x) = f(x)\right\} \subseteq \bigcup_{n=1}^{\infty} E_n^m$$

for each integer $m \ge 1$. Since f_n converges almost everywhere to f and

$$E - \bigcup_{n=1}^{\infty} E_n^m = \bigcap_{n=1}^{\infty} \left(E - E_n^m \right) \subseteq E - \left\{ x \in E : \lim_{i \to \infty} f_i(x) = f(x) \right\} ,$$
$$\mu \left(\bigcap_{n=1}^{\infty} \left(E - E_n^m \right) \right) \subseteq \mu \left(E - \left\{ x \in E : \lim_{i \to \infty} f_i(x) = f(x) \right\} \right) = 0 \text{ implies that}$$
$$\mu \left(\bigcap_{n=1}^{\infty} \left(E - E_n^m \right) \right) = 0.$$

Now, $|f_n - f| \le 2g$ almost everywhere in *E* for all integer $n \ge 1$. Let *A* be a measurable subset of *E* such $\mu(A) = 0$ and that on E - A, $|f_n - f| \le 2g$. Then

$$(E-A)-E_n^m \subseteq \bigcup_{i=n}^{\infty} \left\{ x \in E-A : \left| f_i(x) - f(x) \right| \ge \frac{1}{m} \right\} \subseteq \left\{ x \in E-A : g(x) \ge \frac{1}{2m} \right\}$$

Since g is integrable, $\mu\left(\left\{x \in E - A : g(x) \ge \frac{1}{2m}\right\}\right) \le \mu\left(\left\{x \in E : g(x) \ge \frac{1}{2m}\right\}\right) < \infty$. It follows that $\mu\left(E - E_n^m\right) < \infty$. Therefore, by the continuity from above property of positive measure, μ , (see Proposition 18, *Introduction to Measure Theory*), $\mu\left(E - E_n^m\right) \rightarrow \mu\left(\bigcap_{n=1}^{\infty} \left(E - E_n^m\right)\right) = 0$ as $n \to \infty$. Hence, there exists an integer, N_m , depending on m such that $n \ge N_m \Rightarrow \mu\left(E - E_n^m\right) < \frac{\varepsilon}{2^m}$.

Let
$$F_{\varepsilon} = \bigcup_{m=1}^{\infty} \left(E - E_{N_m}^m \right)$$
. Then $\mu(F_{\varepsilon}) = \mu\left(\bigcup_{m=1}^{\infty} \left(E - E_{N_m}^m \right) \right) \leq \sum_{m=1}^{\infty} \mu\left(E - E_{N_m}^m \right) < \sum_{m=1}^{\infty} \frac{\varepsilon}{2^m} = \varepsilon$.

Observe that $E - F_{\varepsilon} = E - \bigcup_{m=1}^{\infty} \left(E - E_{N_m}^m \right) = \bigcap_{m=1}^{\infty} E_{N_m}^m$. Therefore, for all x in $E - F_{\varepsilon}$, $x \in E_{N_m}^m$ for all integer $m \ge 1$. Given any $\delta > 0$, choose integer M such that $\frac{1}{M} < \delta$. Hence, for all integer $i \ge N_M$, $|f_i(x) - f(x)| < \frac{1}{M} < \delta$ for all x in $E - F_{\varepsilon}$ as $E - F_{\varepsilon} \subseteq E_{N_M}^M$. It follows that $f_n \to f$ uniformly on $E - F_{\varepsilon}$. Hence, $\{f_n\}$ converges to f almost uniformly in E.

Remark. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable set and $\{f_n : E \to \mathbb{R}\}$ is a sequence of measurable functions defined on *E* and dominated by an integrable non-negative function in *E*. Suppose $f : E \to \mathbb{R}$ is measurable. Then by Theorem 13 and Proposition 7, $\{f_n\}$ converges to *f* almost uniformly in *E* if, and only if, $\{f_n\}$ converges to *f* almost everywhere in *E*.

Theorem 14. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose $\{f_n : X \to [0, \infty]\}$ is an increasing sequence of non-negative measurable functions defined and finite almost everywhere with respect to μ on X. Suppose $\{f_n\}$ converges in measure to a measurable non-negative function f defined and finite almost everywhere in X with respect to the measure μ . Then

$$\int_X f_n \, d\,\mu \to \int_X f \, d\,\mu \, d\,\mu$$

Proof.

Since $\{f_n\}$ converges in measure to f, by Theorem 2, Then there is a subsequence $\{f_{n_i}\}$ converging to f almost everywhere with respect to μ . Therefore, by the Lebesgue Monotone Convergence Theorem,

$$\int_X f_{n_j} d\mu \to \int_X f d\mu \, .$$

Since $\{f_n\}$ is an increasing sequence of non-negative measurable functions, $\lim_{n\to\infty}\int_X f_n d\mu = \lim_{j\to\infty}\int_X f_{n_j} d\mu$ and so $\int_X f_n d\mu \to \int_X f d\mu$.

Theorem 15. (Bounded Convergence)

Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable set of finite measure and $\{f_n : E \to \mathbb{R}\}$ is a sequence of measurable functions defined on *E*. Suppose there exists $M \ge 0$ such that $|f_n(x)| \le M$ for all integer $n \ge 1$ and for *x* in *E*, i.e., $\{f_n\}$ is uniformly bounded on *E*. If f_n converges in measure to a measurable function $f: E \to \mathbb{R}$, then $\int_E f_n d\mu \to \int_E f d\mu$.

Proof.

Since $|f_n| \le M$ and $\mu(E) < \infty$, f_n is Lebesgue integrable for all integer $n \ge 1$. Since f_n converges in measure to a measurable function $f: E \to \mathbb{R}$, by Theorem 2, there is a subsequence $\{f_{n_i}\}$ converging to f pointwise almost everywhere with respect to μ . Therefore, by the Lebesgue Dominated Convergence Theorem (See Theorem 33, *Introduction to Measure Theory and remark after the theorem*), $\int_E f_{n_i} d\mu \to \int_E f d\mu < \infty$.

Now there exists a set subset *K* of measure zero in *E* such that $f_{n_j}(x) \to f(x)$ for every *x* in E - K. As $|f_{n_j}(x)| \le M$ for all *x* in *E*, $|f(x)| \le M$ for all *x* in E - K. Therefore, $\int_E |f| d\mu \le \int_E M d\mu = M \mu(E) < \infty$. Hence, $f_n - f$ is Lebesgue integrable for each integer $n \ge 1$. Note that

$$\left|\int_{E}f_{n}d\mu-\int_{E}fd\mu\right|\leq\int_{E}(f_{n}-f)d\mu\leq\int_{E}|f_{n}-f|d\mu.$$

For $\varepsilon > 0$, let $K_n = \{x \in E : |f_n(x) - f(x)| \ge \varepsilon\}$ for each integer $n \ge 1$. Since f_n converges in measure to f, there exists an integer N such that

$$n \ge N \Longrightarrow \mu(K_n) < \varepsilon$$

It follows that for $n \ge N$,

$$\int_{E} |f_{n} - f| d\mu = \int_{E-K_{n}} |f_{n} - f| d\mu + \int_{K_{n}} |f_{n} - f| d\mu \leq \varepsilon \mu (E - K_{n}) + 2M \mu (K_{n})$$

$$< \varepsilon (\mu (E-K_n)+2M) \leq \varepsilon (\mu (E)+2M).$$

Since this is true for any $\varepsilon > 0$, $\int_{\varepsilon} |f_n - f| d\mu \to 0$ as $n \to \infty$. Hence $\left| \int_{\varepsilon} f_n d\mu - \int_{\varepsilon} f d\mu \right| \to 0$ and so $\int_{\varepsilon} f_n d\mu \to \int_{\varepsilon} f d\mu$.

The following is a special form of Fatou's Lemma for convergence in measure.

Theorem 16. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable subset of *X* and $\{f_n : E \to [0, \infty]\}$ is a sequence of non-negative measurable functions defined and finite almost everywhere with respect to μ on *X*. Suppose $\{f_n\}$ converges in measure to a measurable non-negative function *f* defined and finite almost everywhere in *E* with respect to the measure μ . Then

$$\int_E f d\mu \leq \liminf_{n\to\infty} \int_E f_n d\mu.$$

Proof:

Suppose that $\int_{E} f d\mu < \infty$ and $\int_{E} f d\mu > \liminf_{n \to \infty} \int_{E} f_{n} d\mu$. Then there exists a $\delta > 0$ and a sequence $\{n_{i}\}$ such that $\int_{E} f_{n_{i}} d\mu < \int_{E} f d\mu - \delta$ for all integer $i \ge 1$. (See Theorem 6, All About Lim Sup and Lim Inf.) Since $\{f_{n}\}$ converges in measure to f, $\{f_{n_{i}}\}$ also converges in measure to f. By Theorem 2, $\{f_{n_{i}}\}$ has a subsequence, $\{f_{n_{i_{j}}}\}$, that converges pointwise almost everywhere to f. Note that $\{f_{n_{i_{j}}}\}$ is also a subsequence of $\{f_{n}\}$. Therefore, by Fatou's Lemma, $\int_{E} f d\mu \le \liminf_{j \to \infty} \int_{E} f_{n_{i_{j}}} d\mu \le \int_{E} f d\mu - \delta$, giving a contradiction. Therefore, $\int_{E} f d\mu \le \liminf_{n \to \infty} \int_{E} f_{n} d\mu$, Suppose now $\int_{E} f d\mu = \infty$ and that $\liminf_{n \to \infty} \int_{E} f_{n} d\mu < \infty$. Then by definition of lim

inf, there exists a number J > 0 and a sub sequence, $\{f_{n_i}\}$, such that $\int_E f_{n_i} d\mu < J$. As above, we can find a subsequence $\{f_{n_{i_j}}\}$ of $\{f_{n_i}\}$ such that $\{f_{n_{i_j}}\}$ converges almost everywhere to f. It follows by Fatou's Lemma that $\liminf_{j\to\infty} \int_E f_{n_{i_j}} d\mu = \infty$ and so $\{\int_E f_n d\mu\}$ is unbounded above contradicting $\liminf_{j\to\infty} \int_E f_{n_{i_j}} d\mu < \infty$.

Theorem 17 (Dominated Convergence Theorem).

Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable set and $\{f_n : E \to \mathbb{R}\}$ is a sequence of measurable functions defined on *E*. Suppose f_n converges in measure to a measurable function $f : E \to \mathbb{R}$. Suppose there exists a Lebesgue integrable function $g : E \to [0, \infty)$ such that $|f(x)| \le g(x)$, $|f_n(x)| \le g(x)$ for all integer $n \ge 1$ and for almost all *x* in *E*. Then f_n and *f* are Lebesgue integrable, $\int_E f_n d\mu \to \int_E f d\mu$ and f_n converges in the mean to *f*, i.e., $\lim_{n \to \infty} \int_E |f_n - f| d\mu = 0$.

Proof.

Since f_n converges in measure to a measurable function $f: E \to \mathbb{R}$, by Theorem 2, there is a subsequence $\{f_{n_i}\}$ converging to f pointwise almost everywhere with respect to μ . Moreover, for each integer $i \ge 1$, $|f_{n_i}(x)| \le g(x)$. Therefore, $|f(x)| \le g(x)$ for almost all x in E. Hence, f is Lebesgue integrable on E. Note that for each integer $n \ge 1$, $f_n(x) + g(x) \ge 0$ almost everywhere in E. Furthermore, as f_n converges in measure to f, $f_n + g$ converges in measure to f + g. Therefore, by Theorem 16,

$$\int_{E} f d\mu + \int_{E} g d\mu \leq \liminf_{n \to \infty} \int_{E} (f_n + g) d\mu.$$

It follows that

$$\int_{E} f d\mu \leq \liminf_{n \to \infty} \int_{E} f_{n} d\mu \,. \quad \text{-------} \quad (1)$$

We also have that for each integer $n \ge 1$, $g(x) - f_n(x) \ge 0$ almost everywhere in *E* and $g - f_n$ converges in measure to g - f. Therefore, by Theorem 16,

$$\int_E g d\mu - \int_E f d\mu \leq \liminf_{n\to\infty} \int_E (g - f_n) d\mu.$$

It follows that

$$\int_{E} f d\mu \ge \limsup_{n \to \infty} \int_{E} f_n d\mu \,. \quad ------(2)$$

Therefore, $\int_{E} f d\mu \leq \liminf_{n \to \infty} \int_{E} f_n d\mu \leq \limsup_{n \to \infty} \int_{E} f_n d\mu \leq \int_{E} f d\mu$ which implies that

$$\lim_{n\to\infty}\int_E f_n d\mu = \int_E f d\mu.$$

By definition of convergence in measure, f_n converges in measure to f implies that $|f_n - f|$ converges in measure to 0. Moreover, for each integer $n \ge 1$, $|f_n - f| \le 2g$ almost everywhere in E. Therefore, applying the previous conclusion to the sequence, $\{|f_n - f|\}$, we have

$$\lim_{n\to\infty}\int_E |f_n-f|\,d\,\mu=\int_E 0d\,\mu=0\,.$$

Remark. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a measurable set and $\{f_n : E \to \mathbb{R}\}$ is a sequence of measurable functions defined on *E* and dominated by an integrable non-negative function in *E*. Suppose $f : E \to \mathbb{R}$ is measurable. Then by Theorem 10 and Theorem 17, $\{f_n\}$ converges to *f* in the mean in *E* if, and only if, $\{f_n\}$ converges in measure to *f* in *E*.

For a sequence of measurable functions, convergence almost uniformly in a measurable set E, does imply that after subtracting a set of measure zero, we can consider E as a countable union of measurable sets, where, in each of these sets, the sequence converges uniformly. We state this more precisely as follows:

Proposition 18. Suppose (X, \mathcal{M}, μ) is a measure space. Suppose *E* is a \mathcal{M} -measurable subset of *X*. Suppose $f_n: E \to \mathbb{R}$, n = 1, 2, ... and $f: E \to \mathbb{R}$ are \mathcal{M} -measurable functions, which are defined and finite almost everywhere on *E*, with respect to the measure μ .

If $\{f_n\}$ converges to *f* almost uniformly, then there exists a sequence of measurable sets, $\{E_i\}$ in *E*, such that $\mu\left(E - \bigcup_{i=1}^{\infty} E_i\right) = 0$ and $\{f_n\}$ converges uniformly to *f* on E_i for each integer $i \ge 1$.

Proof.

If $\{f_n\}$ converges to f almost uniformly, then by definition, given any integer $i \ge 1$, there exists a measurable set A_i in E such that $\mu(A_i) < \frac{1}{i}$ and $f_n \to f$ uniformly on $E - A_i$. For each integer $i \ge 1$, let $E_i = E - A_i$. Let $H = \bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} (E - A_i)$. Then $f_n(x) \to f(x)$ uniformly on each E_i , $i \ge 1$. Now $E - H = \bigcap_{m=1}^{\infty} A_m$. Therefore, $\mu(E - H) = \mu \left(\bigcap_{m=1}^{\infty} A_m\right) \le \mu(A_n) < \frac{1}{n}$ for each integer $n \ge 1$. Since $\frac{1}{n} \to 0$, $\mu(E - H) = 0$.

If E is of σ -finite measure, convergence almost everywhere in E does imply uniform convergence in some measurable subsets of E as in Proposition 18.

Proposition 19. Suppose (X, \mathcal{M}, μ) is a measure space. Let *E* be a \mathcal{M} -measurable subset of *X*. Suppose $f, f_n, n = 1, 2, ...,$ are measurable and finite almost everywhere on *E*. Suppose *E* is of σ -finite measure and $f_n \to f$ almost everywhere on *E*. Then there exists a sequence of measurable sets $\{E_i\}$ such that $\mu \left(E - \bigcup_{i=1}^{\infty} E_i \right) = 0$ and $f_n \to f$ uniformly on each E_i .

Proof.

Since *E* is of σ -finite measure, we may assume that $E = \bigcup_{i=1}^{\infty} F_i$, where F_i is measurable and $\mu(F_i) < \infty$ for integer $i \ge 1$. Therefore, as $f_n \to f$ almost everywhere on *E*, $f_n \to f$ almost everywhere on each F_i . Hence, by Theorem 11 (Egoroff's Theorem), $\{f_n\}$ converges to *f* almost uniformly in each F_i . It follows then by Proposition 18, that for each integer $i \ge 1$, there exists measurable sets $\{E_i^i\}_{j=1}^{\infty}$ such that $f_n \to f$ uniformly on each E_j^i for j = 1, 2, ...and $\mu\left(F^i - \bigcup_{j=1}^{\infty} E_j^i\right) = 0$. Note that $\mu\left(E - \bigcup_{i,j=1}^{\infty} E_j^i\right) = \mu\left(\bigcup_{i=1}^{\infty} \left(F_i - \bigcup_{j=1}^{\infty} E_j^i\right)\right) = 0$ and $f_n \to f$ uniformly on each E_j^i for j = 1, 2, ..., i = 1, 2, ... The required sequence of measurable sets is $\{E_i^i\}$. The Lebesgue measure on \mathbb{R} is σ -finite. We have the following interesting generalization of the integral of a non-negative measurable function.

Proposition 20. Suppose (X, \mathcal{M}, μ) is a measure space. Let *E* be a \mathcal{M} -measurable subset of *X*. Suppose $f: E \to [0, \infty]$ be a non-negative measurable function. Let B(f, E) denote the set of all bounded measurable functions $\xi: E \to \mathbb{R}$ satisfying $\xi \leq f$ and $\mu(\xi^{-1}(\mathbb{R} - \{0\})) < \infty$. If *E* is of σ -finite measure, then $\int_E f d\mu = \sup\{\int_E \xi d\mu: \xi \in B(f, E)\}$.

Proof.

Recall that for a non-negative measurable function, $f: E \rightarrow [0, \infty]$, its Lebesgue integral is given by

$$\int_{E} f \, d\mu = \sup \left\{ \int_{E} s \, d\mu : s \text{ is a measurable simple function and } 0 \le s \le f \right\}.$$

By Theorem 16 of *Introduction to Measure Theory*, there exists a monotone increasing sequence of (non-negative) measurable simple functions $s_n : E \to [0, \infty)$ converging pointwise to *f*. By Theorem 23 (Lebesgue Monotone Convergence Theorem) of *Introduction to Measure Theory*,

$$\int_E s_n d\mu \nearrow \int_E f d\mu$$

Since *E* is σ -finite, we may assume that $E = \bigcup_{i=1}^{\infty} K_i$, where $K_i \subseteq K_{i+1}$, K_i is measurable and $\mu(K_i) < \infty$ for each integer $i \ge 1$.

Then by Proposition 21 of *Introduction to Measure Theory*, $\varphi_{s_n}(A) = \int_A s_n d\mu$ for any measurable *A*, defines a positive measure on \mathcal{M} .

Therefore, by the continuity from below property of positive measure,

$$\int_{E} s_{n} d\mu = \varphi_{S_{n}}(E) = \varphi_{S_{n}}\left(\bigcup_{i=1}^{\infty} K_{i}\right) = \lim_{i \to \infty} \varphi_{S_{n}}(K_{i})$$

$$=\lim_{i\to\infty}\int_E s_n\chi_{K_i}d\mu.$$

Note that $0 \le s_n \chi_{K_i} \le f$ and $s_n \chi_{K_i}$ is a bounded measurable function with

$$(s_n\chi_{K_i})^{-1}(\mathbb{R}-\{0\})\subseteq K_i$$

Hence, $\mu\left(\left(s_n\chi_{K_i}\right)^{-1}(\mathbb{R}-\{0\})\right) \le \mu(K_i) < \infty$. It follows that for each integer $i \ge 1$,

 $s_n \chi_{K_i} \in B(f, E) = \{ \xi : E \to \mathbb{R} \mid \xi \text{ is bounded and measurable}, \xi \leq f \}.$

Therefore, $\int_{E} s_n d\mu \le \sup \left\{ \int_{E} h d\mu : h \in B(f, E) \right\}$ for each integer $n \ge 1$. It follows that

$$\int_{E} f \, d\mu = \lim_{n \to \infty} \int_{E} s_n d\mu \leq \sup \left\{ \int_{E} h d\mu : h \in B(f, E) \right\}.$$

But for each $h \in B(f, E)$, $h \le f$ so that $\int_E h d\mu \le \int_E f d\mu$. Hence,

$$\sup\left\{\int_E hd\mu: h\in B(f,E)\right\} \leq \int_E f\,d\mu.$$

Therefore, $\int_E f d\mu = \sup \left\{ \int_E h d\mu : h \in B(f, E) \right\}.$